aboutsummaryrefslogtreecommitdiffhomepage
path: root/parsing/egramcoq.ml
blob: f0c12ab8ef25cbad9c095d79efa1032013dcecc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open Compat
open Errors
open Util
open Pcoq
open Extend
open Constrexpr
open Notation_term
open Libnames
open Tacexpr
open Names
open Egramml

(**************************************************************************)
(*
 * --- Note on the mapping of grammar productions to camlp4 actions ---
 *
 * Translation of environments: a production
 *   [ nt1(x1) ... nti(xi) ] -> act(x1..xi)
 * is written (with camlp4 conventions):
 *   (fun vi -> .... (fun v1 -> act(v1 .. vi) )..)
 * where v1..vi are the values generated by non-terminals nt1..nti.
 * Since the actions are executed by substituting an environment,
 * the make_*_action family build the following closure:
 *
 *      ((fun env ->
 *          (fun vi ->
 *             (fun env -> ...
 *
 *                  (fun v1 ->
 *                     (fun env -> gram_action .. env act)
 *                     ((x1,v1)::env))
 *                  ...)
 *             ((xi,vi)::env)))
 *         [])
 *)

(**********************************************************************)
(** Declare Notations grammar rules                                   *)

let constr_expr_of_name (loc,na) = match na with
  | Anonymous -> CHole (loc,None,Misctypes.IntroAnonymous,None)
  | Name id -> CRef (Ident (loc,id), None)

let cases_pattern_expr_of_name (loc,na) = match na with
  | Anonymous -> CPatAtom (loc,None)
  | Name id -> CPatAtom (loc,Some (Ident (loc,id)))

type grammar_constr_prod_item =
  | GramConstrTerminal of Tok.t
  | GramConstrNonTerminal of constr_prod_entry_key * Id.t option
  | GramConstrListMark of int * bool
    (* tells action rule to make a list of the n previous parsed items;
       concat with last parsed list if true *)

let make_constr_action
  (f : Loc.t -> constr_notation_substitution -> constr_expr) pil =
  let rec make (constrs,constrlists,binders as fullsubst) = function
  | [] ->
      Gram.action (fun (loc:CompatLoc.t) -> f (!@loc) fullsubst)
  | (GramConstrTerminal _ | GramConstrNonTerminal (_,None)) :: tl ->
      (* parse a non-binding item *)
      Gram.action (fun _ -> make fullsubst tl)
  | GramConstrNonTerminal (typ, Some _) :: tl ->
      (* parse a binding non-terminal *)
    (match typ with
    | (ETConstr _| ETOther _) ->
	Gram.action (fun (v:constr_expr) ->
	  make (v :: constrs, constrlists, binders) tl)
    | ETReference ->
        Gram.action (fun (v:reference) ->
	  make (CRef (v,None) :: constrs, constrlists, binders) tl)
    | ETName ->
        Gram.action (fun (na:Loc.t * Name.t) ->
	  make (constr_expr_of_name na :: constrs, constrlists, binders) tl)
    | ETBigint ->
        Gram.action (fun (v:Bigint.bigint) ->
	  make (CPrim(Loc.ghost,Numeral v) :: constrs, constrlists, binders) tl)
    | ETConstrList (_,n) ->
	Gram.action (fun (v:constr_expr list) ->
	  make (constrs, v::constrlists, binders) tl)
    | ETBinder _ | ETBinderList (true,_) ->
	Gram.action (fun (v:local_binder list) ->
	  make (constrs, constrlists, v::binders) tl)
    | ETBinderList (false,_) ->
	Gram.action (fun (v:local_binder list list) ->
	  make (constrs, constrlists, List.flatten v::binders) tl)
    | ETPattern ->
	failwith "Unexpected entry of type cases pattern")
  | GramConstrListMark (n,b) :: tl ->
      (* Rebuild expansions of ConstrList *)
      let heads,constrs = List.chop n constrs in
      let constrlists =
	if b then (heads@List.hd constrlists)::List.tl constrlists
	else heads::constrlists
      in make (constrs, constrlists, binders) tl
  in
  make ([],[],[]) (List.rev pil)

let check_cases_pattern_env loc (env,envlist,hasbinders) =
  if hasbinders then Topconstr.error_invalid_pattern_notation loc
  else (env,envlist)

