1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Sign
open Term
open Environ
open Evd
open Reduction
open Impargs
open Declare
open Rawterm
open Pattern
open Typing
open Pretyping
open Evarutil
open Ast
open Coqast
open Nametab
type extended_global_reference =
| TrueGlobal of global_reference
| SyntacticDef of section_path
(*Takes a list of variables which must not be globalized*)
let from_list l = List.fold_right Idset.add l Idset.empty
let rec adjust_implicits n = function
| p::l -> if p<=n then adjust_implicits n l else (p-n)::adjust_implicits n l
| [] -> []
(* when an head ident is not a constructor in pattern *)
let mssg_hd_is_not_constructor s =
[< 'sTR ("The symbol "^s^" should be a constructor") >]
(* checking linearity of a list of ids in patterns *)
let non_linearl_mssg id =
[< 'sTR "The variable " ; 'sTR(string_of_id id);
'sTR " is bound several times in pattern" >]
let error_capture_loc loc s =
user_err_loc
(loc,"ast_to_rawconstr",
[< 'sTR ("The variable "^s^" occurs in its type") >])
let error_expl_impl_loc loc =
user_err_loc
(loc,"ast_to_rawconstr",
[< 'sTR "Found an explicitely given implicit argument but was expecting";
'fNL; 'sTR "a regular one" >])
let error_metavar_loc loc =
user_err_loc
(loc,"ast_to_rawconstr",
[< 'sTR "Metavariable numbers must be positive" >])
let rec has_duplicate = function
| [] -> None
| x::l -> if List.mem x l then (Some x) else has_duplicate l
let loc_of_lhs lhs = join_loc (loc (List.hd lhs)) (loc (list_last lhs))
let check_linearity lhs ids =
match has_duplicate ids with
| Some id ->
user_err_loc (loc_of_lhs lhs,"ast_to_eqn",non_linearl_mssg id)
| None -> ()
let mal_formed_mssg () =
[<'sTR "malformed macro of multiple case" >]
(* determines if some pattern variable starts with uppercase *)
let warning_uppercase loc uplid = (* Comment afficher loc ?? *)
let vars =
prlist_with_sep
(fun () -> [< 'sTR ", " >]) (* We avoid 'sPC, else it breaks the line *)
(fun v -> [< 'sTR (string_of_id v) >]) uplid in
let (s1,s2) = if List.length uplid = 1 then (" ","s ") else ("s "," ") in
wARN [<'sTR ("the variable"^s1); vars;
'sTR (" start"^s2^"with an upper case letter in pattern") >]
let is_uppercase_var v =
match (string_of_id v).[0] with
'A'..'Z' -> true
| _ -> false
let check_uppercase loc ids =
(* A quoi ça sert ? Pour l'extraction vers ML ? Maintenant elle est externe
let uplid = List.filter is_uppercase_var ids in
if uplid <> [] then warning_uppercase loc uplid
*)
()
(* check that the number of pattern matches the number of matched args *)
let mssg_number_of_patterns n pl =
[< 'sTR"Expecting ";'iNT n ; 'sTR" pattern(s) but found ";
'iNT (List.length pl); 'sTR" in " >]
let check_number_of_pattern loc n l =
if n<>(List.length l) then
user_err_loc (loc,"check_number_of_pattern",mssg_number_of_patterns n l)
(****************************************************************)
(* Arguments normally implicit in the "Implicit Arguments mode" *)
(* but explicitely given *)
(* Translation of references *)
let ast_to_sp = function
| Path(loc,sl,s) ->
(try
section_path sl s
with Invalid_argument _ | Failure _ ->
anomaly_loc(loc,"Astterm.ast_to_sp",
[< 'sTR"malformed section-path" >]))
| ast -> anomaly_loc(Ast.loc ast,"Astterm.ast_to_sp",
[< 'sTR"not a section-path" >])
let is_underscore id = (id = "_")
let name_of_nvar s =
