1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open CErrors
open Util
open Pcoq
open Constrexpr
open Notation_term
open Extend
open Libnames
open Names
(**********************************************************************)
(* This determines (depending on the associativity of the current
level and on the expected associativity) if a reference to constr_n is
a reference to the current level (to be translated into "SELF" on the
left border and into "constr LEVEL n" elsewhere), to the level below
(to be translated into "NEXT") or to an below wrt associativity (to be
translated in camlp4 into "constr" without level) or to another level
(to be translated into "constr LEVEL n")
The boolean is true if the entry was existing _and_ empty; this to
circumvent a weakness of camlp4/camlp5 whose undo mechanism is not the
converse of the extension mechanism *)
let constr_level = string_of_int
let default_levels =
[200,Extend.RightA,false;
100,Extend.RightA,false;
99,Extend.RightA,true;
90,Extend.RightA,true;
10,Extend.RightA,false;
9,Extend.RightA,false;
8,Extend.RightA,true;
1,Extend.LeftA,false;
0,Extend.RightA,false]
let default_pattern_levels =
[200,Extend.RightA,true;
100,Extend.RightA,false;
99,Extend.RightA,true;
90,Extend.RightA,true;
11,Extend.LeftA,false;
10,Extend.RightA,false;
1,Extend.LeftA,false;
0,Extend.RightA,false]
let default_constr_levels = (default_levels, default_pattern_levels)
(* At a same level, LeftA takes precedence over RightA and NoneA *)
(* In case, several associativity exists for a level, we make two levels, *)
(* first LeftA, then RightA and NoneA together *)
let admissible_assoc = function
| Extend.LeftA, Some (Extend.RightA | Extend.NonA) -> false
| Extend.RightA, Some Extend.LeftA -> false
| _ -> true
let create_assoc = function
| None -> Extend.RightA
| Some a -> a
let error_level_assoc p current expected =
let open Pp in
let pr_assoc = function
| Extend.LeftA -> str "left"
| Extend.RightA -> str "right"
| Extend.NonA -> str "non" in
user_err
(str "Level " ++ int p ++ str " is already declared " ++
pr_assoc current ++ str " associative while it is now expected to be " ++
pr_assoc expected ++ str " associative.")
let create_pos = function
| None -> Extend.First
| Some lev -> Extend.After (constr_level lev)
let find_position_gen current ensure assoc lev =
match lev with
| None ->
current, (None, None, None, None)
| Some n ->
let after = ref None in
let init = ref None in
let rec add_level q = function
| (p,_,_ as pa)::l when p > n -> pa :: add_level (Some p) l
| (p,a,reinit)::l when Int.equal p n ->
if reinit then
let a' = create_assoc assoc in
(init := Some (a',create_pos q); (p,a',false)::l)
else if admissible_assoc (a,assoc) then
raise Exit
else
error_level_assoc p a (Option.get assoc)
| l -> after := q; (n,create_assoc assoc,ensure)::l
in
try
let updated = add_level None current in
let assoc = create_assoc assoc in
begin match !init with
| None ->
(* Create the entry *)
updated, (Some (create_pos !after), Some assoc, Some (constr_level n), None)
| _ ->
(* The reinit flag has been updated *)
updated, (Some (Extend.Level (constr_level n)), None, None, !init)
end
with
(* Nothing has changed *)
Exit ->
(* Just inherit the existing associativity and name (None) *)
current, (Some (Extend.Level (constr_level n)), None, None, None)
let rec list_mem_assoc_triple x = function
| [] -> false
| (a,b,c) :: l -> Int.equal a x || list_mem_assoc_triple x l
let register_empty_levels accu forpat levels =
let rec filter accu = function
| [] -> ([], accu)
| n :: rem ->
let rem, accu = filter accu rem in
let (clev, plev) = accu in
let levels = if forpat then plev else clev in
if not (list_mem_assoc_triple n levels) then
let nlev, ans = find_position_gen levels true None (Some n) in
let nlev = if forpat then (clev, nlev) else (nlev, plev) in
ans :: rem, nlev
else rem, accu
in
filter accu levels
let find_position accu forpat assoc level =
let (clev, plev) = accu in
let levels = if forpat then plev else clev in
let nlev, ans = find_position_gen levels false assoc level in
let nlev = if forpat then (clev, nlev) else (nlev, plev) in
(ans, nlev)
(**************************************************************************)
(*
* --- Note on the mapping of grammar productions to camlp4 actions ---
*
* Translation of environments: a production
* [ nt1(x1) ... nti(xi) ] -> act(x1..xi)
* is written (with camlp4 conventions):
* (fun vi -> .... (fun v1 -> act(v1 .. vi) )..)
