1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
open Pp
open Util
open Names
open Libnames
open Rawterm
open Topconstr
open Ast
open Genarg
open Tacexpr
open Ppextend
open Extend
(* The lexer of Coq *)
(* Note: removing a token.
We do nothing because [remove_token] is called only when removing a grammar
rule with [Grammar.delete_rule]. The latter command is called only when
unfreezing the state of the grammar entries (see GRAMMAR summary, file
env/metasyntax.ml). Therefore, instead of removing tokens one by one,
we unfreeze the state of the lexer. This restores the behaviour of the
lexer. B.B. *)
let lexer = {
Token.func = Lexer.func;
Token.using = Lexer.add_token;
Token.removing = (fun _ -> ());
Token.tparse = Lexer.tparse;
Token.text = Lexer.token_text }
module L =
struct
let lexer = lexer
end
(* The parser of Coq *)
module G = Grammar.Make(L)
let grammar_delete e rls =
List.iter
(fun (_,_,lev) ->
List.iter (fun (pil,_) -> G.delete_rule e pil) (List.rev lev))
(List.rev rls)
(* grammar_object is the superclass of all grammar entry *)
module type Gramobj =
sig
type grammar_object
val weaken_entry : 'a G.Entry.e -> grammar_object G.Entry.e
end
module Gramobj : Gramobj =
struct
type grammar_object = Obj.t
let weaken_entry e = Obj.magic e
end
type grammar_object = Gramobj.grammar_object
type typed_entry = entry_type * grammar_object G.Entry.e
let in_typed_entry t e = (t,Gramobj.weaken_entry e)
let type_of_typed_entry (t,e) = t
let object_of_typed_entry (t,e) = e
let weaken_entry x = Gramobj.weaken_entry x
module type Gramtypes =
sig
open Decl_kinds
val inGramObj : 'a raw_abstract_argument_type -> 'a G.Entry.e -> typed_entry
val outGramObj : 'a raw_abstract_argument_type -> typed_entry -> 'a G.Entry.e
end
module Gramtypes : Gramtypes =
struct
let inGramObj rawwit = in_typed_entry (unquote rawwit)
let outGramObj (a:'a raw_abstract_argument_type) o =
if type_of_typed_entry o <> unquote a
then anomaly "outGramObj: wrong type";
(* downcast from grammar_object *)
Obj.magic (object_of_typed_entry o)
end
open Gramtypes
type ext_kind =
| ByGrammar of
grammar_object G.Entry.e * Gramext.position option *
(string option * Gramext.g_assoc option *
(Token.t Gramext.g_symbol list * Gramext.g_action) list) list
| ByGEXTEND of (unit -> unit) * (unit -> unit)
let camlp4_state = ref []
(* The apparent parser of Coq; encapsulate G to keep track of the
extensions. *)
module Gram =
struct
include G
let extend e pos rls =
camlp4_state :=
(ByGEXTEND ((fun () -> grammar_delete e rls),
(fun () -> G.extend e pos rls)))
:: !camlp4_state;
G.extend e pos rls
let delete_rule e pil =
errorlabstrm "Pcoq.delete_rule" (str "GDELETE_RULE forbidden.")
end
let camlp4_verbosity silent f x =
let a = !Gramext.warning_verbose in
Gramext.warning_verbose := silent;
f x;
Gramext.warning_verbose := a
(* This extension command is used by the Grammar constr *)
let grammar_extend te pos rls =
camlp4_state := ByGrammar (Gramobj.weaken_entry te,pos,rls) :: !camlp4_state;
camlp4_verbosity (Options.is_verbose ()) (G.extend te pos) rls
(* n is the number of extended entries (not the number of Grammar commands!)
