1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Pp
open CErrors
open Util
open Nameops
open Namegen
open Term
open Vars
open Reduction
open Tacticals.New
open Tacmach
open Tactics
open Pretype_errors
open Typeclasses
open Classes
open Constrexpr
open Globnames
open Evd
open Misctypes
open Locus
open Locusops
open Decl_kinds
open Elimschemes
open Environ
open Termops
open Libnames
open Sigma.Notations
open Proofview.Notations
open Context.Named.Declaration
(** Typeclass-based generalized rewriting. *)
(** Constants used by the tactic. *)
let classes_dirpath =
Names.DirPath.make (List.map Id.of_string ["Classes";"Coq"])
let init_relation_classes () =
if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
else Coqlib.check_required_library ["Coq";"Classes";"RelationClasses"]
let init_setoid () =
if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"]
let make_dir l = DirPath.make (List.rev_map Id.of_string l)
let try_find_global_reference dir s =
let sp = Libnames.make_path (make_dir ("Coq"::dir)) (Id.of_string s) in
try Nametab.global_of_path sp
with Not_found ->
anomaly (str "Global reference " ++ str s ++ str " not found in generalized rewriting")
let find_reference dir s =
let gr = lazy (try_find_global_reference dir s) in
fun () -> Lazy.force gr
type evars = evar_map * Evar.Set.t (* goal evars, constraint evars *)
let find_global dir s =
let gr = lazy (try_find_global_reference dir s) in
fun (evd,cstrs) ->
let sigma = Sigma.Unsafe.of_evar_map evd in
let Sigma (c, sigma, _) = Evarutil.new_global sigma (Lazy.force gr) in
let evd = Sigma.to_evar_map sigma in
(evd, cstrs), c
(** Utility for dealing with polymorphic applications *)
(** Global constants. *)
let coq_eq_ref = find_reference ["Init"; "Logic"] "eq"
let coq_eq = find_global ["Init"; "Logic"] "eq"
let coq_f_equal = find_global ["Init"; "Logic"] "f_equal"
let coq_all = find_global ["Init"; "Logic"] "all"
let impl = find_global ["Program"; "Basics"] "impl"
(** Bookkeeping which evars are constraints so that we can
remove them at the end of the tactic. *)
let goalevars evars = fst evars
let cstrevars evars = snd evars
let new_cstr_evar (evd,cstrs) env t =
let s = Typeclasses.set_resolvable Evd.Store.empty false in
let evd = Sigma.Unsafe.of_evar_map evd in
let Sigma (t, evd', _) = Evarutil.new_evar ~store:s env evd t in
let evd' = Sigma.to_evar_map evd' in
let ev, _ = destEvar t in
(evd', Evar.Set.add ev cstrs), t
(** Building or looking up instances. *)
let e_new_cstr_evar env evars t =
let evd', t = new_cstr_evar !evars env t in evars := evd'; t
(** Building or looking up instances. *)
let extends_undefined evars evars' =
let f ev evi found = found || not (Evd.mem evars ev)
in fold_undefined f evars' false
let app_poly_check env evars f args =
let (evars, cstrs), fc = f evars in
let evdref = ref evars in
let t = Typing.e_solve_evars env evdref (mkApp (fc, args)) in
(!evdref, cstrs), t
let app_poly_nocheck env evars f args =
let evars, fc = f evars in
evars, mkApp (fc, args)
let app_poly_sort b =
if b then app_poly_nocheck
else app_poly_check
let find_class_proof proof_type proof_method env evars carrier relation =
try
let evars, goal = app_poly_check env evars proof_type [| carrier ; relation |] in
let evars', c = Typeclasses.resolve_one_typeclass env (goalevars evars) goal in
if extends_undefined (goalevars evars) evars' then raise Not_found
else app_poly_check env (evars',cstrevars evars) proof_method [| carrier; relation; c |]
with e when Logic.catchable_exception e -> raise Not_found
(** Utility functions *)
module GlobalBindings (M : sig
val relation_classes : string list
val morphisms : string list
val relation : string list * string
val app_poly : env -> evars -> (evars -> evars * constr) -> constr array -> evars * constr
val arrow : evars -> evars * constr
end) = struct
open M
open Context.Rel.Declaration
let relation : evars -> evars * constr = find_global (fst relation) (snd relation)
let reflexive_type = find_global relation_classes "Reflexive"
let reflexive_proof = find_global relation_classes "reflexivity"
let symmetric_type = find_global relation_classes "Symmetric"
let symmetric_proof = find_global relation_classes "symmetry"
let transitive_type = find_global relation_classes "Transitive"
let transitive_proof = find_global relation_classes "transitivity"
let forall_relation = find_global morphisms "forall_relation"