if is_underscore s then Anonymous else Name (id_of_string s)
let ident_of_nvar loc s =
if is_underscore s then
user_err_loc (loc,"ident_of_nvar", [< 'sTR "Unexpected wildcard" >])
else (id_of_string s)
let interp_qualid p =
let outnvar = function
| Nvar (loc,s) -> s
| _ -> anomaly "interp_qualid: bad-formed qualified identifier" in
match p with
| [] -> anomaly "interp_qualid: empty qualified identifier"
| l ->
let p, r = list_chop (List.length l -1) (List.map outnvar l) in
make_qualid p (id_of_string (List.hd r))
let maybe_variable = function
| [Nvar (_,s)] -> Some s
| _ -> None
let ids_of_ctxt ctxt =
Array.to_list
(Array.map
(function c -> match kind_of_term c with
| IsVar id -> id
| _ ->
error
"Astterm: arbitrary substitution of references not yet implemented")
ctxt)
type pattern_qualid_kind =
| IsConstrPat of loc * (constructor_path * identifier list)
| IsVarPat of loc * string
let maybe_constructor env = function
| Node(loc,"QUALID",l) ->
let qid = interp_qualid l in
(try
match kind_of_term (global_qualified_reference qid) with
| IsMutConstruct ((spi,j),cl) ->
IsConstrPat (loc,((spi,j),ids_of_ctxt cl))
| _ ->
(match maybe_variable l with
| Some s ->
warning ("Defined reference "^(string_of_qualid qid)
^" is here considered as a matching variable");
IsVarPat (loc,s)
| _ -> error ("This reference does not denote a constructor: "
^(string_of_qualid qid)))
with Not_found ->
match maybe_variable l with
| Some s -> IsVarPat (loc,s)
| _ -> error ("Unknown qualified constructor: "
^(string_of_qualid qid)))
(* This may happen in quotations *)
| Node(loc,"MUTCONSTRUCT",[sp;Num(_,ti);Num(_,n)]) ->
(* Buggy: needs to compute the context *)
IsConstrPat (loc,(((ast_to_sp sp,ti),n),[]))
| Node(loc,("CONST"|"EVAR"|"MUTIND"|"SYNCONST" as key), l) ->
user_err_loc (loc,"ast_to_pattern",
[< 'sTR "Found a pattern involving global references which are not constructors"
>])
| _ -> anomaly "ast_to_pattern: badly-formed ast for Cases pattern"
let ast_to_global loc c =
match c with
| ("CONST", [sp]) ->
let ref = ConstRef (ast_to_sp sp) in
let hyps = implicit_section_args ref in
let section_args = List.map (fun id -> RRef (loc, VarRef id)) hyps in
let imps = implicits_of_global ref in
RRef (loc, ref), section_args, adjust_implicits (List.length hyps) imps
| ("MUTIND", [sp;Num(_,tyi)]) ->
let ref = IndRef (ast_to_sp sp, tyi) in
let hyps = implicit_section_args ref in
let section_args = List.map (fun id -> RRef (loc, VarRef id)) hyps in
let imps = implicits_of_global ref in
RRef (loc, ref), section_args, adjust_implicits (List.length hyps) imps
| ("MUTCONSTRUCT", [sp;Num(_,ti);Num(_,n)]) ->
let ref = ConstructRef ((ast_to_sp sp,ti),n) in
let hyps = implicit_section_args ref in
let section_args = List.map (fun id -> RRef (loc, VarRef id)) hyps in
let imps = implicits_of_global ref in
RRef (loc, ref), section_args, adjust_implicits (List.length hyps) imps
| ("EVAR", [(Num (_,ev))]) ->
REvar (loc, ev), [], []
| ("SYNCONST", [sp]) ->
Syntax_def.search_syntactic_definition (ast_to_sp sp), [], []
| _ -> anomaly_loc (loc,"ast_to_global",
[< 'sTR "Bad ast for this global a reference">])
(*
let ref_from_constr c = match kind_of_term c with
| IsConst (sp,ctxt) -> RConst (sp, ast_to_constr_ctxt ctxt)
| IsEvar (ev,ctxt) -> REVar (ev, ast_to_constr_ctxt ctxt)
