aboutsummaryrefslogtreecommitdiffhomepage
path: root/parsing/g_intsyntax.ml
blob: e1cbbb7e057c0191d4c81067828948607e3635b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $ $ i*)

(* digit-based syntax for int31 and bigint *)

open Bigint
open Libnames
open Rawterm

(* arnaud : plan : 
  - path des modules int31 et bigint dans des variables
  - nom des constructeurs dans des variables
  - nom des scopes dans des variables
  - fonction qui cree les int31 en fonction d'un entier (ce sont des bigint de coq)
    <= div2 with rest 31 fois, dans un tableau d'args preconstruit
  - fonction qui cree un bigint de hauteur n (en appelant deux fois la fonction 
    a la hauteur n-1 (sauf dans les cas ou il y a du 0))
  /!\ attention aux nombres negatifs  *)

(*** Constants for locating the int31 and bigN ***)



let make_dir l = Names.make_dirpath (List.map Names.id_of_string (List.rev l))
let make_path dir id = Libnames.make_path (make_dir dir) (Names.id_of_string id)

(* copied on g_zsyntax.ml, where it is said to be a temporary hack*)
(* takes a path an identifier in the form of a string list and a string, 
   returns a kernel_name *)
let make_kn dir id = Libnames.encode_kn (make_dir dir) (Names.id_of_string id)


(* int31 stuff *)
let int31_module = ["Coq"; "Ints"; "Int31"]
let int31_path = make_path int31_module "int31"
let int31_id = make_kn int31_module


let int31_construct = ConstructRef ((int31_id "int31",0),1)

let int31_0 = ConstructRef ((int31_id "digits",0),1)
let int31_1 = ConstructRef ((int31_id "digits",0),2)


(* bigint stuff*)
let zn2z_module = ["Coq"; "Ints"; "Basic_type"]
let zn2z_path = make_path zn2z_module "zn2z"
let zn2z_id = make_kn zn2z_module

let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1)
let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)

let bigN_module = ["Coq"; "Ints"; "BigN"]
let bigN_path = make_path bigN_module "bigN"
(* big ugly hack *)
let bigN_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigN_module)), 
                             Names.mk_label "BigN")),
              [], Names.id_of_string id) : Names.kernel_name)

(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
let n_inlined = of_string "13"
let bigN_constructor =
 (* converts a bigint into an int the ugly way *)
  let rec to_int i =
    if equal i zero then
      0
    else
      let (quo,rem) = div2_with_rest i in
      if rem then
	2*(to_int quo)+1
      else
	2*(to_int quo)
  in
  fun i -> 
  ConstructRef ((bigN_id "t_",0),
		if less_than i n_inlined then
		  (to_int i)+1
		else
		  (to_int n_inlined)+1
	       )

(*** Definition of the Non_closed exception, used in the pretty printing ***)
exception Non_closed

(*** Parsing for int31 in digital notation ***)

(* parses a *non-negative* integer (from bigint.ml) into an int31
   wraps modulo 2^31 *)
let int31_of_pos_bigint dloc n = 
  let ref_construct = RRef (dloc, int31_construct) in
  let ref_0 = RRef (dloc, int31_0) in
  let ref_1 = RRef (dloc, int31_1) in
  let rec args counter n =
    if counter <= 0 then
      []
    else
      let (q,r) = div2_with_rest n in
	(if r then ref_1 else ref_0)::(args (counter-1) q)
  in
  RApp (dloc, ref_construct, List.rev (args 31 n))

let error_negative dloc =
  Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers")

let interp_int31 dloc n = 
  if is_pos_or_zero n then
    int31_of_pos_bigint dloc n
  else
    error_negative dloc

(* Pretty prints an int31 *)

let bigint_of_int31 = 
  let rec args_parsing args cur = 
    match args with 
      | [] -> cur
      | (RRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
      | (RRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
      | _ -> raise Non_closed
  in
  function 
  | RApp (_, RRef (_, c), args) when c=int31_construct -> args_parsing args zero
  | _ -> raise Non_closed

let uninterp_int31 i = 
  try 
    Some (bigint_of_int31 i)
  with Non_closed ->
    None