to remove. *)
let rec remove_grammars n =
if n>0 then
(match !camlp4_state with
| [] -> anomaly "Pcoq.remove_grammars: too many rules to remove"
| ByGrammar(g,_,rls)::t ->
grammar_delete g rls;
camlp4_state := t;
remove_grammars (n-1)
| ByGEXTEND (undo,redo)::t ->
undo();
camlp4_state := t;
remove_grammars n;
redo();
camlp4_state := ByGEXTEND (undo,redo) :: !camlp4_state)
(* An entry that checks we reached the end of the input. *)
let eoi_entry en =
let e = Gram.Entry.create ((Gram.Entry.name en) ^ "_eoi") in
GEXTEND Gram
e: [ [ x = en; EOI -> x ] ]
;
END;
e
let map_entry f en =
let e = Gram.Entry.create ((Gram.Entry.name en) ^ "_map") in
GEXTEND Gram
e: [ [ x = en -> f x ] ]
;
END;
e
(* Parse a string, does NOT check if the entire string was read
(use eoi_entry) *)
let parse_string f x =
let strm = Stream.of_string x in Gram.Entry.parse f (Gram.parsable strm)
type gram_universe = (string, typed_entry) Hashtbl.t
let trace = ref false
(* The univ_tab is not part of the state. It contains all the grammar that
exist or have existed before in the session. *)
let univ_tab = (Hashtbl.create 7 : (string, string * gram_universe) Hashtbl.t)
let create_univ s =
let u = s, Hashtbl.create 29 in Hashtbl.add univ_tab s u; u
let uprim = create_univ "prim"
let uconstr = create_univ "constr"
let umodule = create_univ "module"
let utactic = create_univ "tactic"
let uvernac = create_univ "vernac"
let create_univ_if_new s =
(* compatibilite *)
let s = if s = "command" then (warning "'command' grammar universe is obsolete; use name 'constr' instead"; "constr") else s in
try
Hashtbl.find univ_tab s
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating univ %s]\n" s; flush stderr; ()
end;
let u = s, Hashtbl.create 29 in Hashtbl.add univ_tab s u; u
let get_univ = create_univ_if_new
let get_entry (u, utab) s =
try
Hashtbl.find utab s
with Not_found ->
errorlabstrm "Pcoq.get_entry"
(str "unknown grammar entry " ++ str u ++ str ":" ++ str s)
let new_entry etyp (u, utab) s =
let ename = u ^ ":" ^ s in
let e = in_typed_entry etyp (Gram.Entry.create ename) in
Hashtbl.add utab s e; e
let entry_type (u, utab) s =
try
let e = Hashtbl.find utab s in
Some (type_of_typed_entry e)
with Not_found -> None
let get_entry_type (u,n) = type_of_typed_entry (get_entry (get_univ u) n)
let create_entry_if_new (u, utab) s etyp =
try
if type_of_typed_entry (Hashtbl.find utab s) <> etyp then
failwith ("Entry " ^ u ^ ":" ^ s ^ " already exists with another type")
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating entry %s:%s]\n" u s; flush stderr; ()
end;
let _ = new_entry etyp (u, utab) s in ()
let create_entry (u, utab) s etyp =
try
let e = Hashtbl.find utab s in
if type_of_typed_entry e <> etyp then
failwith ("Entry " ^ u ^ ":" ^ s ^ " already exists with another type");
e
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating entry %s:%s]\n" u s; flush stderr; ()
end;
new_entry etyp (u, utab) s
let create_constr_entry u s =
outGramObj rawwit_constr (create_entry u s ConstrArgType)
let create_generic_entry s wit =
let (u,utab) = utactic in
let etyp = unquote wit in
try
let e = Hashtbl.find utab s in
if type_of_typed_entry e <> etyp then
failwith ("Entry " ^ u ^ ":" ^ s ^ " already exists with another type");
outGramObj wit e
with Not_found ->
if !trace then begin
Printf.eprintf "[Creating entry %s:%s]\n" u s; flush stderr; ()
end;
let e = Gram.Entry.create s in
Hashtbl.add utab s (inGramObj wit e); e
let get_generic_entry s =
let (u,utab) = utactic in
try
object_of_typed_entry (Hashtbl.find utab s)
with Not_found ->
