1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Compat
open Errors
open Util
open Extend
open Genarg
open Stdarg
open Constrarg
open Tok (* necessary for camlp4 *)
(** The parser of Coq *)
module G = GrammarMake (Lexer)
let warning_verbose = Compat.warning_verbose
module Symbols = GramextMake(G)
let gram_token_of_token = Symbols.stoken
let gram_token_of_string s = gram_token_of_token (Lexer.terminal s)
let camlp4_verbosity silent f x =
let a = !warning_verbose in
warning_verbose := silent;
f x;
warning_verbose := a
let camlp4_verbose f x = camlp4_verbosity (Flags.is_verbose ()) f x
(** [grammar_object] is the superclass of all grammar entries *)
module type Gramobj =
sig
type grammar_object
val weaken_entry : 'a G.entry -> grammar_object G.entry
end
module Gramobj : Gramobj =
struct
type grammar_object = Obj.t
let weaken_entry e = Obj.magic e
end
(** Grammar entries with associated types *)
type grammar_object = Gramobj.grammar_object
type typed_entry = TypedEntry : 'a raw_abstract_argument_type * 'a G.entry -> typed_entry
let object_of_typed_entry (TypedEntry (_, e)) = Gramobj.weaken_entry e
let weaken_entry x = Gramobj.weaken_entry x
(** Grammar extensions *)
(** NB: [extend_statment =
gram_position option * single_extend_statment list]
and [single_extend_statment =
string option * gram_assoc option * production_rule list]
and [production_rule = symbol list * action]
In [single_extend_statement], first two parameters are name and
assoc iff a level is created *)
(** Type of reinitialization data *)
type gram_reinit = gram_assoc * gram_position
type ext_kind =
| ByGrammar of
grammar_object G.entry
* gram_reinit option (** for reinitialization if ever needed *)
* G.extend_statment
| ByEXTEND of (unit -> unit) * (unit -> unit)
(** The list of extensions *)
let camlp4_state = ref []
(** Deletion *)
let grammar_delete e reinit (pos,rls) =
List.iter
(fun (n,ass,lev) ->
List.iter (fun (pil,_) -> G.delete_rule e pil) (List.rev lev))
(List.rev rls);
match reinit with
| Some (a,ext) ->
let lev = match Option.map Compat.to_coq_position pos with
| Some (Level n) -> n
| _ -> assert false
in
maybe_uncurry (G.extend e) (Some ext, [Some lev,Some a,[]])
| None -> ()
(** The apparent parser of Coq; encapsulate G to keep track
of the extensions. *)
module Gram =
struct
include G
let extend e =
maybe_curry
(fun ext ->
camlp4_state :=
(ByEXTEND ((fun () -> grammar_delete e None ext),
(fun () -> maybe_uncurry (G.extend e) ext)))
:: !camlp4_state;
maybe_uncurry (G.extend e) ext)
let delete_rule e pil =
(* spiwack: if you use load an ML module which contains GDELETE_RULE
in a section, God kills a kitty. As it would corrupt remove_grammars.
There does not seem to be a good way to undo a delete rule. As deleting
takes fewer arguments than extending. The production rule isn't returned
by delete_rule. If we could retrieve the necessary information, then
ByEXTEND provides just the framework we need to allow this in section.
I'm not entirely sure it makes sense, but at least it would be more correct.
*)
G.delete_rule e pil
end
(** This extension command is used by the Grammar constr *)
let unsafe_grammar_extend e reinit ext =
camlp4_state := ByGrammar (weaken_entry e,reinit,ext) :: !camlp4_state;
camlp4_verbose (maybe_uncurry (G.extend e)) ext
(** Remove extensions
[n] is the number of extended entries (not the number of Grammar commands!)