| IsMutConstruct (csp,ctxt) -> RConstruct (csp, ast_to_constr_ctxt ctxt)
| IsMutInd (isp,ctxt) -> RInd (isp, ast_to_constr_ctxt ctxt)
| IsVar id -> RVar id (* utilisé pour coercion_value (tmp) *)
| _ -> anomaly "Not a reference"
*)
(* [vars1] is a set of name to avoid (used for the tactic language);
[vars2] is the set of global variables, env is the set of variables
abstracted until this point *)
let ast_to_var (env,impls) (vars1,vars2) loc s =
let id = id_of_string s in
let imps =
if Idset.mem id env or List.mem s vars1
then
try List.assoc id impls
with Not_found -> []
else
let _ = lookup_id id vars2 in
(* Car Fixpoint met les fns définies tmporairement comme vars de sect *)
try
let ref = Nametab.locate (make_qualid [] (id_of_string s)) in
implicits_of_global ref
with _ -> []
in RVar (loc, id), [], imps
(********************************************************************)
(* This is generic code to deal with globalization *)
type 'a globalization_action = {
parse_var : identifier -> 'a;
parse_ref : extended_global_reference -> 'a;
fail : qualid -> 'a * int list;
}
let translate_qualid act qid =
(* Is it a bound variable? *)
try
match repr_qualid qid with
| [],id -> act.parse_var id, []
| _ -> raise Not_found
with Not_found ->
(* Is it a global reference? *)
try
let ref = Nametab.locate qid in
act.parse_ref (TrueGlobal ref), implicits_of_global ref
with Not_found ->
(* Is it a reference to a syntactic definition? *)
try
let sp = Syntax_def.locate_syntactic_definition qid in
act.parse_ref (SyntacticDef sp), []
with Not_found ->
act.fail qid
(**********************************************************************)
let rawconstr_of_var env vars loc s =
try
ast_to_var env vars loc s
with Not_found ->
Pretype_errors.error_var_not_found_loc loc (id_of_string s)
let rawconstr_of_qualid env vars loc qid =
(* Is it a bound variable? *)
try
match repr_qualid qid with
| [],s -> ast_to_var env vars loc (string_of_id s)
| _ -> raise Not_found
with Not_found ->
(* Is it a global reference? *)
try
let ref = Nametab.locate qid in
let hyps = implicit_section_args ref in
let section_args = List.map (fun id -> RRef (loc, VarRef id)) hyps in
let imps = implicits_of_global ref in
RRef (loc, ref), section_args, adjust_implicits (List.length hyps) imps
with Not_found ->
(* Is it a reference to a syntactic definition? *)
try
let sp = Syntax_def.locate_syntactic_definition qid in
set_loc_of_rawconstr loc (Syntax_def.search_syntactic_definition sp),[],[]
with Not_found ->
error_global_not_found_loc loc qid
let mkLambdaC (x,a,b) = ope("LAMBDA",[a;slam(Some (string_of_id x),b)])
let mkLambdaCit = List.fold_right (fun (x,a) b -> mkLambdaC(x,a,b))
let mkProdC (x,a,b) = ope("PROD",[a;slam(Some (string_of_id x),b)])
let mkProdCit = List.fold_right (fun (x,a) b -> mkProdC(x,a,b))
let destruct_binder = function
| Node(_,"BINDER",c::idl) ->
List.map (fun id -> (id_of_string (nvar_of_ast id),c)) idl
| _ -> anomaly "BINDER is expected"
(* [merge_aliases] returns the sets of all aliases encountered at this
point and a substitution mapping extra aliases to the first one *)
let merge_aliases (ids,subst as aliases) = function
| Anonymous -> aliases
| Name id ->
ids@[id],
if ids=[] then subst
else (string_of_id id,string_of_id (List.hd ids))::subst
let alias_of = function
| ([],_) -> Anonymous