let make_cases_pattern_action
  (f : Loc.t -> cases_pattern_notation_substitution -> cases_pattern_expr) pil =
  let rec make (env,envlist,hasbinders as fullenv) = function
  | [] ->
      Gram.action
	(fun (loc:CompatLoc.t) ->
	  let loc = !@loc in
	  f loc (check_cases_pattern_env loc fullenv))
  | (GramConstrTerminal _ | GramConstrNonTerminal (_,None)) :: tl ->
      (* parse a non-binding item *)
      Gram.action (fun _ -> make fullenv tl)
  | GramConstrNonTerminal (typ, Some _) :: tl ->
      (* parse a binding non-terminal *)
    (match typ with
    | ETConstr _ -> (* pattern non-terminal *)
        Gram.action (fun (v:cases_pattern_expr) ->
          make (v::env, envlist, hasbinders) tl)
    | ETReference ->
        Gram.action (fun (v:reference) ->
	  make (CPatAtom (Loc.ghost,Some v) :: env, envlist, hasbinders) tl)
    | ETName ->
        Gram.action (fun (na:Loc.t * Name.t) ->
	  make (cases_pattern_expr_of_name na :: env, envlist, hasbinders) tl)
    | ETBigint ->
        Gram.action (fun (v:Bigint.bigint) ->
	  make (CPatPrim (Loc.ghost,Numeral v) :: env, envlist, hasbinders) tl)
    | ETConstrList (_,_) ->
        Gram.action  (fun (vl:cases_pattern_expr list) ->
	  make (env, vl :: envlist, hasbinders) tl)
    | ETBinder _ | ETBinderList (true,_) ->
	Gram.action (fun (v:local_binder list) ->
	  make (env, envlist, hasbinders) tl)
    | ETBinderList (false,_) ->
	Gram.action (fun (v:local_binder list list) ->
	  make (env, envlist, true) tl)
    | (ETPattern | ETOther _) ->
        anomaly (Pp.str "Unexpected entry of type cases pattern or other"))
  | GramConstrListMark (n,b) :: tl ->
      (* Rebuild expansions of ConstrList *)
      let heads,env = List.chop n env in
      if b then
        make (env,(heads@List.hd envlist)::List.tl envlist,hasbinders) tl
      else
        make (env,heads::envlist,hasbinders) tl
  in
  make ([],[],false) (List.rev pil)

let rec make_constr_prod_item assoc from forpat = function
  | GramConstrTerminal tok :: l ->
      gram_token_of_token tok :: make_constr_prod_item assoc from forpat l
  | GramConstrNonTerminal (nt, ovar) :: l ->
      symbol_of_constr_prod_entry_key assoc from forpat nt
      :: make_constr_prod_item assoc from forpat l
  | GramConstrListMark _ :: l ->
      make_constr_prod_item assoc from forpat l
  | [] ->
      []

let prepare_empty_levels forpat (pos,p4assoc,name,reinit) =
  let empty = (pos, [(name, p4assoc, [])]) in
  if forpat then grammar_extend Constr.pattern reinit empty
  else grammar_extend Constr.operconstr reinit empty

let pure_sublevels level symbs =
  let filter s =
    try
      let i = level_of_snterml s in
      begin match level with
      | Some j when Int.equal i j -> None
      | _ -> Some i
      end
    with Failure _ -> None
  in
  List.map_filter filter symbs

let extend_constr (entry,level) (n,assoc) mkact forpat rules =
  List.fold_left (fun nb pt ->
  let symbs = make_constr_prod_item assoc n forpat pt in
  let pure_sublevels = pure_sublevels level symbs in
  let needed_levels = register_empty_levels forpat pure_sublevels in
  let pos,p4assoc,name,reinit = find_position forpat assoc level in
  let nb_decls = List.length needed_levels + 1 in
  List.iter (prepare_empty_levels forpat) needed_levels;
  unsafe_grammar_extend entry reinit (Option.map of_coq_position pos,
    [(name, Option.map of_coq_assoc p4assoc, [symbs, mkact pt])]);
  nb_decls) 0 rules