(* Actually declares the interpreter for int31 *)
let _ = Notation.declare_numeral_interpreter "int31_scope"
  (int31_path, int31_module)
  interp_int31
  ([RRef (Util.dummy_loc, int31_construct)],
   uninterp_int31,
   true)


(*** Parsing for BigN in digital notation ***)
(* the base for BigN (in Coq) that is 2^31 in our case *)
let base = pow two (of_string "31")

(* base of the bigN of height N : *)
let rank n = pow base (pow two n)

(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
   it is expected to be used only when the quotient would also need 2^n int31 to be
   stored *)
let split_at n bi = 
  euclid bi (rank (sub_1 n))

(* search the height of the Coq bigint needed to represent the integer bi *)
let height bi =
  let rec height_aux n = 
    if less_than bi (rank n) then
      n
    else
      height_aux (add_1 n)
  in
  height_aux zero


(* n must be a non-negative integer (from bigint.ml) *)
let word_of_pos_bigint dloc hght n =
  let ref_W0 = RRef (dloc, zn2z_W0) in
  let ref_WW = RRef (dloc, zn2z_WW) in
  let rec decomp hgt n =
    if is_neg_or_zero hgt then
      int31_of_pos_bigint dloc n
    else if equal n zero then
      RApp (dloc, ref_W0, [RHole (dloc, Evd.InternalHole)])
    else
      let (h,l) = split_at hgt n in
      RApp (dloc, ref_WW, [RHole (dloc, Evd.InternalHole);
			   decomp (sub_1 hgt) h;
			   decomp (sub_1 hgt) l])
  in
  decomp hght n
      
let bigN_of_pos_bigint dloc n =
  let ref_constructor i = RRef (dloc, bigN_constructor i) in
  let result h word = RApp (dloc, ref_constructor h, if less_than h n_inlined then
				                       [word]
			                             else
				                      [RHole (dloc, Evd.InternalHole);
						       word])
  in
  let hght = height n in
  result hght (word_of_pos_bigint dloc hght n)
  
let bigN_error_negative dloc =
  Util.user_err_loc (dloc, "interp_bigN", Pp.str "bogN are only non-negative numbers")

let interp_bigN dloc n = 
  if is_pos_or_zero n then
    bigN_of_pos_bigint dloc n
  else
    bigN_error_negative dloc


(* Pretty prints a bigN *)

let bigint_of_word = 
  let rec get_height rc =
    match rc with
    | RApp (_,RRef(_,c), [_;lft;rght]) when c = zn2z_WW -> 
	                                  let hleft = get_height lft in
					  let hright = get_height rght in
					  if less_than hleft hright then
					    hright
					  else
					    hleft
    | _ -> zero
  in
  let rec transform hght rc =
    match rc with
    | RApp (_,RRef(_,c),_) when c = zn2z_W0-> zero
    | RApp (_,RRef(_,c), [_;lft;rght]) when c=zn2z_WW-> add (mult (rank hght)
                                                          (transform (sub_1 hght) lft))
	                                            (transform (sub_1 hght) rght)
    | _ -> bigint_of_int31 rc
  in
  fun rc ->
    let hght = get_height rc in
    transform hght rc
    
let bigint_of_bigN rc=
  match rc with
  | RApp (_,_,[one_arg]) -> bigint_of_word one_arg
  | RApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
  | _ -> raise Non_closed

let uninterp_bigN rc = 
  try 
    Some (bigint_of_bigN rc)
  with Non_closed ->
    None


(* declare the list of constructors of bigN used in the declaration of the
   numeral interpreter *)

let bigN_list_of_constructors =
  let rec build i = 
    if less_than i (add_1 n_inlined) then
      RRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i))
    else
      []
  in
  build zero

(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter "bigN_scope"
  (bigN_path, bigN_module)
  interp_bigN
  (bigN_list_of_constructors,
   uninterp_bigN,
   true)