1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
open Coqast
open Ast
open Pp
open Util
open Names
open Pcoq
open Extend
open Topconstr
open Libnames
(**********************************************************************)
(* Parsing with Grammar *)
(**********************************************************************)
let get_r_sign loc =
let mkid id =
mkRefC (Qualid (loc,Libnames.make_short_qualid id))
in
((mkid (id_of_string "R0"),
mkid (id_of_string "R1"),
mkid (id_of_string "Rplus"),
mkid (id_of_string "Rmult"),
mkid (id_of_string "NRplus"),
mkid (id_of_string "NRmult")))
let get_r_sign_ast loc =
let mkid id =
Termast.ast_of_ref (Nametab.locate (Libnames.make_short_qualid id))
in
((mkid (id_of_string "R0"),
mkid (id_of_string "R1"),
mkid (id_of_string "Rplus"),
mkid (id_of_string "Rmult"),
mkid (id_of_string "NRplus"),
mkid (id_of_string "NRmult")))
let int_decomp n =
let div2 k =
let x = k mod 2 in
let y = k - x in (x,y/2) in
let rec list_ch m =
if m< 2 then [m]
else let (x1,x2) = div2 m in x1::(list_ch x2)
in list_ch n
let _ = if !Options.v7 then
let r_of_int n dloc =
let (a0,a1,plus,mult,_,_) = get_r_sign dloc in
let list_ch = int_decomp n in
let a2 = mkAppC (plus, [a1; a1]) in
let rec mk_r l =
match l with
| [] -> failwith "Error r_of_int"
| [a] -> if a=1 then a1 else a0
| a::[b] -> if a==1 then mkAppC (plus, [a1; a2]) else a2
| a::l' -> if a=1 then mkAppC (plus, [a1; mkAppC (mult, [a2; mk_r l'])]) else mkAppC (mult, [a2; mk_r l'])
in mk_r list_ch
in
let r_of_string s dloc =
r_of_int (int_of_string s) dloc
in
let rsyntax_create name =
let e =
Pcoq.create_constr_entry (Pcoq.get_univ "rnatural") name in
Pcoq.Gram.Unsafe.clear_entry e;
e
in
let rnumber = rsyntax_create "rnumber"
in
let _ =
Gram.extend rnumber None
[None, None,
[[Gramext.Stoken ("INT", "")],
Gramext.action r_of_string]]
in ()
(**********************************************************************)
(* Old ast printing *)
(**********************************************************************)
exception Non_closed_number
let _ = if !Options.v7 then
let int_of_r p =
let (a0,a1,plus,mult,_,_) = get_r_sign_ast dummy_loc in
let rec int_of_r_rec p =
match p with
| Node (_,"APPLIST", [b;a;c]) when alpha_eq(b,plus) & alpha_eq(a,a1) & alpha_eq(c,a1) -> 2
| Node (_,"APPLIST", [b;a;c]) when alpha_eq(b,plus) & alpha_eq(a,a1) ->
(match c with
| Node (_,"APPLIST", [e;d;f]) when alpha_eq(e,mult) -> 1 + int_of_r_rec c
| Node (_,"APPLIST", [e;d;f]) when alpha_eq(e,plus) & alpha_eq(d,a1) & alpha_eq(f,a1) -> 3
| _ -> raise Non_closed_number)
| Node (_,"APPLIST", [b;a;c]) when alpha_eq(b,mult) ->
(match a with
| Node (_,"APPLIST", [e;d;f]) when alpha_eq(e,plus) & alpha_eq(d,a1) & alpha_eq(f,a1) ->
(match c with
| g when alpha_eq(g,a1) -> raise Non_closed_number
| g when alpha_eq(g,a0) -> raise Non_closed_number
| _ -> 2 * int_of_r_rec c)
| _ -> raise Non_closed_number)
| a when alpha_eq(a,a0) -> 0
| a when alpha_eq(a,a1) -> 1
| _ -> raise Non_closed_number in
try
Some (int_of_r_rec p)
with
Non_closed_number -> None
in
let replace_plus p =
let (_,_,_,_,astnrplus,_) = get_r_sign_ast dummy_loc in
ope ("REXPR",[ope("APPLIST",[astnrplus;p])])
in
let replace_mult p =
let (_,_,_,_,_,astnrmult) = get_r_sign_ast dummy_loc in
ope ("REXPR",[ope("APPLIST",[astnrmult;p])])
in
let rec r_printer_odd std_pr p =
let (_,a1,plus,_,_,_) = get_r_sign_ast dummy_loc in
match (int_of_r (ope("APPLIST",[plus;a1;p]))) with
| Some i -> str (string_of_int i)
| None -> std_pr (replace_plus p)
in
let rec r_printer_odd_outside std_pr p =
let (_,a1,plus,_,_,_) = get_r_sign_ast dummy_loc in