let pointwise_relation = find_global morphisms "pointwise_relation"
let forall_relation_ref = find_reference morphisms "forall_relation"
let pointwise_relation_ref = find_reference morphisms "pointwise_relation"
let respectful = find_global morphisms "respectful"
let respectful_ref = find_reference morphisms "respectful"
let default_relation = find_global ["Classes"; "SetoidTactics"] "DefaultRelation"
let coq_forall = find_global morphisms "forall_def"
let subrelation = find_global relation_classes "subrelation"
let do_subrelation = find_global morphisms "do_subrelation"
let apply_subrelation = find_global morphisms "apply_subrelation"
let rewrite_relation_class = find_global relation_classes "RewriteRelation"
let proper_class = lazy (class_info (try_find_global_reference morphisms "Proper"))
let proper_proxy_class = lazy (class_info (try_find_global_reference morphisms "ProperProxy"))
let proper_proj = lazy (mkConst (Option.get (pi3 (List.hd (Lazy.force proper_class).cl_projs))))
let proper_type =
let l = lazy (Lazy.force proper_class).cl_impl in
fun (evd,cstrs) ->
let sigma = Sigma.Unsafe.of_evar_map evd in
let Sigma (c, sigma, _) = Evarutil.new_global sigma (Lazy.force l) in
let evd = Sigma.to_evar_map sigma in
(evd, cstrs), c
let proper_proxy_type =
let l = lazy (Lazy.force proper_proxy_class).cl_impl in
fun (evd,cstrs) ->
let sigma = Sigma.Unsafe.of_evar_map evd in
let Sigma (c, sigma, _) = Evarutil.new_global sigma (Lazy.force l) in
let evd = Sigma.to_evar_map sigma in
(evd, cstrs), c
let proper_proof env evars carrier relation x =
let evars, goal = app_poly env evars proper_proxy_type [| carrier ; relation; x |] in
new_cstr_evar evars env goal
let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let get_transitive_proof env = find_class_proof transitive_type transitive_proof env
let mk_relation env evd a =
app_poly env evd relation [| a |]
(** Build an infered signature from constraints on the arguments and expected output
relation *)
let build_signature evars env m (cstrs : (types * types option) option list)
(finalcstr : (types * types option) option) =
let mk_relty evars newenv ty obj =
match obj with
| None | Some (_, None) ->
let evars, relty = mk_relation env evars ty in
if closed0 ty then
let env' = Environ.reset_with_named_context (Environ.named_context_val env) env in
new_cstr_evar evars env' relty
else new_cstr_evar evars newenv relty
| Some (x, Some rel) -> evars, rel
in
let rec aux env evars ty l =
let t = Reductionops.whd_all env (goalevars evars) ty in
match kind_of_term t, l with
| Prod (na, ty, b), obj :: cstrs ->
let b = Reductionops.nf_betaiota (goalevars evars) b in
if noccurn 1 b (* non-dependent product *) then
let ty = Reductionops.nf_betaiota (goalevars evars) ty in
let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in
let evars, relty = mk_relty evars env ty obj in
let evars, newarg = app_poly env evars respectful [| ty ; b' ; relty ; arg |] in
evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs
else
let (evars, b, arg, cstrs) =
aux (Environ.push_rel (LocalAssum (na, ty)) env) evars b cstrs
in
let ty = Reductionops.nf_betaiota (goalevars evars) ty in
let pred = mkLambda (na, ty, b) in
let liftarg = mkLambda (na, ty, arg) in
let evars, arg' = app_poly env evars forall_relation [| ty ; pred ; liftarg |] in
if Option.is_empty obj then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs
else error "build_signature: no constraint can apply on a dependent argument"
| _, obj :: _ -> anomaly ~label:"build_signature" (Pp.str "not enough products")
| _, [] ->
(match finalcstr with
| None | Some (_, None) ->
let t = Reductionops.nf_betaiota (fst evars) ty in
let evars, rel = mk_relty evars env t None in
evars, t, rel, [t, Some rel]
| Some (t, Some rel) -> evars, t, rel, [t, Some rel])
in aux env evars m cstrs
(** Folding/unfolding of the tactic constants. *)
let unfold_impl t =
match kind_of_term t with
| App (arrow, [| a; b |])(* when eq_constr arrow (Lazy.force impl) *) ->
mkProd (Anonymous, a, lift 1 b)
| _ -> assert false
let unfold_all t =
match kind_of_term t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
(match kind_of_term b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let unfold_forall t =
match kind_of_term t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
