aboutsummaryrefslogtreecommitdiffhomepage
path: root/parsing/egrammar.ml
blob: aa9ab17aa28c39ac2d8d60ca109c9d4b5f570bbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

open Pp
open Util
open Pcoq
open Coqast
open Ast
open Extend

(* State of the grammar extensions *)

let (grammar_state : grammar_command list ref) = ref []

(* Interpretation of the right hand side of grammar rules *)

(* When reporting errors, we add the name of the grammar rule that failed *)
let specify_name name e =
  match e with
    | UserError(lab,strm) ->
        UserError(lab, [< 'sTR"during interpretation of grammar rule ";
                          'sTR name; 'sTR","; 'sPC; strm >])
    | Anomaly(lab,strm) ->
        Anomaly(lab, [< 'sTR"during interpretation of grammar rule ";
                        'sTR name; 'sTR","; 'sPC; strm >])
    | Failure s ->
        Failure("during interpretation of grammar rule "^name^", "^s)
    | e -> e

let gram_action (name, etyp) env act dloc =
  try
    let v = Ast.eval_act dloc env act in
    match etyp, v with
      | (ETast, Vast ast) -> Obj.repr ast
      | (ETastl, Vastlist astl) -> Obj.repr astl
      | _ -> grammar_type_error (dloc, "Egrammar.gram_action")
  with e ->
    let (loc, exn) =
      match e with
        | Stdpp.Exc_located (loce, lexn) -> (loce, lexn)
        | e -> (dloc, e)
    in
    Stdpp.raise_with_loc loc (specify_name name exn)

(* Translation of environments: a production
 *   [ nt1($x1) ... nti($xi) ] -> act($x1..$xi)
 * is written (with camlp4 conventions):
 *   (fun vi -> .... (fun v1 -> act(v1 .. vi) )..)
 * where v1..vi are the values generated by non-terminals nt1..nti.
 * Since the actions are executed by substituing an environment,
 * make_act builds the following closure:
 *
 *      ((fun env ->
 *          (fun vi -> 
 *             (fun env -> ...
 *           
 *                  (fun v1 ->
 *                     (fun env -> gram_action .. env act)
 *                     (($x1,v1)::env))
 *                  ...)
 *             (($xi,vi)::env)))
 *         [])
 *)

let make_act name_typ a pil =
  let act_without_arg env = Gramext.action (gram_action name_typ env a)
  and make_prod_item act_tl = function
    | (None, _) -> (* parse a non-binding item *)
        (fun env -> Gramext.action (fun _ -> act_tl env))
    | (Some p, ETast) -> (* non-terminal *)
        (fun env -> Gramext.action (fun v -> act_tl ((p, Vast v) :: env)))
    | (Some p, ETastl) -> (* non-terminal (list) *)
        (fun env -> Gramext.action (fun v -> act_tl ((p, Vastlist v) :: env)))
  in 
  (List.fold_left make_prod_item act_without_arg pil) []

(* Grammar extension command. Rules are assumed correct.
 * Type-checking of grammar rules is done during the translation of
 * ast to the type grammar_command.  We only check that the existing
 * entries have the type assumed in the grammar command (these types
 * annotations are added when type-checking the command, function
 * Extend.of_ast) *)

let check_entry_type (u,n) typ =
  match force_entry_type u n typ with
    | Ast e -> Gram.Entry.obj e
    | ListAst e -> Gram.Entry.obj e

let symbol_of_prod_item univ = function
  | Term tok -> (Gramext.Stoken tok, (None, ETast))
  | NonTerm (nt, nttyp, ovar) ->
      let eobj = check_entry_type (qualified_nterm univ nt) nttyp in
      (Gramext.Snterm eobj, (ovar, nttyp))

let make_rule univ etyp rule =
  let pil = List.map (symbol_of_prod_item univ) rule.gr_production in
  let (symbs,ntl) = List.split pil in
  let act = make_act (rule.gr_name,etyp) rule.gr_action ntl in
  (symbs, act)

(* Rules of a level are entered in reverse order, so that the first rules
   are applied before the last ones *)
let extend_entry univ (te, etyp, ass, rls) =
  let rules = List.rev (List.map (make_rule univ etyp) rls) in
  grammar_extend te None [(None, ass, rules)]

(* Defines new entries. If the entry already exists, check its type *)
let define_entry univ {ge_name=n; ge_type=typ; gl_assoc=ass; gl_rules=rls} =
  let e = force_entry_type univ n typ in
  (e,typ,ass,rls)

(* Add a bunch of grammar rules. Does not check if it is well formed *)
let extend_grammar gram =
  let univ = get_univ gram.gc_univ in
  let tl = List.map (define_entry univ) gram.gc_entries in
  List.iter (extend_entry univ) tl;
  grammar_state := gram :: !grammar_state

(* backtrack the grammar extensions *)
let remove_rule univ e rule =
  let symbs =
    List.map (fun pi -> fst (symbol_of_prod_item univ pi)) rule.gr_production
  in
  match e with
    | Ast en -> Gram.delete_rule en symbs
    | ListAst en -> Gram.delete_rule en symbs

let remove_entry univ entry =
  let e = get_entry univ entry.ge_name in
  List.iter (remove_rule univ e) entry.gl_rules
    
let remove_grammar gram =
  let univ = get_univ gram.gc_univ in
  List.iter (remove_entry univ) (List.rev gram.gc_entries)

(* Summary functions: the state of the lexer is included in that of the parser.
   Because the grammar affects the set of keywords when adding or removing
   grammar rules. *)
type frozen_t = grammar_command list * Lexer.frozen_t

let freeze () = (!grammar_state, Lexer.freeze ())

(* We compare the current state of the grammar and the state to unfreeze, 
   by computing the longest common suffixes *)
let factorize_grams l1 l2 =
  if l1 == l2 then ([], [], l1) else list_share_tails l1 l2

let number_of_entries gcl =
  List.fold_left (fun n gc -> n + (List.length gc.gc_entries)) 0 gcl

let unfreeze (grams, lex) =
  let (undo, redo, common) = factorize_grams !grammar_state grams in
  (*    List.iter remove_grammar undo;*)
  remove_grammars (number_of_entries undo);
  grammar_state := common;
  Lexer.unfreeze lex;
  List.iter extend_grammar (List.rev redo)
    
let init_grammar () =
  List.iter remove_grammar !grammar_state;
  grammar_state := []

let init () =
  Lexer.init ();
  init_grammar ()