match (int_of_r (ope("APPLIST",[plus;a1;p]))) with
| Some i -> str"``" ++ str (string_of_int i) ++ str"``"
| None -> std_pr (replace_plus p)
in
let rec r_printer_even std_pr p =
let (_,a1,plus,mult,_,_) = get_r_sign_ast dummy_loc in
match (int_of_r (ope("APPLIST",[mult;(ope("APPLIST",[plus;a1;a1]));p]))) with
| Some i -> str (string_of_int i)
| None -> std_pr (replace_mult p)
in
let rec r_printer_even_outside std_pr p =
let (_,a1,plus,mult,_,_) = get_r_sign_ast dummy_loc in
match (int_of_r (ope("APPLIST",[mult;(ope("APPLIST",[plus;a1;a1]));p]))) with
| Some i -> str"``" ++ str (string_of_int i) ++ str"``"
| None -> std_pr (replace_mult p)
in
let _ = Esyntax.Ppprim.add ("r_printer_odd", r_printer_odd) in
let _ = Esyntax.Ppprim.add ("r_printer_odd_outside", r_printer_odd_outside) in
let _ = Esyntax.Ppprim.add ("r_printer_even", r_printer_even) in
let _ = Esyntax.Ppprim.add ("r_printer_even_outside", r_printer_even_outside)
in ()
(**********************************************************************)
(* Parsing R via scopes *)
(**********************************************************************)
open Libnames
open Rawterm
open Bignat
let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
let rdefinitions = make_dir ["Coq";"Reals";"Rdefinitions"]
(* TODO: temporary hack *)
let make_path dir id = Libnames.encode_kn dir (id_of_string id)
let glob_R1 = ConstRef (make_path rdefinitions "R1")
let glob_R0 = ConstRef (make_path rdefinitions "R0")
let glob_Ropp = ConstRef (make_path rdefinitions "Ropp")
let glob_Rplus = ConstRef (make_path rdefinitions "Rplus")
let glob_Rmult = ConstRef (make_path rdefinitions "Rmult")
(* V7 *)
let r_of_posint dloc n =
let ref_R0 = RRef (dloc, glob_R0) in
let ref_R1 = RRef (dloc, glob_R1) in
let ref_Rplus = RRef (dloc, glob_Rplus) in
let ref_Rmult = RRef (dloc, glob_Rmult) in
let a2 = RApp(dloc, ref_Rplus, [ref_R1; ref_R1]) in
let list_ch = int_decomp n in
let rec mk_r l =
match l with
| [] -> failwith "Error r_of_posint"
| [a] -> if a=1 then ref_R1 else ref_R0
| a::[b] -> if a==1 then RApp (dloc, ref_Rplus, [ref_R1; a2]) else a2
| a::l' -> if a=1 then RApp (dloc, ref_Rplus, [ref_R1; RApp (dloc, ref_Rmult, [a2; mk_r l'])]) else RApp (dloc, ref_Rmult, [a2; mk_r l'])
in mk_r list_ch
(* int_of_string o bigint_to_string : temporary hack ... *)
(* utiliser les bigint de caml ? *)
let r_of_int2 dloc z =
match z with
| NEG n -> RApp (dloc, RRef(dloc,glob_Ropp), [r_of_posint dloc (int_of_string (bigint_to_string (POS n)))])
| POS n -> r_of_posint dloc (int_of_string (bigint_to_string z))
(* V8 *)
let two = mult_2 one
let three = add_1 two
let four = mult_2 two
(* Unary representation of strictly positive numbers *)
let rec small_r dloc n =
if is_one n then RRef (dloc, glob_R1)
else RApp(dloc,RRef (dloc,glob_Rplus),
[RRef (dloc, glob_R1);small_r dloc (sub_1 n)])
let r_of_posint dloc n =
let r1 = RRef (dloc, glob_R1) in
let r2 = small_r dloc two in
let rec r_of_pos n =
if less_than n four then small_r dloc n
else
let (q,r) = div2_with_rest n in
let b = RApp(dloc,RRef(dloc,glob_Rmult),[r2;r_of_pos q]) in
if r then RApp(dloc,RRef(dloc,glob_Rplus),[r1;b]) else b in
if is_nonzero n then r_of_pos n else RRef(dloc,glob_R0)
let r_of_int dloc z =
match z with
| NEG n -> RApp (dloc, RRef(dloc,glob_Ropp), [r_of_posint dloc n])
| POS n -> r_of_posint dloc n
(**********************************************************************)
(* Printing R via scopes *)
(**********************************************************************)
let bignat_of_r =
if !Options.v7 then