(match kind_of_term b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let arrow_morphism env evd ta tb a b =
let ap = is_Prop ta and bp = is_Prop tb in
if ap && bp then app_poly env evd impl [| a; b |], unfold_impl
else if ap then (* Domain in Prop, CoDomain in Type *)
(app_poly env evd arrow [| a; b |]), unfold_impl
(* (evd, mkProd (Anonymous, a, b)), (fun x -> x) *)
else if bp then (* Dummy forall *)
(app_poly env evd coq_all [| a; mkLambda (Anonymous, a, lift 1 b) |]), unfold_forall
else (* None in Prop, use arrow *)
(app_poly env evd arrow [| a; b |]), unfold_impl
let rec decomp_pointwise n c =
if Int.equal n 0 then c
else
match kind_of_term c with
| App (f, [| a; b; relb |]) when Globnames.is_global (pointwise_relation_ref ()) f ->
decomp_pointwise (pred n) relb
| App (f, [| a; b; arelb |]) when Globnames.is_global (forall_relation_ref ()) f ->
decomp_pointwise (pred n) (Reductionops.beta_applist (arelb, [mkRel 1]))
| _ -> invalid_arg "decomp_pointwise"
let rec apply_pointwise rel = function
| arg :: args ->
(match kind_of_term rel with
| App (f, [| a; b; relb |]) when Globnames.is_global (pointwise_relation_ref ()) f ->
apply_pointwise relb args
| App (f, [| a; b; arelb |]) when Globnames.is_global (forall_relation_ref ()) f ->
apply_pointwise (Reductionops.beta_applist (arelb, [arg])) args
| _ -> invalid_arg "apply_pointwise")
| [] -> rel
let pointwise_or_dep_relation env evd n t car rel =
if noccurn 1 car && noccurn 1 rel then
app_poly env evd pointwise_relation [| t; lift (-1) car; lift (-1) rel |]
else
app_poly env evd forall_relation
[| t; mkLambda (n, t, car); mkLambda (n, t, rel) |]
let lift_cstr env evars (args : constr list) c ty cstr =
let start evars env car =
match cstr with
| None | Some (_, None) ->
let evars, rel = mk_relation env evars car in
new_cstr_evar evars env rel
| Some (ty, Some rel) -> evars, rel
in
let rec aux evars env prod n =
if Int.equal n 0 then start evars env prod
else
match kind_of_term (Reduction.whd_all env prod) with
| Prod (na, ty, b) ->
if noccurn 1 b then
let b' = lift (-1) b in
let evars, rb = aux evars env b' (pred n) in
app_poly env evars pointwise_relation [| ty; b'; rb |]
else
let evars, rb = aux evars (Environ.push_rel (LocalAssum (na, ty)) env) b (pred n) in
app_poly env evars forall_relation
[| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |]
| _ -> raise Not_found
in
let rec find env c ty = function
| [] -> None
| arg :: args ->
try let evars, found = aux evars env ty (succ (List.length args)) in
Some (evars, found, c, ty, arg :: args)
with Not_found ->
let ty = whd_all env ty in
find env (mkApp (c, [| arg |])) (prod_applist ty [arg]) args
in find env c ty args
let unlift_cstr env sigma = function
| None -> None
| Some codom -> Some (decomp_pointwise 1 codom)
(** Looking up declared rewrite relations (instances of [RewriteRelation]) *)
let is_applied_rewrite_relation env sigma rels t =
match kind_of_term t with
| App (c, args) when Array.length args >= 2 ->
let head = if isApp c then fst (destApp c) else c in
if Globnames.is_global (coq_eq_ref ()) head then None
else
(try
let params, args = Array.chop (Array.length args - 2) args in
let env' = Environ.push_rel_context rels env in
let sigma = Sigma.Unsafe.of_evar_map sigma in
let Sigma ((evar, _), evars, _) = Evarutil.new_type_evar env' sigma Evd.univ_flexible in
let evars = Sigma.to_evar_map evars in
let evars, inst =
app_poly env (evars,Evar.Set.empty)
rewrite_relation_class [| evar; mkApp (c, params) |] in
let _ = Typeclasses.resolve_one_typeclass env' (goalevars evars) inst in
Some (it_mkProd_or_LetIn t rels)
with e when CErrors.noncritical e -> None)
| _ -> None
end
(* let my_type_of env evars c = Typing.e_type_of env evars c *)
(* let mytypeofkey = Profile.declare_profile "my_type_of";; *)
(* let my_type_of = Profile.profile3 mytypeofkey my_type_of *)
let type_app_poly env env evd f args =
let evars, c = app_poly_nocheck env evd f args in
let evd', t = Typing.type_of env (goalevars evars) c in
(evd', cstrevars evars), c
module PropGlobal = struct
module Consts =
struct
let relation_classes = ["Classes"; "RelationClasses"]
let morphisms = ["Classes"; "Morphisms"]
let relation = ["Relations";"Relation_Definitions"], "relation"
let app_poly = app_poly_nocheck
let arrow = find_global ["Program"; "Basics"] "arrow"
let coq_inverse = find_global ["Program"; "Basics"] "flip"
end
