1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Term
open Hipattern
open Names
open Pp
open Geninterp
open Misctypes
open Tacexpr
open Tacinterp
open Util
open Tacticals.New
let tauto_plugin = "tauto"
let () = Mltop.add_known_module tauto_plugin
let assoc_var s ist =
let v = Id.Map.find (Names.Id.of_string s) ist.lfun in
match Value.to_constr v with
| Some c -> c
| None -> failwith "tauto: anomaly"
(** Parametrization of tauto *)
type tauto_flags = {
(* Whether conjunction and disjunction are restricted to binary connectives *)
binary_mode : bool;
(* Whether compatibility for buggy detection of binary connective is on *)
binary_mode_bugged_detection : bool;
(* Whether conjunction and disjunction are restricted to the connectives *)
(* having the structure of "and" and "or" (up to the choice of sorts) in *)
(* contravariant position in an hypothesis *)
strict_in_contravariant_hyp : bool;
(* Whether conjunction and disjunction are restricted to the connectives *)
(* having the structure of "and" and "or" (up to the choice of sorts) in *)
(* an hypothesis and in the conclusion *)
strict_in_hyp_and_ccl : bool;
(* Whether unit type includes equality types *)
strict_unit : bool;
}
let tag_tauto_flags : tauto_flags Val.typ = Val.create "tauto_flags"
let assoc_flags ist : tauto_flags =
let Val.Dyn (tag, v) = Id.Map.find (Names.Id.of_string "tauto_flags") ist.lfun in
match Val.eq tag tag_tauto_flags with
| None -> assert false
| Some Refl -> v
(* Whether inner not are unfolded *)
let negation_unfolding = ref true
(* Whether inner iff are unfolded *)
let iff_unfolding = ref false
let unfold_iff () = !iff_unfolding || Flags.version_less_or_equal Flags.V8_2
open Goptions
let _ =
declare_bool_option
{ optsync = true;
optdepr = false;
optname = "unfolding of not in intuition";
optkey = ["Intuition";"Negation";"Unfolding"];
optread = (fun () -> !negation_unfolding);
optwrite = (:=) negation_unfolding }
let _ =
declare_bool_option
{ optsync = true;
optdepr = false;
optname = "unfolding of iff in intuition";
optkey = ["Intuition";"Iff";"Unfolding"];
optread = (fun () -> !iff_unfolding);
optwrite = (:=) iff_unfolding }
(** Base tactics *)
let loc = Loc.ghost
let idtac = Proofview.tclUNIT ()
let fail = Proofview.tclINDEPENDENT (tclFAIL 0 (Pp.mt ()))
let intro = Tactics.intro
let assert_ ?by c =
let tac = match by with
| None -> None
| Some tac -> Some (Some tac)
in
Proofview.tclINDEPENDENT (Tactics.forward true tac None c)
let apply c = Tactics.apply c
let clear id = Tactics.clear [id]
let assumption = Tactics.assumption
let split = Tactics.split_with_bindings false [Misctypes.NoBindings]
(** Test *)
let is_empty _ ist =
if is_empty_type (assoc_var "X1" ist) then idtac else fail
(* Strictly speaking, this exceeds the propositional fragment as it
matches also equality types (and solves them if a reflexivity) *)
let is_unit_or_eq _ ist =
let flags = assoc_flags ist in
let test = if flags.strict_unit then is_unit_type else is_unit_or_eq_type in
if test (assoc_var "X1" ist) then idtac else fail
let bugged_is_binary t =
isApp t &&
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind (ind,u) ->
let (mib,mip) = Global.lookup_inductive ind in
Int.equal mib.Declarations.mind_nparams 2
| _ -> false
(** Dealing with conjunction *)
let is_conj _ ist =
let flags = assoc_flags ist in
let ind = assoc_var "X1" ist in
if (not flags.binary_mode_bugged_detection || bugged_is_binary ind) &&
is_conjunction
~strict:flags.strict_in_hyp_and_ccl
~onlybinary:flags.binary_mode ind
then idtac
else fail
let flatten_contravariant_conj _ ist =
let flags = assoc_flags ist in
let typ = assoc_var "X1" ist in
let c = assoc_var "X2" ist in
let hyp = assoc_var "id" ist in
match match_with_conjunction
~strict:flags.strict_in_contravariant_hyp
~onlybinary:flags.binary_mode typ
with
| Some (_,args) ->
let newtyp = List.fold_right mkArrow args c in
let intros = tclMAP (fun _ -> intro) args in
let by = tclTHENLIST [intros; apply hyp; split; assumption] in
tclTHENLIST [assert_ ~by newtyp; clear (destVar hyp)]
| _ -> fail
(** Dealing with disjunction *)
let is_disj _ ist =
let flags = assoc_flags ist in
let t = assoc_var "X1" ist in
if (not flags.binary_mode_bugged_detection || bugged_is_binary t) &&