type notation_grammar = {
  notgram_level : int;
  notgram_assoc : gram_assoc option;
  notgram_notation : notation;
  notgram_prods : grammar_constr_prod_item list list;
  notgram_typs : notation_var_internalization_type list;
}

let extend_constr_constr_notation ng =
  let level = ng.notgram_level in
  let mkact loc env = CNotation (loc, ng.notgram_notation, env) in
  let e = interp_constr_entry_key false level in
  let ext = (ETConstr (level, ()), ng.notgram_assoc) in
  extend_constr e ext (make_constr_action mkact) false ng.notgram_prods

let extend_constr_pat_notation ng =
  let level = ng.notgram_level in
  let mkact loc env = CPatNotation (loc, ng.notgram_notation, env, []) in
  let e = interp_constr_entry_key true level in
  let ext = ETConstr (level, ()), ng.notgram_assoc in
  extend_constr e ext (make_cases_pattern_action mkact) true ng.notgram_prods

let extend_constr_notation (_, ng) =
  (* Add the notation in constr *)
  let nb = extend_constr_constr_notation ng in
  (* Add the notation in cases_pattern *)
  let nb' = extend_constr_pat_notation ng in
  nb + nb'

module GrammarCommand = Dyn.Make(struct end)
module GrammarInterp = struct type 'a t = 'a -> int end
module GrammarInterpMap = GrammarCommand.Map(GrammarInterp)

let grammar_interp = ref GrammarInterpMap.empty

let (grammar_state : (int * GrammarCommand.t) list ref) = ref []

type 'a grammar_command = 'a GrammarCommand.tag

let create_grammar_command name interp : _ grammar_command =
  let obj = GrammarCommand.create name in
  let () = grammar_interp := GrammarInterpMap.add obj interp !grammar_interp in
  obj

let extend_grammar tag g =
  let nb = GrammarInterpMap.find tag !grammar_interp g in
  grammar_state := (nb, GrammarCommand.Dyn (tag, g)) :: !grammar_state

let extend_dyn_grammar (GrammarCommand.Dyn (tag, g)) = extend_grammar tag g

let constr_grammar : (Notation.level * notation_grammar) GrammarCommand.tag =
  create_grammar_command "Notation" extend_constr_notation

let extend_constr_grammar pr ntn = extend_grammar constr_grammar (pr, ntn)

let recover_constr_grammar ntn prec =
  let filter (_, gram) : notation_grammar option = match gram with
  | GrammarCommand.Dyn (tag, obj) ->
    match GrammarCommand.eq tag constr_grammar with
    | None -> None
    | Some Refl ->
      let (prec', ng) = obj in
      if Notation.level_eq prec prec' && String.equal ntn ng.notgram_notation then Some ng
      else None
  in
  match List.map_filter filter !grammar_state with
  | [x] -> x
  | _ -> assert false

(* Summary functions: the state of the lexer is included in that of the parser.
   Because the grammar affects the set of keywords when adding or removing
   grammar rules. *)
type frozen_t = (int * GrammarCommand.t) list * Lexer.frozen_t

let freeze _ : frozen_t = (!grammar_state, Lexer.freeze ())

(* We compare the current state of the grammar and the state to unfreeze,
   by computing the longest common suffixes *)
let factorize_grams l1 l2 =
  if l1 == l2 then ([], [], l1) else List.share_tails l1 l2

let number_of_entries gcl =
  List.fold_left (fun n (p,_) -> n + p) 0 gcl

let unfreeze (grams, lex) =
  let (undo, redo, common) = factorize_grams !grammar_state grams in
  let n = number_of_entries undo in
  remove_grammars n;
  remove_levels n;
  grammar_state := common;
  Lexer.unfreeze lex;
  List.iter extend_dyn_grammar (List.rev_map snd redo)

(** No need to provide an init function : the grammar state is
    statically available, and already empty initially, while
    the lexer state should not be resetted, since it contains
    keywords declared in g_*.ml4 *)

let _ =
  Summary.declare_summary "GRAMMAR_LEXER"
    { Summary.freeze_function = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function = Summary.nop }

let with_grammar_rule_protection f x =
  let fs = freeze false in
  try let a = f x in unfreeze fs; a
  with reraise ->
    let reraise = Errors.push reraise in
    let () = unfreeze fs in
    iraise reraise