module G = GlobalBindings(Consts)
include G
include Consts
let inverse env evd car rel =
type_app_poly env env evd coq_inverse [| car ; car; mkProp; rel |]
(* app_poly env evd coq_inverse [| car ; car; mkProp; rel |] *)
end
module TypeGlobal = struct
module Consts =
struct
let relation_classes = ["Classes"; "CRelationClasses"]
let morphisms = ["Classes"; "CMorphisms"]
let relation = relation_classes, "crelation"
let app_poly = app_poly_check
let arrow = find_global ["Classes"; "CRelationClasses"] "arrow"
let coq_inverse = find_global ["Classes"; "CRelationClasses"] "flip"
end
module G = GlobalBindings(Consts)
include G
include Consts
let inverse env (evd,cstrs) car rel =
let sigma = Sigma.Unsafe.of_evar_map evd in
let Sigma (sort, sigma, _) = Evarutil.new_Type ~rigid:Evd.univ_flexible env sigma in
let evd = Sigma.to_evar_map sigma in
app_poly_check env (evd,cstrs) coq_inverse [| car ; car; sort; rel |]
end
let sort_of_rel env evm rel =
Reductionops.sort_of_arity env evm (Retyping.get_type_of env evm rel)
let is_applied_rewrite_relation = PropGlobal.is_applied_rewrite_relation
(* let _ = *)
(* Hook.set Equality.is_applied_rewrite_relation is_applied_rewrite_relation *)
let split_head = function
hd :: tl -> hd, tl
| [] -> assert(false)
let eq_pb (ty, env, x, y as pb) (ty', env', x', y' as pb') =
pb == pb' || (ty == ty' && Constr.equal x x' && Constr.equal y y')
let problem_inclusion x y =
List.for_all (fun pb -> List.exists (fun pb' -> eq_pb pb pb') y) x
let evd_convertible env evd x y =
try
(* Unfortunately, the_conv_x might say they are unifiable even if some
unsolvable constraints remain, so we check that this unification
does not introduce any new problem. *)
let _, pbs = Evd.extract_all_conv_pbs evd in
let evd' = Evarconv.the_conv_x env x y evd in
let _, pbs' = Evd.extract_all_conv_pbs evd' in
if evd' == evd || problem_inclusion pbs' pbs then Some evd'
else None
with e when CErrors.noncritical e -> None
let convertible env evd x y =
Reductionops.is_conv_leq env evd x y
type hypinfo = {
prf : constr;
car : constr;
rel : constr;
sort : bool; (* true = Prop; false = Type *)
c1 : constr;
c2 : constr;
holes : Clenv.hole list;
}
let get_symmetric_proof b =
if b then PropGlobal.get_symmetric_proof else TypeGlobal.get_symmetric_proof
let error_no_relation () = error "Cannot find a relation to rewrite."
let rec decompose_app_rel env evd t =
(** Head normalize for compatibility with the old meta mechanism *)
let t = Reductionops.whd_betaiota evd t in
match kind_of_term t with
| App (f, [||]) -> assert false
| App (f, [|arg|]) ->
let (f', argl, argr) = decompose_app_rel env evd arg in
let ty = Typing.unsafe_type_of env evd argl in
let f'' = mkLambda (Name default_dependent_ident, ty,
mkLambda (Name (Id.of_string "y"), lift 1 ty,
mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |])))
in (f'', argl, argr)
| App (f, args) ->
let len = Array.length args in
let fargs = Array.sub args 0 (Array.length args - 2) in
let rel = mkApp (f, fargs) in
rel, args.(len - 2), args.(len - 1)
| _ -> error_no_relation ()
let decompose_app_rel env evd t =
let (rel, t1, t2) = decompose_app_rel env evd t in
let ty = Retyping.get_type_of env evd rel in
let () = if not (Reduction.is_arity env ty) then error_no_relation () in
(rel, t1, t2)
let decompose_applied_relation env sigma (c,l) =
let open Context.Rel.Declaration in
let ctype = Retyping.get_type_of env sigma c in
let find_rel ty =
let sigma, cl = Clenv.make_evar_clause env sigma ty in
let sigma = Clenv.solve_evar_clause env sigma true cl l in
let { Clenv.cl_holes = holes; Clenv.cl_concl = t } = cl in
let (equiv, c1, c2) = decompose_app_rel env sigma t in
let ty1 = Retyping.get_type_of env sigma c1 in
let ty2 = Retyping.get_type_of env sigma c2 in
match evd_convertible env sigma ty1 ty2 with
| None -> None
| Some sigma ->
let sort = sort_of_rel env sigma equiv in
let args = Array.map_of_list (fun h -> h.Clenv.hole_evar) holes in
let value = mkApp (c, args) in
Some (sigma, { prf=value;
car=ty1; rel = equiv; sort = Sorts.is_prop sort;
c1=c1; c2=c2; holes })
in
match find_rel ctype with
| Some c -> c
| None ->
let ctx,t' = Reductionops.splay_prod env sigma ctype in (* Search for underlying eq *)
match find_rel (it_mkProd_or_LetIn t' (List.map (fun (n,t) -> LocalAssum (n, t)) ctx)) with
| Some c -> c
| None -> error "Cannot find an homogeneous relation to rewrite."