* where v1..vi are the values generated by non-terminals nt1..nti.
* Since the actions are executed by substituting an environment,
* the make_*_action family build the following closure:
*
* ((fun env ->
* (fun vi ->
* (fun env -> ...
*
* (fun v1 ->
* (fun env -> gram_action .. env act)
* ((x1,v1)::env))
* ...)
* ((xi,vi)::env)))
* [])
*)
(**********************************************************************)
(** Declare Notations grammar rules *)
(**********************************************************************)
(* Binding constr entry keys to entries *)
(* Camlp4 levels do not treat NonA: use RightA with a NEXT on the left *)
let camlp4_assoc = function
| Some NonA | Some RightA -> RightA
| None | Some LeftA -> LeftA
let assoc_eq al ar = match al, ar with
| NonA, NonA
| RightA, RightA
| LeftA, LeftA -> true
| _, _ -> false
(* [adjust_level assoc from prod] where [assoc] and [from] are the name
and associativity of the level where to add the rule; the meaning of
the result is
None = SELF
Some None = NEXT
Some (Some (n,cur)) = constr LEVEL n
s.t. if [cur] is set then [n] is the same as the [from] level *)
let adjust_level assoc from = function
(* Associativity is None means force the level *)
| (NumLevel n,BorderProd (_,None)) -> Some (Some (n,true))
(* Compute production name on the right side *)
(* If NonA or LeftA on the right-hand side, set to NEXT *)
| (NumLevel n,BorderProd (Right,Some (NonA|LeftA))) ->
Some None
(* If RightA on the right-hand side, set to the explicit (current) level *)
| (NumLevel n,BorderProd (Right,Some RightA)) ->
Some (Some (n,true))
(* Compute production name on the left side *)
(* If NonA on the left-hand side, adopt the current assoc ?? *)
| (NumLevel n,BorderProd (Left,Some NonA)) -> None
(* If the expected assoc is the current one, set to SELF *)
| (NumLevel n,BorderProd (Left,Some a)) when assoc_eq a (camlp4_assoc assoc) ->
None
(* Otherwise, force the level, n or n-1, according to expected assoc *)
| (NumLevel n,BorderProd (Left,Some a)) ->
begin match a with
| LeftA -> Some (Some (n, true))
| _ -> Some None
end
(* None means NEXT *)
| (NextLevel,_) -> Some None
(* Compute production name elsewhere *)
| (NumLevel n,InternalProd) ->
if from = n + 1 then Some None else Some (Some (n, Int.equal n from))
type _ target =
| ForConstr : constr_expr target
| ForPattern : cases_pattern_expr target
type prod_info = production_level * production_position
type (_, _) entry =
| TTName : ('self, Name.t Loc.located) entry
| TTReference : ('self, reference) entry
| TTBigint : ('self, Constrexpr.raw_natural_number) entry
| TTBinder : ('self, local_binder_expr list) entry