| (id::_,_) -> Name id
let message_redondant_alias (s1,s2) =
warning ("Alias variable "^s1^" is merged with "^s2)
let rec ast_to_pattern env aliases = function
| Node(_,"PATTAS",[Nvar (loc,s); p]) ->
let aliases' = merge_aliases aliases (name_of_nvar s) in
ast_to_pattern env aliases' p
| Node(_,"PATTCONSTRUCT", head::((_::_) as pl)) ->
(match maybe_constructor env head with
| IsConstrPat (loc,c) ->
let (idsl,pl') =
List.split (List.map (ast_to_pattern env ([],[])) pl) in
(aliases::(List.flatten idsl),
PatCstr (loc,c,pl',alias_of aliases))
| IsVarPat (loc,s) ->
user_err_loc (loc,"ast_to_pattern",mssg_hd_is_not_constructor s))
| ast ->
(match maybe_constructor env ast with
| IsConstrPat (loc,c) -> ([aliases], PatCstr (loc,c,[],alias_of aliases))
| IsVarPat (loc,s) ->
let aliases = merge_aliases aliases (name_of_nvar s) in
([aliases], PatVar (loc,alias_of aliases)))
let rec ast_to_fix = function
| [] -> ([],[],[],[])
| Node(_,"NUMFDECL", [Nvar(_,fi); Num(_,ni); astA; astT])::rest ->
let (lf,ln,lA,lt) = ast_to_fix rest in
((id_of_string fi)::lf, (ni-1)::ln, astA::lA, astT::lt)
| Node(_,"FDECL", [Nvar(_,fi); Node(_,"BINDERS",bl); astA; astT])::rest ->
let binders = List.flatten (List.map destruct_binder bl) in
let ni = List.length binders - 1 in
let (lf,ln,lA,lt) = ast_to_fix rest in
((id_of_string fi)::lf, ni::ln, (mkProdCit binders astA)::lA,
(mkLambdaCit binders astT)::lt)
| _ -> anomaly "FDECL or NUMFDECL is expected"
let rec ast_to_cofix = function
| [] -> ([],[],[])
| Node(_,"CFDECL", [Nvar(_,fi); astA; astT])::rest ->
let (lf,lA,lt) = ast_to_cofix rest in
((id_of_string fi)::lf, astA::lA, astT::lt)
| _ -> anomaly "CFDECL is expected"
let error_fixname_unbound str is_cofix loc name =
user_err_loc
(loc,"ast_to (COFIX)",
[< 'sTR "The name"; 'sPC ; 'sTR name ;
'sPC ; 'sTR "is not bound in the corresponding"; 'sPC ;
'sTR ((if is_cofix then "co" else "")^"fixpoint definition") >])
(*
let rec collapse_env n env = if n=0 then env else
add_rel_decl (Anonymous,()) (collapse_env (n-1) (snd (uncons_rel_env env)))
*)
let check_capture loc s ty = function
| Slam _ when occur_var_ast s ty -> error_capture_loc loc s
| _ -> ()
let ast_to_rawconstr sigma env allow_soapp lvar =
let rec dbrec (ids,impls as env) = function
| Nvar(loc,s) ->
let f, hyps, _ = rawconstr_of_var env lvar loc s in
if hyps = [] then f else RApp (loc, f, hyps)
| Node(loc,"QUALID", l) ->
let f, hyps, _ = rawconstr_of_qualid env lvar loc (interp_qualid l) in
if hyps = [] then f else RApp (loc, f, hyps)
| Node(loc,"FIX", (Nvar (locid,iddef))::ldecl) ->
let (lf,ln,lA,lt) = ast_to_fix ldecl in
let n =
try
(list_index (ident_of_nvar locid iddef) lf) -1
with Not_found ->
error_fixname_unbound "ast_to_rawconstr (FIX)" false locid iddef in
let ext_ids = List.fold_right Idset.add lf ids in
let defl = Array.of_list (List.map (dbrec (ext_ids,impls)) lt) in
let arityl = Array.of_list (List.map (dbrec env) lA) in
RRec (loc,RFix (Array.of_list ln,n), Array.of_list lf, arityl, defl)
| Node(loc,"COFIX", (Nvar(locid,iddef))::ldecl) ->
let (lf,lA,lt) = ast_to_cofix ldecl in
let n =
try
(list_index (ident_of_nvar locid iddef) lf) -1
with Not_found ->
error_fixname_unbound "ast_to_rawconstr (COFIX)" true locid iddef
in
let ext_ids = List.fold_right Idset.add lf ids in
let defl = Array.of_list (List.map (dbrec (ext_ids,impls)) lt) in