let rewrite_db = "rewrite"
let conv_transparent_state = (Id.Pred.empty, Cpred.full)
let _ =
Hints.add_hints_init
(fun () ->
Hints.create_hint_db false rewrite_db conv_transparent_state true)
let rewrite_transparent_state () =
Hints.Hint_db.transparent_state (Hints.searchtable_map rewrite_db)
let rewrite_core_unif_flags = {
Unification.modulo_conv_on_closed_terms = None;
Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
Unification.modulo_delta = empty_transparent_state;
Unification.modulo_delta_types = full_transparent_state;
Unification.check_applied_meta_types = true;
Unification.use_pattern_unification = true;
Unification.use_meta_bound_pattern_unification = true;
Unification.frozen_evars = Evar.Set.empty;
Unification.restrict_conv_on_strict_subterms = false;
Unification.modulo_betaiota = false;
Unification.modulo_eta = true;
}
(* Flags used for the setoid variant of "rewrite" and for the strategies
"hints"/"old_hints"/"terms" of "rewrite_strat", and for solving pre-existing
evars in "rewrite" (see unify_abs) *)
let rewrite_unif_flags =
let flags = rewrite_core_unif_flags in {
Unification.core_unify_flags = flags;
Unification.merge_unify_flags = flags;
Unification.subterm_unify_flags = flags;
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
let rewrite_core_conv_unif_flags = {
rewrite_core_unif_flags with
Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
Unification.modulo_delta_types = conv_transparent_state;
Unification.modulo_betaiota = true
}
(* Fallback flags for the setoid variant of "rewrite" *)
let rewrite_conv_unif_flags =
let flags = rewrite_core_conv_unif_flags in {
Unification.core_unify_flags = flags;
Unification.merge_unify_flags = flags;
Unification.subterm_unify_flags = flags;
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
(* Flags for "setoid_rewrite c"/"rewrite_strat -> c" *)
let general_rewrite_unif_flags () =
let ts = rewrite_transparent_state () in
let core_flags =
{ rewrite_core_unif_flags with
Unification.modulo_conv_on_closed_terms = Some ts;
Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
Unification.modulo_delta = ts;
Unification.modulo_delta_types = full_transparent_state;
Unification.modulo_betaiota = true }
in {
Unification.core_unify_flags = core_flags;
Unification.merge_unify_flags = core_flags;
Unification.subterm_unify_flags = { core_flags with Unification.modulo_delta = empty_transparent_state };
Unification.allow_K_in_toplevel_higher_order_unification = true;
Unification.resolve_evars = true
}
let refresh_hypinfo env sigma (is, cb) =
let sigma, cbl = Tacinterp.interp_open_constr_with_bindings is env sigma cb in
let sigma, hypinfo = decompose_applied_relation env sigma cbl in
let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
sigma, (car, rel, prf, c1, c2, holes, sort)
(** FIXME: write this in the new monad interface *)
let solve_remaining_by env sigma holes by =
match by with
| None -> sigma
| Some tac ->
let map h =
if h.Clenv.hole_deps then None
else
let (evk, _) = destEvar (h.Clenv.hole_evar) in
Some evk
in
(** Only solve independent holes *)
let indep = List.map_filter map holes in
let ist = { Geninterp.lfun = Id.Map.empty; extra = Geninterp.TacStore.empty } in
let solve_tac = match tac with
| Genarg.GenArg (Genarg.Glbwit tag, tac) ->
Ftactic.run (Geninterp.interp tag ist tac) (fun _ -> Proofview.tclUNIT ())
in
let solve_tac = tclCOMPLETE solve_tac in
let solve sigma evk =
let evi =
try Some (Evd.find_undefined sigma evk)
with Not_found -> None
in
match evi with
| None -> sigma
(** Evar should not be defined, but just in case *)
| Some evi ->
let env = Environ.reset_with_named_context evi.evar_hyps env in
let ty = evi.evar_concl in
let c, sigma = Pfedit.refine_by_tactic env sigma ty solve_tac in
Evd.define evk c sigma
in
List.fold_left solve sigma indep
let no_constraints cstrs =
fun ev _ -> not (Evar.Set.mem ev cstrs)
let all_constraints cstrs =
fun ev _ -> Evar.Set.mem ev cstrs
let poly_inverse sort =
if sort then PropGlobal.inverse else TypeGlobal.inverse
type rewrite_proof =
| RewPrf of constr * constr
(** A Relation (R : rew_car -> rew_car -> Prop) and a proof of R rew_from rew_to *)
| RewCast of cast_kind
(** A proof of convertibility (with casts) *)
type rewrite_result_info = {
rew_car : constr ;
(** A type *)
rew_from : constr ;
(** A term of type rew_car *)
rew_to : constr ;
(** A term of type rew_car *)