let rec bignat_of_r = function
| RApp (_,RRef (_,p), [RRef (_,o1); RRef (_,o2)]) when p = glob_Rplus & o1 = glob_R1 & o2 = glob_R1 -> add_1 one
| RApp (_,RRef (_,p), [RRef (_,o); RApp (_,RRef (_,p2),_) as a]) when p = glob_Rplus & o = glob_R1 ->
if p2 = glob_Rmult then add_1 (bignat_of_r a)
else (match a with
| RApp (_,RRef (_,p), [RRef (_,o1); RRef (_,o2)]) when p = glob_Rplus & o1 = glob_R1 & o2 = glob_R1 -> add_1 (add_1 one)
| _ -> raise Non_closed_number)
| RApp (_,RRef (_,p), [RApp (_,RRef (_,o1), [RRef (_,o2); RRef (_,o3)]); RRef (_,q)]) when p = glob_Rmult & o1 = glob_Rplus & o2 = glob_R1 & o3 = glob_R1 & q = glob_R1 -> raise Non_closed_number
| RApp (_,RRef (_,p), [RApp (_,RRef (_,o1), [RRef (_,o2); RRef (_,o3)]); a]) when p = glob_Rmult & o1 = glob_Rplus & o2 = glob_R1 & o3 = glob_R1 -> mult_2 (bignat_of_r a)
| RRef (_,a) when a = glob_R1 -> one
| RRef (_,a) when a = glob_R0 -> zero
| _ -> raise Non_closed_number
in bignat_of_r
else
(* for numbers > 1 *)
let rec bignat_of_pos = function
(* 1+1 *)
| RApp (_,RRef (_,p), [RRef (_,o1); RRef (_,o2)])
when p = glob_Rplus & o1 = glob_R1 & o2 = glob_R1 -> two
(* 1+1+1 *)
| RApp (_,RRef (_,p1), [RRef (_,o1);
RApp(_,RRef (_,p2),[RRef(_,o2);RRef(_,o3)])])
when p1 = glob_Rplus & p2 = glob_Rplus &
o1 = glob_R1 & o2 = glob_R1 & o3 = glob_R1 -> three
(* (1+1)*b *)
| RApp (_,RRef (_,p), [a; b]) when p = glob_Rmult ->
if bignat_of_pos a <> two then raise Non_closed_number;
mult_2 (bignat_of_pos b)
(* 1+(1+1)*b *)
| RApp (_,RRef (_,p1), [RRef (_,o); RApp (_,RRef (_,p2),[a;b])])
when p1 = glob_Rplus & p2 = glob_Rmult & o = glob_R1 ->
if bignat_of_pos a <> two then raise Non_closed_number;
add_1 (mult_2 (bignat_of_pos b))
| _ -> raise Non_closed_number
in
let bignat_of_r = function
| RRef (_,a) when a = glob_R0 -> zero
| RRef (_,a) when a = glob_R1 -> one
| r -> bignat_of_pos r
in
bignat_of_r
let bigint_of_r = function
| RApp (_,RRef (_,o), [a]) when o = glob_Ropp -> NEG (bignat_of_r a)
| a -> POS (bignat_of_r a)
let uninterp_r p =
try
Some (bigint_of_r p)
with Non_closed_number ->
None
let _ = Symbols.declare_numeral_interpreter "R_scope"
["Coq";"Reals";"Rdefinitions"]
((if !Options.v7 then r_of_int2 else r_of_int),None)
([RRef(dummy_loc,glob_Ropp);RRef(dummy_loc,glob_R0);
RRef(dummy_loc,glob_Rplus);RRef(dummy_loc,glob_Rmult);RRef(dummy_loc,glob_R1)],
uninterp_r,
None)
(***********************************************************************)
(* Old ast printers via scope *)
let _ = if !Options.v7 then
let bignat_of_pos p =
let (_,one,plus,_,_,_) = get_r_sign_ast dummy_loc in
let rec transl = function
| Node (_,"APPLIST",[p; o; a]) when alpha_eq(p,plus) & alpha_eq(o,one)
-> add_1(transl a)
| a when alpha_eq(a,one) -> Bignat.one
| _ -> raise Non_closed_number
in transl p
in
let bignat_option_of_pos p =
try
Some (bignat_of_pos p)
with Non_closed_number ->
None
in
let r_printer_Rplus1 p =
match bignat_option_of_pos p with
| Some n -> Some (str (Bignat.to_string (add_1 n)))
| None -> None
in
let r_printer_Ropp p =
match bignat_option_of_pos p with
| Some n -> Some (str "-" ++ str (Bignat.to_string n))
| None -> None
in
let r_printer_R1 _ =
Some (int 1)
in
let r_printer_R0 _ =
Some (int 0)
in
(* Declare pretty-printers for integers *)
let _ =
Esyntax.declare_primitive_printer "r_printer_Ropp" "R_scope" (r_printer_Ropp)
in let _ =
Esyntax.declare_primitive_printer "r_printer_Rplus1" "R_scope" (r_printer_Rplus1)
in let _ =
Esyntax.declare_primitive_printer "r_printer_R1" "R_scope" (r_printer_R1)
in let _ =
Esyntax.declare_primitive_printer "r_printer_R0" "R_scope" r_printer_R0
in ()
|