| TTConstr : prod_info * 'r target -> ('r, 'r) entry
| TTConstrList : prod_info * Tok.t list * 'r target -> ('r, 'r list) entry
| TTBinderListT : ('self, local_binder_expr list) entry
| TTBinderListF : Tok.t list -> ('self, local_binder_expr list list) entry
type _ any_entry = TTAny : ('s, 'r) entry -> 's any_entry
(* This computes the name of the level where to add a new rule *)
let interp_constr_entry_key : type r. r target -> int -> r Gram.entry * int option =
fun forpat level -> match forpat with
| ForConstr ->
if level = 200 then Constr.binder_constr, None
else Constr.operconstr, Some level
| ForPattern -> Constr.pattern, Some level
let target_entry : type s. s target -> s Gram.entry = function
| ForConstr -> Constr.operconstr
| ForPattern -> Constr.pattern
let is_self from e = match e with
| (NumLevel n, BorderProd (Right, _ (* Some(NonA|LeftA) *))) -> false
| (NumLevel n, BorderProd (Left, _)) -> Int.equal from n
| _ -> false
let is_binder_level from e = match e with
| (NumLevel 200, (BorderProd (Right, _) | InternalProd)) -> from = 200
| _ -> false
let make_sep_rules tkl =
let rec mkrule : Tok.t list -> unit rules = function
| [] -> Rules ({ norec_rule = Stop }, ignore)
| tkn :: rem ->
let Rules ({ norec_rule = r }, f) = mkrule rem in
let r = { norec_rule = Next (r, Atoken tkn) } in
Rules (r, fun _ -> f)
in
let r = mkrule (List.rev tkl) in
Arules [r]
let symbol_of_target : type s. _ -> _ -> _ -> s target -> (s, s) symbol = fun p assoc from forpat ->
if is_binder_level from p then Aentryl (target_entry forpat, 200)
else if is_self from p then Aself
else
let g = target_entry forpat in
let lev = adjust_level assoc from p in
begin match lev with
| None -> Aentry g
| Some None -> Anext
| Some (Some (lev, cur)) -> Aentryl (g, lev)
end
let symbol_of_entry : type s r. _ -> _ -> (s, r) entry -> (s, r) symbol = fun assoc from typ -> match typ with
| TTConstr (p, forpat) -> symbol_of_target p assoc from forpat
| TTConstrList (typ', [], forpat) ->
Alist1 (symbol_of_target typ' assoc from forpat)
| TTConstrList (typ', tkl, forpat) ->
Alist1sep (symbol_of_target typ' assoc from forpat, make_sep_rules tkl)
| TTBinderListF [] -> Alist1 (Aentry Constr.binder)
| TTBinderListF tkl -> Alist1sep (Aentry Constr.binder, make_sep_rules tkl)
| TTName -> Aentry Prim.name
| TTBinder -> Aentry Constr.binder
| TTBinderListT -> Aentry Constr.open_binders
| TTBigint -> Aentry Prim.bigint
| TTReference -> Aentry Constr.global
let interp_entry forpat e = match e with
| ETName -> TTAny TTName
| ETReference -> TTAny TTReference
| ETBigint -> TTAny TTBigint
| ETBinder true -> anomaly (Pp.str "Should occur only as part of BinderList.")