rew_prf : rewrite_proof ;
(** A proof of rew_from == rew_to *)
rew_evars : evars;
}
type rewrite_result =
| Fail
| Identity
| Success of rewrite_result_info
type 'a strategy_input = { state : 'a ; (* a parameter: for instance, a state *)
env : Environ.env ;
unfresh : Id.t list ; (* Unfresh names *)
term1 : constr ;
ty1 : types ; (* first term and its type (convertible to rew_from) *)
cstr : (bool (* prop *) * constr option) ;
evars : evars }
type 'a pure_strategy = { strategy :
'a strategy_input ->
'a * rewrite_result (* the updated state and the "result" *) }
type strategy = unit pure_strategy
let symmetry env sort rew =
let { rew_evars = evars; rew_car = car; } = rew in
let (rew_evars, rew_prf) = match rew.rew_prf with
| RewCast _ -> (rew.rew_evars, rew.rew_prf)
| RewPrf (rel, prf) ->
try
let evars, symprf = get_symmetric_proof sort env evars car rel in
let prf = mkApp (symprf, [| rew.rew_from ; rew.rew_to ; prf |]) in
(evars, RewPrf (rel, prf))
with Not_found ->
let evars, rel = poly_inverse sort env evars car rel in
(evars, RewPrf (rel, prf))
in
{ rew with rew_from = rew.rew_to; rew_to = rew.rew_from; rew_prf; rew_evars; }
(* Matching/unifying the rewriting rule against [t] *)
let unify_eqn (car, rel, prf, c1, c2, holes, sort) l2r flags env (sigma, cstrs) by t =
try
let left = if l2r then c1 else c2 in
let sigma = Unification.w_unify ~flags env sigma CONV left t in
let sigma = Typeclasses.resolve_typeclasses ~filter:(no_constraints cstrs)
~fail:true env sigma in
let evd = solve_remaining_by env sigma holes by in
let nf c = Evarutil.nf_evar evd (Reductionops.nf_meta evd c) in
let c1 = nf c1 and c2 = nf c2
and rew_car = nf car and rel = nf rel
and prf = nf prf in
let ty1 = Retyping.get_type_of env evd c1 in
let ty2 = Retyping.get_type_of env evd c2 in
let () = if not (convertible env evd ty2 ty1) then raise Reduction.NotConvertible in
let rew_evars = evd, cstrs in
let rew_prf = RewPrf (rel, prf) in
let rew = { rew_evars; rew_prf; rew_car; rew_from = c1; rew_to = c2; } in
let rew = if l2r then rew else symmetry env sort rew in
Some rew
with
| e when Class_tactics.catchable e -> None
| Reduction.NotConvertible -> None
let unify_abs (car, rel, prf, c1, c2) l2r sort env (sigma, cstrs) t =
try
let left = if l2r then c1 else c2 in
(* The pattern is already instantiated, so the next w_unify is
basically an eq_constr, except when preexisting evars occur in
either the lemma or the goal, in which case the eq_constr also
solved this evars *)
let sigma = Unification.w_unify ~flags:rewrite_unif_flags env sigma CONV left t in
let rew_evars = sigma, cstrs in
let rew_prf = RewPrf (rel, prf) in
let rew = { rew_car = car; rew_from = c1; rew_to = c2; rew_prf; rew_evars; } in
let rew = if l2r then rew else symmetry env sort rew in
Some rew
with
| e when Class_tactics.catchable e -> None
| Reduction.NotConvertible -> None
type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }
let default_flags = { under_lambdas = true; on_morphisms = true; }
let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None
let make_eq () =
(*FIXME*) Universes.constr_of_global (Coqlib.build_coq_eq ())
let make_eq_refl () =
(*FIXME*) Universes.constr_of_global (Coqlib.build_coq_eq_refl ())
let get_rew_prf r = match r.rew_prf with
| RewPrf (rel, prf) -> rel, prf
| RewCast c ->
let rel = mkApp (make_eq (), [| r.rew_car |]) in
rel, mkCast (mkApp (make_eq_refl (), [| r.rew_car; r.rew_from |]),
c, mkApp (rel, [| r.rew_from; r.rew_to |]))
let poly_subrelation sort =
if sort then PropGlobal.subrelation else TypeGlobal.subrelation
let resolve_subrelation env avoid car rel sort prf rel' res =
if eq_constr rel rel' then res
else
let evars, app = app_poly_check env res.rew_evars (poly_subrelation sort) [|car; rel; rel'|] in
let evars, subrel = new_cstr_evar evars env app in
let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in
{ res with
rew_prf = RewPrf (rel', appsub);
rew_evars = evars }
let resolve_morphism env avoid oldt m ?(fnewt=fun x -> x) args args' (b,cstr) evars =
let evars, morph_instance, proj, sigargs, m', args, args' =
let first = match (Array.findi (fun _ b -> not (Option.is_empty b)) args') with
| Some i -> i
| None -> invalid_arg "resolve_morphism" in
let morphargs, morphobjs = Array.chop first args in
let morphargs', morphobjs' = Array.chop first args' in
let appm = mkApp(m, morphargs) in