to remove. *)
let rec remove_grammars n =
if n>0 then
(match !camlp4_state with
| [] -> anomaly ~label:"Pcoq.remove_grammars" (Pp.str "too many rules to remove")
| ByGrammar(g,reinit,ext)::t ->
let f (a,b) = (of_coq_assoc a, of_coq_position b) in
grammar_delete g (Option.map f reinit) ext;
camlp4_state := t;
remove_grammars (n-1)
| ByEXTEND (undo,redo)::t ->
undo();
camlp4_state := t;
remove_grammars n;
redo();
camlp4_state := ByEXTEND (undo,redo) :: !camlp4_state)
let make_rule r = [None, None, r]
(** An entry that checks we reached the end of the input. *)
let eoi_entry en =
let e = Gram.entry_create ((Gram.Entry.name en) ^ "_eoi") in
let symbs = [Symbols.snterm (Gram.Entry.obj en); Symbols.stoken Tok.EOI] in
let act = Gram.action (fun _ x loc -> x) in
maybe_uncurry (Gram.extend e) (None, make_rule [symbs, act]);
e
let map_entry f en =
let e = Gram.entry_create ((Gram.Entry.name en) ^ "_map") in
let symbs = [Symbols.snterm (Gram.Entry.obj en)] in
let act = Gram.action (fun x loc -> f x) in
maybe_uncurry (Gram.extend e) (None, make_rule [symbs, act]);
e
(* Parse a string, does NOT check if the entire string was read
(use eoi_entry) *)
let parse_string f x =
let strm = Stream.of_string x in Gram.entry_parse f (Gram.parsable strm)
type gram_universe = string
let utables : (string, (string, typed_entry) Hashtbl.t) Hashtbl.t =
Hashtbl.create 97
let create_universe u =
let table = Hashtbl.create 97 in
let () = Hashtbl.add utables u table in
u
let uprim = create_universe "prim"
let uconstr = create_universe "constr"
let utactic = create_universe "tactic"
let uvernac = create_universe "vernac"
let get_univ u =
if Hashtbl.mem utables u then u
else raise Not_found
let get_utable u =
try Hashtbl.find utables u
with Not_found -> assert false
let get_entry u s =
let utab = get_utable u in
Hashtbl.find utab s
(** A table associating grammar to entries *)
let gtable : Obj.t Gram.entry String.Map.t ref = ref String.Map.empty
let get_grammar (e : 'a Entry.t) : 'a Gram.entry =
Obj.magic (String.Map.find (Entry.repr e) !gtable)
let set_grammar (e : 'a Entry.t) (g : 'a Gram.entry) =
assert (not (String.Map.mem (Entry.repr e) !gtable));
gtable := String.Map.add (Entry.repr e) (Obj.magic g) !gtable
let new_entry etyp u s =
let utab = get_utable u in
let ename = u ^ ":" ^ s in
let entry = Entry.create ename in
let e = Gram.entry_create ename in
let () = set_grammar entry e in
Hashtbl.add utab s (TypedEntry (etyp, e)); e
let make_gen_entry u rawwit s = new_entry rawwit u s
module GrammarObj =
struct
type ('r, _, _) obj = 'r Gram.entry
let name = "grammar"
let default _ = None
end
module Grammar = Register(GrammarObj)
let register_grammar = Grammar.register0
let genarg_grammar = Grammar.obj
let create_generic_entry (type a) u s (etyp : a raw_abstract_argument_type) : a Gram.entry =
let utab = get_utable u in
if Hashtbl.mem utab s then
failwith ("Entry " ^ u ^ ":" ^ s ^ " already exists")
else
let e = new_entry etyp u s in
let Rawwit t = etyp in
let () = Grammar.register0 t e in
e
(* Initial grammar entries *)
module Prim =
struct
let gec_gen x = make_gen_entry uprim x
(* Entries that can be referred via the string -> Gram.entry table *)
(* Typically for tactic or vernac extensions *)
let preident = gec_gen (rawwit wit_pre_ident) "preident"
let ident = gec_gen (rawwit wit_ident) "ident"
let natural = gec_gen (rawwit wit_int) "natural"
let index = gec_gen (rawwit wit_int) "index"
let integer = gec_gen (rawwit wit_int) "integer"
let bigint = Gram.entry_create "Prim.bigint"
let string = gec_gen (rawwit wit_string) "string"
let reference = make_gen_entry uprim (rawwit wit_ref) "reference"
let by_notation = Gram.entry_create "by_notation"
let smart_global = Gram.entry_create "smart_global"
(* parsed like ident but interpreted as a term *)
let var = gec_gen (rawwit wit_var) "var"