error ("unknown grammar entry "^u^":"^s)
let get_generic_entry_type (u,utab) s =
try type_of_typed_entry (Hashtbl.find utab s)
with Not_found ->
error ("unknown grammar entry "^u^":"^s)
let force_entry_type (u, utab) s etyp =
try
let entry = Hashtbl.find utab s in
let extyp = type_of_typed_entry entry in
if etyp = extyp then
entry
else begin
prerr_endline
("Grammar entry " ^ u ^ ":" ^ s ^
" redefined with another type;\n older entry hidden.");
Hashtbl.remove utab s;
new_entry etyp (u, utab) s
end
with Not_found ->
new_entry etyp (u, utab) s
(* [make_gen_entry] builds entries extensible by giving its name (a string) *)
(* For entries extensible only via the ML name, Gram.Entry.create is enough *)
let make_gen_entry (u,univ) rawwit s =
let e = Gram.Entry.create (u ^ ":" ^ s) in
Hashtbl.add univ s (inGramObj rawwit e); e
(* Grammar entries *)
module Prim =
struct
let gec_gen x = make_gen_entry uprim x
(* Entries that can be refered via the string -> Gram.Entry.e table *)
(* Typically for tactic or vernac extensions *)
let preident = gec_gen rawwit_pre_ident "preident"
let ident = gec_gen rawwit_ident "ident"
let natural = gec_gen rawwit_int "natural"
let integer = gec_gen rawwit_int "integer"
let bigint = Gram.Entry.create "Prim.bigint"
let string = gec_gen rawwit_string "string"
let reference = make_gen_entry uprim rawwit_ref "reference"
(* parsed like ident but interpreted as a term *)
let hyp = gec_gen rawwit_ident "hyp"
(* synonym of hyp/ident (before semantics split) for v7 compatibility *)
let var = gec_gen rawwit_ident "var"
let name = Gram.Entry.create "Prim.name"
let identref = Gram.Entry.create "Prim.identref"
(* A synonym of ident - maybe ident will be located one day *)
let base_ident = Gram.Entry.create "Prim.base_ident"
let qualid = Gram.Entry.create "Prim.qualid"
let fullyqualid = Gram.Entry.create "Prim.fullyqualid"
let dirpath = Gram.Entry.create "Prim.dirpath"
let ne_string = Gram.Entry.create "Prim.ne_string"
(* For old ast printer *)
let astpat = Gram.Entry.create "Prim.astpat"
let ast = Gram.Entry.create "Prim.ast"
let astlist = Gram.Entry.create "Prim.astlist"
let ast_eoi = eoi_entry ast
let astact = Gram.Entry.create "Prim.astact"
end
module Constr =
struct
let gec_constr = make_gen_entry uconstr rawwit_constr
let gec_constr_list = make_gen_entry uconstr (wit_list0 rawwit_constr)
(* Entries that can be refered via the string -> Gram.Entry.e table *)
let constr = gec_constr "constr"
let operconstr = gec_constr "operconstr"
let constr_eoi = eoi_entry constr
let lconstr = gec_constr "lconstr"
let binder_constr = create_constr_entry uconstr "binder_constr"
let ident = make_gen_entry uconstr rawwit_ident "ident"
let global = make_gen_entry uconstr rawwit_ref "global"
let sort = make_gen_entry uconstr rawwit_sort "sort"
let pattern = Gram.Entry.create "constr:pattern"
let annot = Gram.Entry.create "constr:annot"
let constr_pattern = gec_constr "constr_pattern"
let lconstr_pattern = gec_constr "lconstr_pattern"
let binder = Gram.Entry.create "constr:binder"
let binder_let = Gram.Entry.create "constr:binder_let"
end
module Module =
struct
let module_expr = Gram.Entry.create "module_expr"
let module_type = Gram.Entry.create "module_type"
end
module Tactic =
struct
(* Main entry for extensions *)
let simple_tactic = Gram.Entry.create "tactic:simple_tactic"
(* Entries that can be refered via the string -> Gram.Entry.e table *)
(* Typically for tactic user extensions *)
let open_constr =
make_gen_entry utactic (rawwit_open_constr_gen false) "open_constr"
let casted_open_constr =