let appmtype = Typing.unsafe_type_of env (goalevars evars) appm in
let cstrs = List.map
(Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf))
(Array.to_list morphobjs')
in
(* Desired signature *)
let evars, appmtype', signature, sigargs =
if b then PropGlobal.build_signature evars env appmtype cstrs cstr
else TypeGlobal.build_signature evars env appmtype cstrs cstr
in
(* Actual signature found *)
let cl_args = [| appmtype' ; signature ; appm |] in
let evars, app = app_poly_sort b env evars (if b then PropGlobal.proper_type else TypeGlobal.proper_type)
cl_args in
let env' =
let dosub, appsub =
if b then PropGlobal.do_subrelation, PropGlobal.apply_subrelation
else TypeGlobal.do_subrelation, TypeGlobal.apply_subrelation
in
Environ.push_named
(LocalDef (Id.of_string "do_subrelation",
snd (app_poly_sort b env evars dosub [||]),
snd (app_poly_nocheck env evars appsub [||])))
env
in
let evars, morph = new_cstr_evar evars env' app in
evars, morph, morph, sigargs, appm, morphobjs, morphobjs'
in
let projargs, subst, evars, respars, typeargs =
Array.fold_left2
(fun (acc, subst, evars, sigargs, typeargs') x y ->
let (carrier, relation), sigargs = split_head sigargs in
match relation with
| Some relation ->
let carrier = substl subst carrier
and relation = substl subst relation in
(match y with
| None ->
let evars, proof =
(if b then PropGlobal.proper_proof else TypeGlobal.proper_proof)
env evars carrier relation x in
[ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs'
| Some r ->
[ snd (get_rew_prf r); r.rew_to; x ] @ acc, subst, evars,
sigargs, r.rew_to :: typeargs')
| None ->
if not (Option.is_empty y) then
error "Cannot rewrite inside dependent arguments of a function";
x :: acc, x :: subst, evars, sigargs, x :: typeargs')
([], [], evars, sigargs, []) args args'
in
let proof = applistc proj (List.rev projargs) in
let newt = applistc m' (List.rev typeargs) in
match respars with
[ a, Some r ] -> evars, proof, substl subst a, substl subst r, oldt, fnewt newt
| _ -> assert(false)
let apply_constraint env avoid car rel prf cstr res =
match snd cstr with
| None -> res
| Some r -> resolve_subrelation env avoid car rel (fst cstr) prf r res
let coerce env avoid cstr res =
let rel, prf = get_rew_prf res in
apply_constraint env avoid res.rew_car rel prf cstr res
let apply_rule unify loccs : int pure_strategy =
let (nowhere_except_in,occs) = convert_occs loccs in
let is_occ occ =
if nowhere_except_in
then List.mem occ occs
else not (List.mem occ occs)
in
{ strategy = fun { state = occ ; env ; unfresh ;
term1 = t ; ty1 = ty ; cstr ; evars } ->
let unif = if isEvar t then None else unify env evars t in
match unif with
| None -> (occ, Fail)
| Some rew ->
let occ = succ occ in
if not (is_occ occ) then (occ, Fail)
else if eq_constr t rew.rew_to then (occ, Identity)
else
let res = { rew with rew_car = ty } in
let rel, prf = get_rew_prf res in
let res = Success (apply_constraint env unfresh rew.rew_car rel prf cstr res) in
(occ, res)
}
let apply_lemma l2r flags oc by loccs : strategy = { strategy =
fun ({ state = () ; env ; term1 = t ; evars = (sigma, cstrs) } as input) ->
let sigma, c = oc sigma in
let sigma, hypinfo = decompose_applied_relation env sigma c in
let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
let rew = (car, rel, prf, c1, c2, holes, sort) in
let evars = (sigma, cstrs) in
let unify env evars t =
let rew = unify_eqn rew l2r flags env evars by t in
match rew with
| None -> None
| Some rew -> Some rew
in
let _, res = (apply_rule unify loccs).strategy { input with
state = 0 ;
evars } in
(), res
}
let e_app_poly env evars f args =
let evars', c = app_poly_nocheck env !evars f args in
evars := evars';
c
let make_leibniz_proof env c ty r =
let evars = ref r.rew_evars in
let prf =
match r.rew_prf with
| RewPrf (rel, prf) ->
let rel = e_app_poly env evars coq_eq [| ty |] in
let prf =
e_app_poly env evars coq_f_equal
[| r.rew_car; ty;
mkLambda (Anonymous, r.rew_car, c);
r.rew_from; r.rew_to; prf |]
in RewPrf (rel, prf)
| RewCast k -> r.rew_prf
in
{ rew_car = ty; rew_evars = !evars;
rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf }
let reset_env env =
let env' = Global.env_of_context (Environ.named_context_val env) in
Environ.push_rel_context (Environ.rel_context env) env'
let fold_match ?(force=false) env sigma c =
let (ci, p, c, brs) = destCase c in
let cty = Retyping.get_type_of env sigma c in