let name = Gram.entry_create "Prim.name"
let identref = Gram.entry_create "Prim.identref"
let pidentref = Gram.entry_create "Prim.pidentref"
let pattern_ident = Gram.entry_create "pattern_ident"
let pattern_identref = Gram.entry_create "pattern_identref"
(* A synonym of ident - maybe ident will be located one day *)
let base_ident = Gram.entry_create "Prim.base_ident"
let qualid = Gram.entry_create "Prim.qualid"
let fullyqualid = Gram.entry_create "Prim.fullyqualid"
let dirpath = Gram.entry_create "Prim.dirpath"
let ne_string = Gram.entry_create "Prim.ne_string"
let ne_lstring = Gram.entry_create "Prim.ne_lstring"
end
module Constr =
struct
let gec_constr = make_gen_entry uconstr (rawwit wit_constr)
(* Entries that can be referred via the string -> Gram.entry table *)
let constr = gec_constr "constr"
let operconstr = gec_constr "operconstr"
let constr_eoi = eoi_entry constr
let lconstr = gec_constr "lconstr"
let binder_constr = gec_constr "binder_constr"
let ident = make_gen_entry uconstr (rawwit wit_ident) "ident"
let global = make_gen_entry uconstr (rawwit wit_ref) "global"
let sort = make_gen_entry uconstr (rawwit wit_sort) "sort"
let pattern = Gram.entry_create "constr:pattern"
let constr_pattern = gec_constr "constr_pattern"
let lconstr_pattern = gec_constr "lconstr_pattern"
let closed_binder = Gram.entry_create "constr:closed_binder"
let binder = Gram.entry_create "constr:binder"
let binders = Gram.entry_create "constr:binders"
let open_binders = Gram.entry_create "constr:open_binders"
let binders_fixannot = Gram.entry_create "constr:binders_fixannot"
let typeclass_constraint = Gram.entry_create "constr:typeclass_constraint"
let record_declaration = Gram.entry_create "constr:record_declaration"
let appl_arg = Gram.entry_create "constr:appl_arg"
end
module Module =
struct
let module_expr = Gram.entry_create "module_expr"
let module_type = Gram.entry_create "module_type"
end
module Tactic =
struct
(* Main entry for extensions *)
let simple_tactic = Gram.entry_create "tactic:simple_tactic"
(* Entries that can be referred via the string -> Gram.entry table *)
(* Typically for tactic user extensions *)
let open_constr =
make_gen_entry utactic (rawwit wit_open_constr) "open_constr"
let constr_with_bindings =
make_gen_entry utactic (rawwit wit_constr_with_bindings) "constr_with_bindings"
let bindings =
make_gen_entry utactic (rawwit wit_bindings) "bindings"
let hypident = Gram.entry_create "hypident"
let constr_may_eval = make_gen_entry utactic (rawwit wit_constr_may_eval) "constr_may_eval"
let constr_eval = make_gen_entry utactic (rawwit wit_constr_may_eval) "constr_eval"
let uconstr =
make_gen_entry utactic (rawwit wit_uconstr) "uconstr"
let quantified_hypothesis =
make_gen_entry utactic (rawwit wit_quant_hyp) "quantified_hypothesis"
let int_or_var = make_gen_entry utactic (rawwit wit_int_or_var) "int_or_var"
let red_expr = make_gen_entry utactic (rawwit wit_red_expr) "red_expr"
let simple_intropattern =
make_gen_entry utactic (rawwit wit_intro_pattern) "simple_intropattern"
let clause_dft_concl =
make_gen_entry utactic (rawwit wit_clause_dft_concl) "clause"
(* Main entries for ltac *)
let tactic_arg = Gram.entry_create "tactic:tactic_arg"
let tactic_expr = make_gen_entry utactic (rawwit wit_tactic) "tactic_expr"
let binder_tactic = make_gen_entry utactic (rawwit wit_tactic) "binder_tactic"
let tactic = make_gen_entry utactic (rawwit wit_tactic) "tactic"
(* Main entry for quotations *)
let tactic_eoi = eoi_entry tactic
end
module Vernac_ =
struct
let gec_vernac s = Gram.entry_create ("vernac:" ^ s)
(* The different kinds of vernacular commands *)
let gallina = gec_vernac "gallina"
let gallina_ext = gec_vernac "gallina_ext"
let command = gec_vernac "command"
let syntax = gec_vernac "syntax_command"
let vernac = gec_vernac "Vernac.vernac"