let arityl = Array.of_list (List.map (dbrec env) lA) in
RRec (loc,RCoFix n, Array.of_list lf, arityl, defl)
| Node(loc,("PROD"|"LAMBDA"|"LETIN" as k), [c1;Slam(_,ona,c2)]) ->
let na,ids' = match ona with
| Some s -> let id = id_of_string s in Name id, Idset.add id ids
| _ -> Anonymous, ids in
let c1' = dbrec env c1 and c2' = dbrec (ids',impls) c2 in
(match k with
| "PROD" -> RProd (loc, na, c1', c2')
| "LAMBDA" -> RLambda (loc, na, c1', c2')
| "LETIN" -> RLetIn (loc, na, c1', c2')
| _ -> assert false)
| Node(_,("PRODLIST"|"LAMBDALIST" as s), [c1;(Slam _ as c2)]) ->
iterated_binder s 0 c1 env c2
| Node(loc,"APPLISTEXPL", f::args) ->
RApp (loc,dbrec env f,ast_to_args env args)
| Node(loc,"APPLIST", f::args) ->
let (c, hyps, impargs) =
match f with
| Node(locs,"QUALID",p) ->
rawconstr_of_qualid env lvar locs (interp_qualid p)
| Node(loc,
("CONST"|"EVAR"|"MUTIND"|"MUTCONSTRUCT"|"SYNCONST" as key),
l) ->
ast_to_global loc (key,l)
| _ -> (dbrec env f, [], [])
in
RApp (loc, c, hyps @ (ast_to_impargs env impargs args))
| Node(loc,"CASES", p:: Node(_,"TOMATCH",tms):: eqns) ->
let po = match p with
| Str(_,"SYNTH") -> None
| _ -> Some(dbrec env p) in
RCases (loc,PrintCases,po,
List.map (dbrec env) tms,
List.map (ast_to_eqn (List.length tms) env) eqns)
| Node(loc,(("CASE"|"IF"|"LET"|"MATCH")as tag), p::c::cl) ->
let po = match p with
| Str(_,"SYNTH") -> None
| _ -> Some(dbrec env p) in
let isrec = match tag with
| "MATCH" -> true | ("LET"|"CASE"|"IF") -> false
| _ -> anomaly "ast_to: wrong tag in old case expression" in
ROldCase (loc,isrec,po,dbrec env c,
Array.of_list (List.map (dbrec env) cl))
| Node(loc,"ISEVAR",[]) -> RHole (Some loc)
| Node(loc,"META",[Num(_,n)]) ->
if n<0 then error_metavar_loc loc else RMeta (loc, n)
| Node(loc,"PROP", []) -> RSort(loc,RProp Null)
| Node(loc,"SET", []) -> RSort(loc,RProp Pos)
| Node(loc,"TYPE", _) -> RSort(loc,RType None)
(* This case mainly parses things build in a quotation *)
| Node(loc,("CONST"|"EVAR"|"MUTIND"|"MUTCONSTRUCT"|"SYNCONST" as key),l) ->
let f, hyps, _ = ast_to_global loc (key,l) in
if hyps = [] then f else RApp (loc, f, hyps)
| Node(loc,"CAST", [c1;c2]) ->
RCast (loc,dbrec env c1,dbrec env c2)
| Node(loc,"SOAPP", args) when allow_soapp ->
(match List.map (dbrec env) args with
(* Hack special pour l'interprétation des constr_pattern *)
| RMeta (locn,n) :: args -> RApp (loc,RMeta (locn,- n), args)
| RHole _ :: _ -> anomaly "Metavariable for 2nd-order pattern-matching cannot be anonymous"
| _ -> anomaly "Bad arguments for second-order pattern-matching")
| Node(loc,"SQUASH",_) ->
user_err_loc(loc,"ast_to_rawconstr",
[< 'sTR "Ill-formed specification" >])
| Node(loc,opn,tl) ->
anomaly ("ast_to_rawconstr found operator "^opn^" with "^
(string_of_int (List.length tl))^" arguments")
| _ -> anomaly "ast_to_rawconstr: unexpected ast"
and ast_to_eqn n (ids,impls as env) = function
| Node(loc,"EQN",rhs::lhs) ->
let (idsl_substl_list,pl) =
List.split (List.map (ast_to_pattern env ([],[])) lhs) in
let idsl, substl = List.split (List.flatten idsl_substl_list) in
let eqn_ids = List.flatten idsl in
let subst = List.flatten substl in
(* Linearity implies the order in ids is irrelevant *)
check_linearity lhs eqn_ids;
check_uppercase loc eqn_ids;
check_number_of_pattern loc n pl;