| ETBinder false -> TTAny TTBinder
| ETConstr p -> TTAny (TTConstr (p, forpat))
| ETPattern -> assert false (** not used *)
| ETOther _ -> assert false (** not used *)
| ETConstrList (p, tkl) -> TTAny (TTConstrList (p, tkl, forpat))
| ETBinderList (true, []) -> TTAny TTBinderListT
| ETBinderList (true, _) -> assert false
| ETBinderList (false, tkl) -> TTAny (TTBinderListF tkl)
let constr_expr_of_name (loc,na) = CAst.make ?loc @@ match na with
| Anonymous -> CHole (None,Misctypes.IntroAnonymous,None)
| Name id -> CRef (Ident (Loc.tag ?loc id), None)
let cases_pattern_expr_of_name (loc,na) = CAst.make ?loc @@ match na with
| Anonymous -> CPatAtom None
| Name id -> CPatAtom (Some (Ident (Loc.tag ?loc id)))
type 'r env = {
constrs : 'r list;
constrlists : 'r list list;
binders : (local_binder_expr list * bool) list;
}
let push_constr subst v = { subst with constrs = v :: subst.constrs }
let push_item : type s r. s target -> (s, r) entry -> s env -> r -> s env = fun forpat e subst v ->
match e with
| TTConstr _ -> push_constr subst v
| TTName ->
begin match forpat with
| ForConstr -> push_constr subst (constr_expr_of_name v)
| ForPattern -> push_constr subst (cases_pattern_expr_of_name v)
end
| TTBinder -> { subst with binders = (v, true) :: subst.binders }
| TTBinderListT -> { subst with binders = (v, true) :: subst.binders }
| TTBinderListF _ -> { subst with binders = (List.flatten v, false) :: subst.binders }
| TTBigint ->
begin match forpat with
| ForConstr -> push_constr subst (CAst.make @@ CPrim (Numeral (v,true)))
| ForPattern -> push_constr subst (CAst.make @@ CPatPrim (Numeral (v,true)))
end
| TTReference ->
begin match forpat with
| ForConstr -> push_constr subst (CAst.make @@ CRef (v, None))
| ForPattern -> push_constr subst (CAst.make @@ CPatAtom (Some v))
end
| TTConstrList _ -> { subst with constrlists = v :: subst.constrlists }
type (_, _) ty_symbol =
| TyTerm : Tok.t -> ('s, string) ty_symbol
| TyNonTerm : 's target * ('s, 'a) entry * ('s, 'a) symbol * bool -> ('s, 'a) ty_symbol
type ('self, _, 'r) ty_rule =
| TyStop : ('self, 'r, 'r) ty_rule
| TyNext : ('self, 'a, 'r) ty_rule * ('self, 'b) ty_symbol -> ('self, 'b -> 'a, 'r) ty_rule
| TyMark : int * bool * int * ('self, 'a, 'r) ty_rule -> ('self, 'a, 'r) ty_rule
type 'r gen_eval = Loc.t -> 'r env -> 'r
let rec ty_eval : type s a. (s, a, Loc.t -> s) ty_rule -> s gen_eval -> s env -> a = function
| TyStop ->
fun f env loc -> f loc env
| TyNext (rem, TyTerm _) ->
fun f env _ -> ty_eval rem f env
| TyNext (rem, TyNonTerm (_, _, _, false)) ->
fun f env _ -> ty_eval rem f env
| TyNext (rem, TyNonTerm (forpat, e, _, true)) ->
fun f env v ->
ty_eval rem f (push_item forpat e env v)
| TyMark (n, b, p, rem) ->
fun f env ->
let heads, constrs = List.chop n env.constrs in
let constrlists, constrs =
if b then
(* We rearrange constrs = c1..cn rem and constrlists = [d1..dr e1..ep] rem' into
constrs = e1..ep rem and constrlists [c1..cn d1..dr] rem' *)
let constrlist = List.hd env.constrlists in
let constrlist, tail = List.chop (List.length constrlist - p) constrlist in
(heads @ constrlist) :: List.tl env.constrlists, tail @ constrs
else
(* We rearrange constrs = c1..cn e1..ep rem into
constrs = e1..ep rem and add a constr list [c1..cn] *)
let constrlist, tail = List.chop (n - p) heads in
constrlist :: env.constrlists, tail @ constrs
in
ty_eval rem f { env with constrs; constrlists; }
let rec ty_erase : type s a r. (s, a, r) ty_rule -> (s, a, r) Extend.rule = function
| TyStop -> Stop
| TyMark (_, _, _, r) -> ty_erase r