let vernac_eoi = eoi_entry vernac
let rec_definition = gec_vernac "Vernac.rec_definition"
(* Main vernac entry *)
let main_entry = Gram.entry_create "vernac"
let noedit_mode = gec_vernac "noedit_command"
let () =
let act_vernac = Gram.action (fun v loc -> Some (!@loc, v)) in
let act_eoi = Gram.action (fun _ loc -> None) in
let rule = [
([ Symbols.stoken Tok.EOI ], act_eoi);
([ Symbols.snterm (Gram.Entry.obj vernac) ], act_vernac );
] in
maybe_uncurry (Gram.extend main_entry) (None, make_rule rule)
let command_entry_ref = ref noedit_mode
let command_entry =
Gram.Entry.of_parser "command_entry"
(fun strm -> Gram.parse_tokens_after_filter !command_entry_ref strm)
end
let main_entry = Vernac_.main_entry
let set_command_entry e = Vernac_.command_entry_ref := e
let get_command_entry () = !Vernac_.command_entry_ref
(**********************************************************************)
(* This determines (depending on the associativity of the current
level and on the expected associativity) if a reference to constr_n is
a reference to the current level (to be translated into "SELF" on the
left border and into "constr LEVEL n" elsewhere), to the level below
(to be translated into "NEXT") or to an below wrt associativity (to be
translated in camlp4 into "constr" without level) or to another level
(to be translated into "constr LEVEL n")
The boolean is true if the entry was existing _and_ empty; this to
circumvent a weakness of camlp4/camlp5 whose undo mechanism is not the
converse of the extension mechanism *)
let constr_level = string_of_int
let default_levels =
[200,Extend.RightA,false;
100,Extend.RightA,false;
99,Extend.RightA,true;
10,Extend.RightA,false;
9,Extend.RightA,false;
8,Extend.RightA,true;
1,Extend.LeftA,false;
0,Extend.RightA,false]
let default_pattern_levels =
[200,Extend.RightA,true;
100,Extend.RightA,false;
99,Extend.RightA,true;
11,Extend.LeftA,false;
10,Extend.RightA,false;
1,Extend.LeftA,false;
0,Extend.RightA,false]
let level_stack =
ref [(default_levels, default_pattern_levels)]
(* At a same level, LeftA takes precedence over RightA and NoneA *)
(* In case, several associativity exists for a level, we make two levels, *)
(* first LeftA, then RightA and NoneA together *)
let admissible_assoc = function
| Extend.LeftA, Some (Extend.RightA | Extend.NonA) -> false
| Extend.RightA, Some Extend.LeftA -> false
| _ -> true
let create_assoc = function
| None -> Extend.RightA
| Some a -> a
let error_level_assoc p current expected =
let pr_assoc = function
| Extend.LeftA -> str "left"
| Extend.RightA -> str "right"
| Extend.NonA -> str "non" in
errorlabstrm ""
(str "Level " ++ int p ++ str " is already declared " ++
pr_assoc current ++ str " associative while it is now expected to be " ++
pr_assoc expected ++ str " associative.")
let create_pos = function
| None -> Extend.First
| Some lev -> Extend.After (constr_level lev)
let find_position_gen forpat ensure assoc lev =
let ccurrent,pcurrent as current = List.hd !level_stack in
match lev with
| None ->
level_stack := current :: !level_stack;
None, None, None, None
| Some n ->
let after = ref None in
let init = ref None in
let rec add_level q = function
| (p,_,_ as pa)::l when p > n -> pa :: add_level (Some p) l
| (p,a,reinit)::l when Int.equal p n ->
if reinit then
let a' = create_assoc assoc in
(init := Some (a',create_pos q); (p,a',false)::l)
else if admissible_assoc (a,assoc) then
raise Exit
else
error_level_assoc p a (Option.get assoc)
| l -> after := q; (n,create_assoc assoc,ensure)::l
in
try
let updated =
if forpat then (ccurrent, add_level None pcurrent)
else (add_level None ccurrent, pcurrent) in
level_stack := updated:: !level_stack;
let assoc = create_assoc assoc in
begin match !init with
| None ->
(* Create the entry *)
Some (create_pos !after), Some assoc, Some (constr_level n), None