let rhs = replace_vars_ast subst rhs in
List.iter message_redondant_alias subst;
let env_ids = List.fold_right Idset.add eqn_ids ids in
(loc, eqn_ids,pl,dbrec (env_ids,impls) rhs)
| _ -> anomaly "ast_to_rawconstr: badly-formed ast for Cases equation"
and iterated_binder oper n ty (ids,impls as env) = function
| Slam(loc,ona,body) ->
let na,ids' = match ona with
| Some s ->
if n>0 then check_capture loc s ty body;
let id = id_of_string s in Name id, Idset.add id ids
| _ -> Anonymous, ids
in
let r = iterated_binder oper (n+1) ty (ids',impls) body in
(match oper with
| "PRODLIST" -> RProd(loc, na, dbrec env ty, r)
| "LAMBDALIST" -> RLambda(loc, na, dbrec env ty, r)
| _ -> assert false)
| body -> dbrec env body
and ast_to_impargs env l args =
let rec aux n l args = match (l,args) with
| (i::l',Node(loc, "EXPL", [Num(_,j);a])::args') ->
if i=n & j>=i then
if j=i then
(dbrec env a)::(aux (n+1) l' args')
else
(RHole None)::(aux (n+1) l' args)
else
if i<>n then
error ("Bad explicitation number: found "^
(string_of_int j)^" but was expecting a regular argument")
else
error ("Bad explicitation number: found "^
(string_of_int j)^" but was expecting "^(string_of_int i))
| (i::l',a::args') ->
if i=n then
(RHole None)::(aux (n+1) l' args)
else
(dbrec env a)::(aux (n+1) l args')
| ([],args) -> ast_to_args env args
| (_,[]) -> []
in
aux 1 l args
and ast_to_args env = function
| Node(loc, "EXPL", _)::args' ->
(* To deal with errors *)
error_expl_impl_loc loc
| a::args -> (dbrec env a) :: (ast_to_args env args)
| [] -> []
in
dbrec env
(**************************************************************************)
(* Globalization of AST quotations (mainly used to get statically *)
(* bound idents in grammar or pretty-printing rules) *)
(**************************************************************************)
(*
(* A brancher ultérieurement sur Termast.ast_of_ref *)
let ast_of_ref loc = function
| ConstRef sp -> Node (loc, "CONST", [path_section loc sp])
| ConstructRef ((sp, i), j) ->
Node (loc, "MUTCONSTRUCT", [path_section loc sp; num i; num j])
| IndRef (sp, i) -> Node (loc, "MUTIND", [path_section loc sp; num i])
| VarRef sp -> failwith "ast_of_ref: TODO"
*)
let ast_of_ref_loc loc ref = set_loc loc (Termast.ast_of_ref ref)
let ast_of_syndef loc sp = Node (loc, "SYNCONST", [path_section loc sp])
let ast_of_extended_ref_loc loc = function
| TrueGlobal ref -> ast_of_ref_loc loc ref
| SyntacticDef sp -> ast_of_syndef loc sp
let ast_of_extended_ref = ast_of_extended_ref_loc dummy_loc
let ast_of_var env ast id =
if isMeta (string_of_id id) or Idset.mem id env then ast
else raise Not_found
let ast_hole = Node (dummy_loc, "ISEVAR", [])
let warning_globalize ast qid =
warning ("Could not globalize " ^ (string_of_qualid qid)); ast, []
let ast_adjust_consts sigma =
let rec dbrec env = function
| Node(loc, ("APPLIST" as key), (Node(locs,"QUALID",p) as ast)::args) ->
let f = adjust_qualid env loc ast (interp_qualid p) in
Node(loc, key, f :: List.map (dbrec env) args)
| Nvar (loc, s) as ast ->
let id = id_of_string s in
if isMeta s then ast
else if Idset.mem id env then ast
else adjust_qualid env loc ast (make_qualid [] (id_of_string s))
| Node (loc, "QUALID", p) as ast ->
adjust_qualid env loc ast (interp_qualid p)
| Slam (loc, None, t) -> Slam (loc, None, dbrec env t)