make_gen_entry utactic (rawwit_open_constr_gen true) "casted_open_constr"
let constr_with_bindings =
make_gen_entry utactic rawwit_constr_with_bindings "constr_with_bindings"
let bindings =
make_gen_entry utactic rawwit_bindings "bindings"
let constrarg = make_gen_entry utactic rawwit_constr_may_eval "constrarg"
let quantified_hypothesis =
make_gen_entry utactic rawwit_quant_hyp "quantified_hypothesis"
let int_or_var = make_gen_entry utactic rawwit_int_or_var "int_or_var"
let red_expr = make_gen_entry utactic rawwit_red_expr "red_expr"
let simple_intropattern =
make_gen_entry utactic rawwit_intro_pattern "simple_intropattern"
(* Main entries for ltac *)
let tactic_arg = Gram.Entry.create "tactic:tactic_arg"
let tactic = make_gen_entry utactic rawwit_tactic "tactic"
(* Main entry for quotations *)
let tactic_eoi = eoi_entry tactic
end
module Vernac_ =
struct
let gec_vernac s = Gram.Entry.create ("vernac:" ^ s)
(* The different kinds of vernacular commands *)
let gallina = gec_vernac "gallina"
let gallina_ext = gec_vernac "gallina_ext"
let command = gec_vernac "command"
let syntax = gec_vernac "syntax_command"
let vernac = gec_vernac "Vernac_.vernac"
let vernac_eoi = eoi_entry vernac
end
(* Prim is not re-initialized *)
let reset_all_grammars () =
let f = Gram.Unsafe.clear_entry in
List.iter f
[Constr.constr;Constr.operconstr;Constr.lconstr;Constr.annot;
Constr.constr_pattern;Constr.lconstr_pattern];
f Constr.ident; f Constr.global; f Constr.sort; f Constr.pattern;
f Module.module_expr; f Module.module_type;
f Tactic.simple_tactic;
f Tactic.open_constr;
f Tactic.constr_with_bindings;
f Tactic.bindings;
f Tactic.constrarg;
f Tactic.quantified_hypothesis;
f Tactic.int_or_var;
f Tactic.red_expr;
f Tactic.tactic_arg;
f Tactic.tactic;
f Vernac_.gallina;
f Vernac_.gallina_ext;
f Vernac_.command;
f Vernac_.syntax;
f Vernac_.vernac;
Lexer.init()
let main_entry = Gram.Entry.create "vernac"
GEXTEND Gram
main_entry:
[ [ a = Vernac_.vernac -> Some (loc,a) | EOI -> None ] ]
;
END
(* Quotations *)
open Prim
open Constr
open Tactic
open Vernac_
(* current file and toplevel/vernac.ml *)
let globalizer = ref (fun x -> failwith "No globalizer")
let set_globalizer f = globalizer := f
let define_ast_quotation default s (e:Coqast.t G.Entry.e) =
(if default then
GEXTEND Gram
ast: [ [ "<<"; c = e; ">>" -> c ] ];
(* Uncomment this to keep compatibility with old grammar syntax
constr: [ [ "<<"; c = e; ">>" -> c ] ];
vernac: [ [ "<<"; c = e; ">>" -> c ] ];
tactic: [ [ "<<"; c = e; ">>" -> c ] ];
*)
END);
(GEXTEND Gram
GLOBAL: ast constr command tactic;
ast:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
(* Uncomment this to keep compatibility with old grammar syntax
constr:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
command:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
tactic:
[ [ "<:"; IDENT $s$; ":<"; c = e; ">>" -> c ] ];
*)
END)
(*
let _ = define_ast_quotation false "ast" ast in ()
*)
let dynconstr = Gram.Entry.create "Constr.dynconstr"
let dyncasespattern = Gram.Entry.create "Constr.dyncasespattern"
GEXTEND Gram
dynconstr:
[ [ a = Constr.constr -> ConstrNode a
(* For compatibility *)
| "<<"; a = Constr.lconstr; ">>" -> ConstrNode a ] ]
;
dyncasespattern: [ [ a = Constr.pattern -> CasesPatternNode a ] ];
END
(**********************************************************************)
(* The following is to dynamically set the parser in Grammar actions *)
(* and Syntax pattern, according to the universe of the rule defined *)
type parser_type =
| ConstrParser
| CasesPatternParser