| _ ->
(* The reinit flag has been updated *)
Some (Extend.Level (constr_level n)), None, None, !init
end
with
(* Nothing has changed *)
Exit ->
level_stack := current :: !level_stack;
(* Just inherit the existing associativity and name (None) *)
Some (Extend.Level (constr_level n)), None, None, None
let remove_levels n =
level_stack := List.skipn n !level_stack
let rec list_mem_assoc_triple x = function
| [] -> false
| (a,b,c) :: l -> Int.equal a x || list_mem_assoc_triple x l
let register_empty_levels forpat levels =
let filter n =
try
let levels = (if forpat then snd else fst) (List.hd !level_stack) in
if not (list_mem_assoc_triple n levels) then
Some (find_position_gen forpat true None (Some n))
else None
with Failure _ -> None
in
List.map_filter filter levels
let find_position forpat assoc level =
find_position_gen forpat false assoc level
(* Synchronise the stack of level updates *)
let synchronize_level_positions () =
let _ = find_position true None None in ()
(**********************************************************************)
(* Binding constr entry keys to entries *)
(* Camlp4 levels do not treat NonA: use RightA with a NEXT on the left *)
let camlp4_assoc = function
| Some Extend.NonA | Some Extend.RightA -> Extend.RightA
| None | Some Extend.LeftA -> Extend.LeftA
let assoc_eq al ar = match al, ar with
| Extend.NonA, Extend.NonA
| Extend.RightA, Extend.RightA
| Extend.LeftA, Extend.LeftA -> true
| _, _ -> false
(* [adjust_level assoc from prod] where [assoc] and [from] are the name
and associativity of the level where to add the rule; the meaning of
the result is
None = SELF
Some None = NEXT
Some (Some (n,cur)) = constr LEVEL n
s.t. if [cur] is set then [n] is the same as the [from] level *)
let adjust_level assoc from = function
(* Associativity is None means force the level *)
| (NumLevel n,BorderProd (_,None)) -> Some (Some (n,true))
(* Compute production name on the right side *)
(* If NonA or LeftA on the right-hand side, set to NEXT *)
| (NumLevel n,BorderProd (Right,Some (Extend.NonA|Extend.LeftA))) ->
Some None
(* If RightA on the right-hand side, set to the explicit (current) level *)
| (NumLevel n,BorderProd (Right,Some Extend.RightA)) ->
Some (Some (n,true))
(* Compute production name on the left side *)
(* If NonA on the left-hand side, adopt the current assoc ?? *)
| (NumLevel n,BorderProd (Left,Some Extend.NonA)) -> None
(* If the expected assoc is the current one, set to SELF *)
| (NumLevel n,BorderProd (Left,Some a)) when assoc_eq a (camlp4_assoc assoc) ->
None
(* Otherwise, force the level, n or n-1, according to expected assoc *)
| (NumLevel n,BorderProd (Left,Some a)) ->
begin match a with
| Extend.LeftA -> Some (Some (n, true))
| _ -> Some None
end
(* None means NEXT *)
| (NextLevel,_) -> Some None
(* Compute production name elsewhere *)
| (NumLevel n,InternalProd) ->
match from with
| ETConstr (p,()) when Int.equal p (n + 1) -> Some None
| ETConstr (p,()) -> Some (Some (n, Int.equal n p))
| _ -> Some (Some (n,false))
let compute_entry adjust forpat = function
| ETConstr (n,q) ->
(if forpat then weaken_entry Constr.pattern
else weaken_entry Constr.operconstr),
adjust (n,q), false
| ETName -> weaken_entry Prim.name, None, false
| ETBinder true -> anomaly (Pp.str "Should occur only as part of BinderList")
| ETBinder false -> weaken_entry Constr.binder, None, false
| ETBinderList (true,tkl) ->
let () = match tkl with [] -> () | _ -> assert false in
weaken_entry Constr.open_binders, None, false
| ETBinderList (false,_) -> anomaly (Pp.str "List of entries cannot be registered.")
| ETBigint -> weaken_entry Prim.bigint, None, false
| ETReference -> weaken_entry Constr.global, None, false
| ETPattern -> weaken_entry Constr.pattern, None, false
| ETConstrList _ -> anomaly (Pp.str "List of entries cannot be registered.")