| Slam (loc, Some na, t) ->
let env' = Idset.add (id_of_string na) env in
Slam (loc, Some na, dbrec env' t)
| Node (loc, opn, tl) -> Node (loc, opn, List.map (dbrec env) tl)
| x -> x
and adjust_qualid env loc ast sp =
let act = {
parse_var = ast_of_var env ast;
parse_ref = ast_of_extended_ref_loc loc;
fail = warning_globalize ast } in
fst (translate_qualid act sp)
in
dbrec
let globalize_constr ast =
let sign = Global.named_context () in
ast_adjust_consts Evd.empty (from_list (ids_of_named_context sign)) ast
(* Globalizes ast expressing constructions in tactics or vernac *)
(* Actually, it is incomplete, see vernacinterp.ml and tacinterp.ml *)
(* Used mainly to parse Grammar and Syntax expressions *)
let rec glob_ast sigma env =
function
Node (loc, "CONSTR", [c]) ->
Node (loc, "CONSTR", [ast_adjust_consts sigma env c])
| Node (loc, "CONSTRLIST", l) ->
Node (loc, "CONSTRLIST", List.map (ast_adjust_consts sigma env) l)
| Slam (loc, None, t) -> Slam (loc, None, glob_ast sigma env t)
| Slam (loc, Some na, t) ->
let env' = Idset.add (id_of_string na) env in
Slam (loc, Some na, glob_ast sigma env' t)
| Node (loc, opn, tl) -> Node (loc, opn, List.map (glob_ast sigma env) tl)
| x -> x
let globalize_ast ast =
let sign = Global.named_context () in
glob_ast Evd.empty (from_list (ids_of_named_context sign)) ast
(**************************************************************************)
(* Functions to translate ast into rawconstr *)
(**************************************************************************)
let interp_rawconstr_gen sigma env impls allow_soapp lvar com =
ast_to_rawconstr sigma
(from_list (ids_of_rel_context (rel_context env)), impls)
allow_soapp (lvar,named_context env) com
let interp_rawconstr sigma env com =
interp_rawconstr_gen sigma env [] false [] com
let interp_rawconstr_with_implicits sigma env impls com =
interp_rawconstr_gen sigma env impls false [] com
(*The same as interp_rawconstr but with a list of variables which must not be
globalized*)
let interp_rawconstr_wo_glob sigma env lvar com =
interp_rawconstr_gen sigma env [] false lvar com
(*********************************************************************)
(* V6 compat: Functions before in ex-trad *)
(* Functions to parse and interpret constructions *)
let interp_constr sigma env c =
understand sigma env (interp_rawconstr sigma env c)
let interp_openconstr sigma env c =
understand_gen_tcc sigma env [] [] None (interp_rawconstr sigma env c)
let interp_casted_openconstr sigma env c typ =
understand_gen_tcc sigma env [] [] (Some typ) (interp_rawconstr sigma env c)
let interp_type sigma env c =
understand_type sigma env (interp_rawconstr sigma env c)
let interp_type_with_implicits sigma env impls c =
understand_type sigma env (interp_rawconstr_with_implicits sigma env impls c)
let interp_sort = function
| Node(loc,"PROP", []) -> Prop Null
| Node(loc,"SET", []) -> Prop Pos
| Node(loc,"TYPE", _) -> Type Univ.dummy_univ
| a -> user_err_loc (Ast.loc a,"interp_sort", [< 'sTR "Not a sort" >])
let judgment_of_rawconstr sigma env c =
understand_judgment sigma env (interp_rawconstr sigma env c)
let type_judgment_of_rawconstr sigma env c =
understand_type_judgment sigma env (interp_rawconstr sigma env c)
(*To retype a list of key*constr with undefined key*)
let retype_list sigma env lst =