| TyNext (rem, TyTerm tok) -> Next (ty_erase rem, Atoken tok)
| TyNext (rem, TyNonTerm (_, _, s, _)) -> Next (ty_erase rem, s)
type ('self, 'r) any_ty_rule =
| AnyTyRule : ('self, 'act, Loc.t -> 'r) ty_rule -> ('self, 'r) any_ty_rule
let make_ty_rule assoc from forpat prods =
let rec make_ty_rule = function
| [] -> AnyTyRule TyStop
| GramConstrTerminal tok :: rem ->
let AnyTyRule r = make_ty_rule rem in
AnyTyRule (TyNext (r, TyTerm tok))
| GramConstrNonTerminal (e, var) :: rem ->
let AnyTyRule r = make_ty_rule rem in
let TTAny e = interp_entry forpat e in
let s = symbol_of_entry assoc from e in
let bind = match var with None -> false | Some _ -> true in
AnyTyRule (TyNext (r, TyNonTerm (forpat, e, s, bind)))
| GramConstrListMark (n, b, p) :: rem ->
let AnyTyRule r = make_ty_rule rem in
AnyTyRule (TyMark (n, b, p, r))
in
make_ty_rule (List.rev prods)
let target_to_bool : type r. r target -> bool = function
| ForConstr -> false
| ForPattern -> true
let prepare_empty_levels forpat (pos,p4assoc,name,reinit) =
let empty = (pos, [(name, p4assoc, [])]) in
if forpat then ExtendRule (Constr.pattern, reinit, empty)
else ExtendRule (Constr.operconstr, reinit, empty)
let rec pure_sublevels : type a b c. int option -> (a, b, c) rule -> int list = fun level r -> match r with
| Stop -> []
| Next (rem, Aentryl (_, i)) ->
let rem = pure_sublevels level rem in
begin match level with
| Some j when Int.equal i j -> rem
| _ -> i :: rem
end
| Next (rem, _) -> pure_sublevels level rem
let make_act : type r. r target -> _ -> r gen_eval = function
| ForConstr -> fun notation loc env ->
let env = (env.constrs, env.constrlists, List.map fst env.binders) in
CAst.make ~loc @@ CNotation (notation , env)
| ForPattern -> fun notation loc env ->
let invalid = List.exists (fun (_, b) -> not b) env.binders in
let () = if invalid then Topconstr.error_invalid_pattern_notation ~loc () in
let env = (env.constrs, env.constrlists) in
CAst.make ~loc @@ CPatNotation (notation, env, [])
let extend_constr state forpat ng =
let n,_,_ = ng.notgram_level in
let assoc = ng.notgram_assoc in
let (entry, level) = interp_constr_entry_key forpat n in
let fold (accu, state) pt =
let AnyTyRule r = make_ty_rule assoc n forpat pt in
let symbs = ty_erase r in
let pure_sublevels = pure_sublevels level symbs in
let isforpat = target_to_bool forpat in
let needed_levels, state = register_empty_levels state isforpat pure_sublevels in
let (pos,p4assoc,name,reinit), state = find_position state isforpat assoc level in
let empty_rules = List.map (prepare_empty_levels isforpat) needed_levels in
let empty = { constrs = []; constrlists = []; binders = [] } in
let act = ty_eval r (make_act forpat ng.notgram_notation) empty in
let rule = (name, p4assoc, [Rule (symbs, act)]) in
let r = ExtendRule (entry, reinit, (pos, [rule])) in
(accu @ empty_rules @ [r], state)
in
List.fold_left fold ([], state) ng.notgram_prods
let constr_levels = GramState.field ()
let extend_constr_notation ng state =
let levels = match GramState.get state constr_levels with
| None -> default_constr_levels
| Some lev -> lev
in
(* Add the notation in constr *)
let (r, levels) = extend_constr levels ForConstr ng in
(* Add the notation in cases_pattern *)
let (r', levels) = extend_constr levels ForPattern ng in
let state = GramState.set state constr_levels levels in
(r @ r', state)
let constr_grammar : one_notation_grammar grammar_command =
create_grammar_command "Notation" extend_constr_notation
let extend_constr_grammar ntn = extend_grammar_command constr_grammar ntn
|