| ETOther (u,n) ->
let e = get_entry u n in
object_of_typed_entry e, None, true
(* This computes the name of the level where to add a new rule *)
let interp_constr_entry_key forpat level =
if level = 200 && not forpat then weaken_entry Constr.binder_constr, None
else if forpat then weaken_entry Constr.pattern, Some level
else weaken_entry Constr.operconstr, Some level
(* This computes the name to give to a production knowing the name and
associativity of the level where it must be added *)
let interp_constr_prod_entry_key ass from forpat en =
compute_entry (adjust_level ass from) forpat en
(**********************************************************************)
(* Binding constr entry keys to symbols *)
let is_self from e =
match from, e with
ETConstr(n,()), ETConstr(NumLevel n',
BorderProd(Right, _ (* Some(NonA|LeftA) *))) -> false
| ETConstr(n,()), ETConstr(NumLevel n',BorderProd(Left,_)) -> Int.equal n n'
| (ETName,ETName | ETReference, ETReference | ETBigint,ETBigint
| ETPattern, ETPattern) -> true
| ETOther(s1,s2), ETOther(s1',s2') ->
String.equal s1 s1' && String.equal s2 s2'
| _ -> false
let is_binder_level from e =
match from, e with
ETConstr(200,()),
ETConstr(NumLevel 200,(BorderProd(Right,_)|InternalProd)) -> true
| _ -> false
let make_sep_rules tkl =
Gram.srules'
[List.map gram_token_of_token tkl,
List.fold_right (fun _ v -> Gram.action (fun _ -> v)) tkl
(Gram.action (fun loc -> ()))]
let rec symbol_of_constr_prod_entry_key assoc from forpat typ =
if is_binder_level from typ then
if forpat then
Symbols.snterml (Gram.Entry.obj Constr.pattern,"200")
else
Symbols.snterml (Gram.Entry.obj Constr.operconstr,"200")
else if is_self from typ then
Symbols.sself
else
match typ with
| ETConstrList (typ',[]) ->
Symbols.slist1 (symbol_of_constr_prod_entry_key assoc from forpat (ETConstr typ'))
| ETConstrList (typ',tkl) ->
Symbols.slist1sep
(symbol_of_constr_prod_entry_key assoc from forpat (ETConstr typ'),
make_sep_rules tkl)
| ETBinderList (false,[]) ->
Symbols.slist1
(symbol_of_constr_prod_entry_key assoc from forpat (ETBinder false))
| ETBinderList (false,tkl) ->
Symbols.slist1sep
(symbol_of_constr_prod_entry_key assoc from forpat (ETBinder false),
make_sep_rules tkl)
| _ ->
match interp_constr_prod_entry_key assoc from forpat typ with
| (eobj,None,_) -> Symbols.snterm (Gram.Entry.obj eobj)
| (eobj,Some None,_) -> Symbols.snext
| (eobj,Some (Some (lev,cur)),_) ->
Symbols.snterml (Gram.Entry.obj eobj,constr_level lev)
(** Binding general entry keys to symbol *)
let tuplify l =
List.fold_left (fun accu x -> Obj.repr (x, accu)) (Obj.repr ()) l
let rec adj : type a b c. (a, b, Loc.t -> Loc.t * c) adj -> _ = function
| Adj0 -> Obj.magic (fun accu f loc -> f (Obj.repr (to_coqloc loc, tuplify accu)))
| AdjS e -> Obj.magic (fun accu f x -> adj e (x :: accu) f)
let rec symbol_of_prod_entry_key : type s a. (s, a) symbol -> _ = function
| Atoken t -> Symbols.stoken t
| Alist1 s -> Symbols.slist1 (symbol_of_prod_entry_key s)
| Alist1sep (s,sep) ->
Symbols.slist1sep (symbol_of_prod_entry_key s, gram_token_of_string sep)
| Alist0 s -> Symbols.slist0 (symbol_of_prod_entry_key s)
| Alist0sep (s,sep) ->
Symbols.slist0sep (symbol_of_prod_entry_key s, gram_token_of_string sep)
| Aopt s -> Symbols.sopt (symbol_of_prod_entry_key s)
| Amodifiers s ->
Gram.srules'
[([], Gram.action (fun _loc -> []));
([gram_token_of_string "(";
Symbols.slist1sep (symbol_of_prod_entry_key s, gram_token_of_string ",");