List.fold_right (fun (x,csr) a ->
try (x,Retyping.get_judgment_of env sigma csr)::a with
| Anomaly _ -> a) lst []
(* List.map (fun (x,csr) -> (x,Retyping.get_judgment_of env sigma csr)) lst*)
(* Interprets a constr according to two lists *)
(* of instantiations (variables and metas) *)
(* Note: typ is retyped *)
let interp_constr_gen sigma env lvar lmeta com exptyp =
let c =
interp_rawconstr_gen sigma env [] false
(List.map (fun x -> string_of_id (fst x)) lvar)
com
and rtype lst = retype_list sigma env lst in
understand_gen sigma env (rtype lvar) (rtype lmeta) exptyp c;;
(*Interprets a casted constr according to two lists of instantiations
(variables and metas)*)
let interp_openconstr_gen sigma env lvar lmeta com exptyp =
let c =
interp_rawconstr_gen sigma env [] false
(List.map (fun x -> string_of_id (fst x)) lvar)
com
and rtype lst = retype_list sigma env lst in
understand_gen_tcc sigma env (rtype lvar) (rtype lmeta) exptyp c;;
let interp_casted_constr sigma env com typ =
understand_gen sigma env [] [] (Some typ) (interp_rawconstr sigma env com)
(* To process patterns, we need a translation from AST to term
without typing at all. *)
let ctxt_of_ids ids = Array.of_list (List.map mkVar ids)
(*
let rec pat_of_ref metas vars = function
| RConst (sp,ctxt) -> RConst (sp, ast_to_rawconstr_ctxt ctxt)
| RInd (ip,ctxt) -> RInd (ip, ast_to_rawconstr_ctxt ctxt)
| RConstruct(cp,ctxt) ->RConstruct(cp, ast_to_rawconstr_ctxt ctxt)
| REVar (n,ctxt) -> REVar (n, ast_to_rawconstr_ctxt ctxt)
| RVar _ -> assert false (* Capturé dans pattern_of_raw *)
*)
let rec pat_of_raw metas vars lvar = function
| RVar (_,id) ->
(try PRel (list_index (Name id) vars)
with Not_found ->
try List.assoc id lvar
with Not_found -> PVar id)
| RMeta (_,n) ->
metas := n::!metas; PMeta (Some n)
| RRef (_,r) ->
PRef r
(* Hack pour ne pas réécrire une interprétation complète des patterns*)
| RApp (_, RMeta (_,n), cl) when n<0 ->
PSoApp (- n, List.map (pat_of_raw metas vars lvar) cl)
| RApp (_,c,cl) ->
PApp (pat_of_raw metas vars lvar c,
Array.of_list (List.map (pat_of_raw metas vars lvar) cl))
| RLambda (_,na,c1,c2) ->
PLambda (na, pat_of_raw metas vars lvar c1,
pat_of_raw metas (na::vars) lvar c2)
| RProd (_,na,c1,c2) ->
PProd (na, pat_of_raw metas vars lvar c1,
pat_of_raw metas (na::vars) lvar c2)
| RLetIn (_,na,c1,c2) ->
PLetIn (na, pat_of_raw metas vars lvar c1,
pat_of_raw metas (na::vars) lvar c2)
| RSort (_,s) ->
PSort s
| RHole _ ->
PMeta None
| RCast (_,c,t) ->
warning "Cast not taken into account in constr pattern";
pat_of_raw metas vars lvar c
| ROldCase (_,false,po,c,br) ->
PCase (option_app (pat_of_raw metas vars lvar) po,
pat_of_raw metas vars lvar c,
Array.map (pat_of_raw metas vars lvar) br)
| _ ->
error "pattern_of_rawconstr: not implemented"
let pattern_of_rawconstr lvar c =
let metas = ref [] in
let p = pat_of_raw metas [] lvar c in
(!metas,p)
let interp_constrpattern_gen sigma env lvar com =
let c =
ast_to_rawconstr sigma
(from_list (ids_of_rel_context (rel_context env)), [])
true (List.map
(fun x ->
string_of_id (fst x)) lvar,named_context env) com
and nlvar = List.map (fun (id,c) -> (id,pattern_of_constr c)) lvar in
try
pattern_of_rawconstr nlvar c
with e ->
Stdpp.raise_with_loc (Ast.loc com) e
let interp_constrpattern sigma env com =
interp_constrpattern_gen sigma env [] com
|