let default_action_parser_ref = ref dynconstr
let get_default_action_parser () = !default_action_parser_ref
let entry_type_of_parser = function
| ConstrParser -> Some ConstrArgType
| CasesPatternParser -> failwith "entry_type_of_parser: cases_pattern, TODO"
let parser_type_from_name = function
| "constr" -> ConstrParser
| "cases_pattern" -> CasesPatternParser
| "tactic" -> assert false
| "vernac" -> error "No longer supported"
| s -> ConstrParser
let set_default_action_parser = function
| ConstrParser -> default_action_parser_ref := dynconstr
| CasesPatternParser -> default_action_parser_ref := dyncasespattern
let default_action_parser =
Gram.Entry.of_parser "default_action_parser"
(fun strm -> Gram.Entry.parse_token (get_default_action_parser ()) strm)
(**********************************************************************)
(* This determines (depending on the associativity of the current
level and on the expected associativity) if a reference to constr_n is
a reference to the current level (to be translated into "SELF" on the
left border and into "constr LEVEL n" elsewhere), to the level below
(to be translated into "NEXT") or to an below wrt associativity (to be
translated in camlp4 into "constr" without level) or to another level
(to be translated into "constr LEVEL n") *)
let assoc_level = function
| Some Gramext.LeftA when !Options.v7 -> "L"
| _ -> ""
let constr_level = function
| n,assoc -> (string_of_int n)^(assoc_level assoc)
let constr_level2 = function
| n,assoc -> (string_of_int n)^(assoc_level (Some assoc))
let default_levels_v7 =
[10,Gramext.RightA;
9,Gramext.RightA;
8,Gramext.RightA;
1,Gramext.RightA;
0,Gramext.RightA]
let default_levels_v8 =
[200,Gramext.RightA;
100,Gramext.RightA;
99,Gramext.RightA;
90,Gramext.RightA;
10,Gramext.RightA;
9,Gramext.RightA;
1,Gramext.LeftA;
0,Gramext.RightA]
let default_pattern_levels_v8 =
[10,Gramext.LeftA;
0,Gramext.RightA]
let level_stack =
ref
[if !Options.v7 then (default_levels_v7, default_levels_v7)
else (default_levels_v8, default_pattern_levels_v8)]
(* At a same level, LeftA takes precedence over RightA and NoneA *)
(* In case, several associativity exists for a level, we make two levels, *)
(* first LeftA, then RightA and NoneA together *)
exception Found of Gramext.g_assoc
open Ppextend
let admissible_assoc = function
| Gramext.LeftA, Some (Gramext.RightA | Gramext.NonA) -> false
| Gramext.RightA, Some Gramext.LeftA -> false
| _ -> true
let create_assoc = function
| None -> Gramext.RightA
| Some a -> a
let error_level_assoc p current expected =
let pr_assoc = function
| Gramext.LeftA -> str "left"
| Gramext.RightA -> str "right"
| Gramext.NonA -> str "non" in
errorlabstrm ""
(str "Level " ++ int p ++ str " is already declared " ++
pr_assoc current ++ str " associative while it is now expected to be " ++
pr_assoc expected ++ str " associative")
let find_position forpat other assoc lev =
let default = if !Options.v7 then Some (10,Gramext.RightA) else None in
let ccurrent,pcurrent as current = List.hd !level_stack in
match lev with
| None ->
level_stack := current :: !level_stack;
None, (if other then assoc else None), None
| Some n ->
if !Options.v7 & n = 8 & assoc = Some Gramext.LeftA then
error "Left associativity not allowed at level 8";
let after = ref default in
let rec add_level q = function
| (p,_ as pa)::l when p > n -> pa :: add_level (Some pa) l
| (p,a as pa)::l as l' when p = n ->
if admissible_assoc (a,assoc) then raise (Found a);
(* No duplication of levels in v8 *)
if not !Options.v7 then error_level_assoc p a (out_some assoc);