gram_token_of_string ")"],
Gram.action (fun _ l _ _loc -> l))]
| Aself -> Symbols.sself
| Anext -> Symbols.snext
| Aentry e ->
let e = get_grammar e in
Symbols.snterm (Gram.Entry.obj (weaken_entry e))
| Aentryl (e, n) ->
let e = get_grammar e in
Symbols.snterml (Gram.Entry.obj (weaken_entry e), string_of_int n)
| Arules rs -> Gram.srules' (symbol_of_rules rs [] (fun x -> I0 x))
and symbol_of_rule : type s a r. (s, a, r) Extend.rule -> _ = function
| Stop -> fun accu -> accu
| Next (r, s) -> fun accu -> symbol_of_rule r (symbol_of_prod_entry_key s :: accu)
and symbol_of_rules : type a. a Extend.rules -> _ = function
| Rule0 -> fun accu _ -> accu
| RuleS (r, e, rs) -> fun accu f ->
let symb = symbol_of_rule r [] in
let act = adj e [] f in
symbol_of_rules rs ((symb, act) :: accu) (fun x -> IS (f x))
let level_of_snterml e = int_of_string (Symbols.snterml_level e)
let rec of_coq_action : type a r. (r, a, Loc.t -> r) Extend.rule -> a -> Gram.action = function
| Stop -> fun f -> Gram.action (fun loc -> f (to_coqloc loc))
| Next (r, _) -> fun f -> Gram.action (fun x -> of_coq_action r (f x))
let of_coq_production_rule : type a. a Extend.production_rule -> _ = function
| Rule (toks, act) -> (symbol_of_rule toks [], of_coq_action toks act)
let of_coq_single_extend_statement (lvl, assoc, rule) =
(lvl, Option.map of_coq_assoc assoc, List.map of_coq_production_rule rule)
let of_coq_extend_statement (pos, st) =
(Option.map of_coq_position pos, List.map of_coq_single_extend_statement st)
let grammar_extend e reinit ext =
let ext = of_coq_extend_statement ext in
unsafe_grammar_extend e reinit ext
let name_of_entry e = Entry.unsafe_of_name (Gram.Entry.name e)
let list_entry_names () =
let add_entry key (TypedEntry (entry, _)) accu = (key, unquote entry) :: accu in
let ans = Hashtbl.fold add_entry (get_utable uprim) [] in
let ans = Hashtbl.fold add_entry (get_utable uconstr) ans in
Hashtbl.fold add_entry (get_utable utactic) ans
let epsilon_value f e =
let r = Rule (Next (Stop, e), fun x _ -> f x) in
let ext = of_coq_extend_statement (None, [None, None, [r]]) in
let entry = G.entry_create "epsilon" in
let () = maybe_uncurry (Gram.extend entry) ext in
try Some (parse_string entry "") with _ -> None
(** Registering grammar of generic arguments *)
let () =
let open Stdarg in
let open Constrarg in
(* Grammar.register0 wit_unit; *)
(* Grammar.register0 wit_bool; *)
Grammar.register0 wit_int (Prim.integer);
Grammar.register0 wit_string (Prim.string);
Grammar.register0 wit_pre_ident (Prim.preident);
Grammar.register0 wit_int_or_var (Tactic.int_or_var);
Grammar.register0 wit_intro_pattern (Tactic.simple_intropattern);
Grammar.register0 wit_ident (Prim.ident);
Grammar.register0 wit_var (Prim.var);
Grammar.register0 wit_ref (Prim.reference);
Grammar.register0 wit_quant_hyp (Tactic.quantified_hypothesis);
Grammar.register0 wit_sort (Constr.sort);
Grammar.register0 wit_constr (Constr.constr);
Grammar.register0 wit_constr_may_eval (Tactic.constr_may_eval);
Grammar.register0 wit_uconstr (Tactic.uconstr);
Grammar.register0 wit_open_constr (Tactic.open_constr);
Grammar.register0 wit_constr_with_bindings (Tactic.constr_with_bindings);
Grammar.register0 wit_bindings (Tactic.bindings);
(* Grammar.register0 wit_hyp_location_flag; *)
Grammar.register0 wit_red_expr (Tactic.red_expr);
Grammar.register0 wit_tactic (Tactic.tactic);
Grammar.register0 wit_ltac (Tactic.tactic);
Grammar.register0 wit_clause_dft_concl (Tactic.clause_dft_concl);
()
|