is_disjunction
~strict:flags.strict_in_hyp_and_ccl
~onlybinary:flags.binary_mode t
then idtac
else fail
let flatten_contravariant_disj _ ist =
let flags = assoc_flags ist in
let typ = assoc_var "X1" ist in
let c = assoc_var "X2" ist in
let hyp = assoc_var "id" ist in
match match_with_disjunction
~strict:flags.strict_in_contravariant_hyp
~onlybinary:flags.binary_mode
typ with
| Some (_,args) ->
let map i arg =
let typ = mkArrow arg c in
let ci = Tactics.constructor_tac false None (succ i) Misctypes.NoBindings in
let by = tclTHENLIST [intro; apply hyp; ci; assumption] in
assert_ ~by typ
in
let tacs = List.mapi map args in
let tac0 = clear (destVar hyp) in
tclTHEN (tclTHENLIST tacs) tac0
| _ -> fail
let make_unfold name =
let dir = DirPath.make (List.map Id.of_string ["Logic"; "Init"; "Coq"]) in
let const = Constant.make2 (MPfile dir) (Label.make name) in
(Locus.AllOccurrences, ArgArg (EvalConstRef const, None))
let u_iff = make_unfold "iff"
let u_not = make_unfold "not"
let reduction_not_iff _ ist =
let make_reduce c = TacAtom (loc, TacReduce (Genredexpr.Unfold c, Locusops.allHypsAndConcl)) in
let tac = match !negation_unfolding, unfold_iff () with
| true, true -> make_reduce [u_not; u_iff]
| true, false -> make_reduce [u_not]
| false, true -> make_reduce [u_iff]
| false, false -> TacId []
in
eval_tactic_ist ist tac
let coq_nnpp_path =
let dir = List.map Id.of_string ["Classical_Prop";"Logic";"Coq"] in
Libnames.make_path (DirPath.make dir) (Id.of_string "NNPP")
let apply_nnpp _ ist =
Proofview.tclBIND
(Proofview.tclUNIT ())
begin fun () -> try
let nnpp = Universes.constr_of_global (Nametab.global_of_path coq_nnpp_path) in
apply nnpp
with Not_found -> tclFAIL 0 (Pp.mt ())
end
(* This is the uniform mode dealing with ->, not, iff and types isomorphic to
/\ and *, \/ and +, False and Empty_set, True and unit, _and_ eq-like types.
For the moment not and iff are still always unfolded. *)
let tauto_uniform_unit_flags = {
binary_mode = true;
binary_mode_bugged_detection = false;
strict_in_contravariant_hyp = true;
strict_in_hyp_and_ccl = true;
strict_unit = false
}
(* This is the compatibility mode (not used) *)
let tauto_legacy_flags = {
binary_mode = true;
binary_mode_bugged_detection = true;
strict_in_contravariant_hyp = true;
strict_in_hyp_and_ccl = false;
strict_unit = false
}
(* This is the improved mode *)
let tauto_power_flags = {
binary_mode = false; (* support n-ary connectives *)
binary_mode_bugged_detection = false;
strict_in_contravariant_hyp = false; (* supports non-regular connectives *)
strict_in_hyp_and_ccl = false;
strict_unit = false
}
let with_flags flags _ ist =
let f = (loc, Id.of_string "f") in
let x = (loc, Id.of_string "x") in
let arg = Val.Dyn (tag_tauto_flags, flags) in
let ist = { ist with lfun = Id.Map.add (snd x) arg ist.lfun } in
eval_tactic_ist ist (TacArg (loc, TacCall (loc, ArgVar f, [Reference (ArgVar x)])))
let register_tauto_tactic tac name0 args =
let ids = List.map (fun id -> Id.of_string id) args in
let ids = List.map (fun id -> Some id) ids in
let name = { mltac_plugin = tauto_plugin; mltac_tactic = name0; } in
let entry = { mltac_name = name; mltac_index = 0 } in
let () = Tacenv.register_ml_tactic name [| tac |] in
let tac = TacFun (ids, TacML (loc, entry, [])) in
let obj () = Tacenv.register_ltac true true (Id.of_string name0) tac in
Mltop.declare_cache_obj obj tauto_plugin
let () = register_tauto_tactic is_empty "is_empty" ["tauto_flags"; "X1"]
let () = register_tauto_tactic is_unit_or_eq "is_unit_or_eq" ["tauto_flags"; "X1"]
let () = register_tauto_tactic is_disj "is_disj" ["tauto_flags"; "X1"]
let () = register_tauto_tactic is_conj "is_conj" ["tauto_flags"; "X1"]
let () = register_tauto_tactic flatten_contravariant_disj "flatten_contravariant_disj" ["tauto_flags"; "X1"; "X2"; "id"]
let () = register_tauto_tactic flatten_contravariant_conj "flatten_contravariant_conj" ["tauto_flags"; "X1"; "X2"; "id"]
let () = register_tauto_tactic apply_nnpp "apply_nnpp" []
let () = register_tauto_tactic reduction_not_iff "reduction_not_iff" []
let () = register_tauto_tactic (with_flags tauto_uniform_unit_flags) "with_uniform_flags" ["f"]
let () = register_tauto_tactic (with_flags tauto_power_flags) "with_power_flags" ["f"]
|