(* Maybe this was (p,Left) and p occurs a second time *)
if a = Gramext.LeftA then
match l with
| (p,a)::_ as l' when p = n -> raise (Found a)
| _ -> after := Some pa; pa::(n,create_assoc assoc)::l
else
(* This was not (p,LeftA) hence assoc is RightA *)
(after := q; (n,create_assoc assoc)::l')
| l ->
after := q; (n,create_assoc assoc)::l
in
try
(* Create the entry *)
let updated =
if forpat then (ccurrent, add_level default pcurrent)
else (add_level default ccurrent, pcurrent) in
level_stack := updated:: !level_stack;
let assoc = create_assoc assoc in
(if !after = None then Some Gramext.First
else Some (Gramext.After (constr_level2 (out_some !after)))),
Some assoc, Some (constr_level2 (n,assoc))
with
Found a ->
level_stack := current :: !level_stack;
(* Just inherit the existing associativity and name (None) *)
Some (Gramext.Level (constr_level2 (n,a))), None, None
let remove_levels n =
level_stack := list_skipn n !level_stack
(* Camlp4 levels do not treat NonA: use RightA with a NEXT on the left *)
let camlp4_assoc = function
| Some Gramext.NonA | Some Gramext.RightA -> Gramext.RightA
| None | Some Gramext.LeftA -> Gramext.LeftA
(* [adjust_level assoc from prod] where [assoc] and [from] are the name
and associativity of the level where to add the rule; the meaning of
the result is
None = SELF
Some None = NEXT
Some (Some (n,cur)) = constr LEVEL n
s.t. if [cur] is set then [n] is the same as the [from] level *)
let adjust_level assoc from = function
(* Associativity is None means force the level *)
| (NumLevel n,BorderProd (_,None)) -> Some (Some (n,true))
(* Compute production name on the right side *)
(* If NonA or LeftA on the right-hand side, set to NEXT *)
| (NumLevel n,BorderProd (false,Some (Gramext.NonA|Gramext.LeftA))) ->
Some None
(* If RightA on the right-hand side, set to the explicit (current) level *)
| (NumLevel n,BorderProd (false,Some Gramext.RightA)) ->
Some (Some (n,true))
(* Compute production name on the left side *)
(* If NonA on the left-hand side, adopt the current assoc ?? *)
| (NumLevel n,BorderProd (true,Some Gramext.NonA)) -> None
(* If the expected assoc is the current one, set to SELF *)
| (NumLevel n,BorderProd (true,Some a)) when a = camlp4_assoc assoc ->
None
(* Otherwise, force the level, n or n-1, according to expected assoc *)
| (NumLevel n,BorderProd (true,Some a)) ->
if a = Gramext.LeftA then Some (Some (n,true)) else Some None
(* None means NEXT *)
| (NextLevel,_) -> Some None
(* Compute production name elsewhere *)
| (NumLevel n,InternalProd) ->
match from with
| ETConstr (p,()) when p = n+1 -> Some None
| ETConstr (p,()) -> Some (Some (n,n=p))
| _ -> Some (Some (n,false))
(*
(* If NonA on the right-hand side, set to NEXT *)
| (n,BorderProd (false,Some Gramext.NonA)) -> Some None
(* If NonA on the left-hand side, adopt the current assoc ?? *)
| (n,BorderProd (true,Some Gramext.NonA)) -> None
(* Associativity is None means force the level *)
| (n,BorderProd (_,None)) -> Some (Some (n,true))
(* If left assoc at a left level, set NEXT on the right *)
| (n,BorderProd (false,Some (Gramext.LeftA as a)))
when Gramext.LeftA = camlp4_assoc assoc -> Some None
(* If right or none assoc expected is the current assoc, set explicit
level on the right side *)
| (n,BorderProd (false,Some a)) when a = camlp4_assoc assoc ->
Some (Some (n,true))
(* If the expected assoc is the current one, SELF on the left sides *)
| (n,BorderProd (true,Some a)) when a = camlp4_assoc assoc -> None
(* Otherwise, force the level, n or n-1, according to expected assoc *)
| (n,BorderProd (left,Some a)) ->
if (left & a = Gramext.LeftA) or ((not left) & a = Gramext.RightA)
then Some (Some (n,true)) else Some (Some (n-1,false))
(* | (8,InternalProd) -> None (* Or (Some 8) for factorization ? *)*)
| (n,InternalProd) ->
match from with
| ETConstr (p,()) when p = n+1 -> Some None
| ETConstr (p,()) -> Some (Some (n,n=p))
| _ -> Some (Some (n,false))
*)
let compute_entry allow_create adjust forpat = function
| ETConstr (n,q) ->
(if forpat then weaken_entry Constr.pattern
else weaken_entry Constr.operconstr),
(if forpat & !Options.v7 then None else adjust (n,q)), false
| ETIdent -> weaken_entry Constr.ident, None, false
| ETBigint -> weaken_entry Prim.bigint, None, false
| ETReference -> weaken_entry Constr.global, None, false
| ETPattern -> weaken_entry Constr.pattern, None, false
| ETOther ("constr","annot") ->
weaken_entry Constr.annot, None, false
| ETConstrList _ -> error "List of entries cannot be registered"
| ETOther (u,n) ->
let u = get_univ u in
let e =
try get_entry u n
with e when allow_create -> create_entry u n ConstrArgType in
object_of_typed_entry e, None, true
(* This computes the name of the level where to add a new rule *)
let get_constr_entry forpat en =
match en with
ETConstr(200,()) when not !Options.v7 & not forpat ->
snd (get_entry (get_univ "constr") "binder_constr"),
None,
false
| _ -> compute_entry true (fun (n,()) -> Some n) forpat en
(* This computes the name to give to a production knowing the name and
associativity of the level where it must be added *)
let get_constr_production_entry ass from forpat en =
(* first 2 cases to help factorisation *)
match en with
| ETConstr (NumLevel 10,q) when !Options.v7 & not forpat ->
weaken_entry Constr.lconstr, None, false
(*
| ETConstr (8,q) when !Options.v7 ->
weaken_entry Constr.constr, None, false
*)
| _ -> compute_entry false (adjust_level ass from) forpat en
let constr_prod_level assoc cur lev =
if !Options.v7 then
if cur then constr_level (lev,assoc) else
match lev with
| 4 when !Options.v7 -> "4L"
| n -> string_of_int n
else
(* No duplication L/R of levels in v8 *)
constr_level (lev,assoc)
let is_self from e =
match from, e with
ETConstr(n,()), ETConstr(NumLevel n',
BorderProd(false, _ (* Some(Gramext.NonA|Gramext.LeftA) *))) -> false
| ETConstr(n,()), ETConstr(NumLevel n',BorderProd(true,_)) -> n=n'
| (ETIdent,ETIdent | ETReference, ETReference | ETBigint,ETBigint
| ETPattern, ETPattern) -> true
| ETOther(s1,s2), ETOther(s1',s2') -> s1=s1' & s2=s2'
| _ -> false
let is_binder_level from e =
match from, e with
ETConstr(200,()),
ETConstr(NumLevel 200,(BorderProd(false,_)|InternalProd)) ->
not !Options.v7
| _ -> false
let rec symbol_of_production assoc from forpat typ =
if is_binder_level from typ then
let eobj = snd (get_entry (get_univ "constr") "operconstr") in
Gramext.Snterml (Gram.Entry.obj eobj,"200")
else if is_self from typ then Gramext.Sself
else
match typ with
| ETConstrList (typ',[]) ->
Gramext.Slist1 (symbol_of_production assoc from forpat (ETConstr typ'))
| ETConstrList (typ',tkl) ->
Gramext.Slist1sep
(symbol_of_production assoc from forpat (ETConstr typ'),
Gramext.srules
[List.map (fun x -> Gramext.Stoken x) tkl,
List.fold_right (fun _ v -> Gramext.action (fun _ -> v)) tkl
(Gramext.action (fun loc -> ()))])
| _ ->
match get_constr_production_entry assoc from forpat typ with
| (eobj,None,_) -> Gramext.Snterm (Gram.Entry.obj eobj)
| (eobj,Some None,_) -> Gramext.Snext
| (eobj,Some (Some (lev,cur)),_) ->
Gramext.Snterml (Gram.Entry.obj eobj,constr_prod_level assoc cur lev)
|