let dep, pred, exists, (sk,eff) =
let env', ctx, body =
let ctx, pred = decompose_lam_assum p in
let env' = Environ.push_rel_context ctx env in
env', ctx, pred
in
let sortp = Retyping.get_sort_family_of env' sigma body in
let sortc = Retyping.get_sort_family_of env sigma cty in
let dep = not (noccurn 1 body) in
let pred = if dep then p else
it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx)
in
let sk =
if sortp == InProp then
if sortc == InProp then
if dep then case_dep_scheme_kind_from_prop
else case_scheme_kind_from_prop
else (
if dep
then case_dep_scheme_kind_from_type_in_prop
else case_scheme_kind_from_type)
else ((* sortc <> InProp by typing *)
if dep
then case_dep_scheme_kind_from_type
else case_scheme_kind_from_type)
in
let exists = Ind_tables.check_scheme sk ci.ci_ind in
if exists || force then
dep, pred, exists, Ind_tables.find_scheme sk ci.ci_ind
else raise Not_found
in
let app =
let ind, args = Inductive.find_rectype env cty in
let pars, args = List.chop ci.ci_npar args in
let meths = List.map (fun br -> br) (Array.to_list brs) in
applist (mkConst sk, pars @ [pred] @ meths @ args @ [c])
in
sk, (if exists then env else reset_env env), app, eff
let unfold_match env sigma sk app =
match kind_of_term app with
| App (f', args) when eq_constant (fst (destConst f')) sk ->
let v = Environ.constant_value_in (Global.env ()) (sk,Univ.Instance.empty)(*FIXME*) in
Reductionops.whd_beta sigma (mkApp (v, args))
| _ -> app
let is_rew_cast = function RewCast _ -> true | _ -> false
let subterm all flags (s : 'a pure_strategy) : 'a pure_strategy =
let rec aux { state ; env ; unfresh ;
term1 = t ; ty1 = ty ; cstr = (prop, cstr) ; evars } =
let cstr' = Option.map (fun c -> (ty, Some c)) cstr in
match kind_of_term t with
| App (m, args) ->
let rewrite_args state success =
let state, (args', evars', progress) =
Array.fold_left
(fun (state, (acc, evars, progress)) arg ->
if not (Option.is_empty progress) && not all then
state, (None :: acc, evars, progress)
else
let argty = Retyping.get_type_of env (goalevars evars) arg in
let state, res = s.strategy { state ; env ;
unfresh ;
term1 = arg ; ty1 = argty ;
cstr = (prop,None) ;
evars } in
let res' =
match res with
| Identity ->
let progress = if Option.is_empty progress then Some false else progress in
(None :: acc, evars, progress)
| Success r ->
(Some r :: acc, r.rew_evars, Some true)
| Fail -> (None :: acc, evars, progress)
in state, res')
(state, ([], evars, success)) args
in
let res =
match progress with
| None -> Fail
| Some false -> Identity
| Some true ->
let args' = Array.of_list (List.rev args') in
if Array.exists
(function
| None -> false
| Some r -> not (is_rew_cast r.rew_prf)) args'
then
let evars', prf, car, rel, c1, c2 =
resolve_morphism env unfresh t m args args' (prop, cstr') evars'
in
let res = { rew_car = ty; rew_from = c1;
rew_to = c2; rew_prf = RewPrf (rel, prf);
rew_evars = evars' }
in Success res
else
let args' = Array.map2
(fun aorig anew ->
match anew with None -> aorig
| Some r -> r.rew_to) args args'
in
let res = { rew_car = ty; rew_from = t;
rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast;
rew_evars = evars' }
in Success res
in state, res
in
if flags.on_morphisms then
let mty = Retyping.get_type_of env (goalevars evars) m in
let evars, cstr', m, mty, argsl, args =
let argsl = Array.to_list args in
let lift = if prop then PropGlobal.lift_cstr else TypeGlobal.lift_cstr in
match lift env evars argsl m mty None with
| Some (evars, cstr', m, mty, args) ->
evars, Some cstr', m, mty, args, Array.of_list args
| None -> evars, None, m, mty, argsl, args
in
let state, m' = s.strategy { state ; env ; unfresh ;
term1 = m ; ty1 = mty ;
cstr = (prop, cstr') ; evars } in
match m' with
| Fail -> rewrite_args state None (* Standard path, try rewrite on arguments *)
| Identity -> rewrite_args state (Some false)
| Success r ->
(* We rewrote the function and get a proof of pointwise rel for the arguments.
We just apply it. *)
let prf = match r.rew_prf with
| RewPrf (rel, prf) ->
let app = if prop then PropGlobal.apply_pointwise
else TypeGlobal.apply_pointwise
in
RewPrf (app rel argsl, mkApp (prf, args))
| x -> x
in
let res =
{ rew_car = Reductionops.hnf_prod_appvect env (goalevars evars) r.rew_car args;
rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args);
rew_prf = prf; rew_evars = r.rew_evars }
in
let res =
match prf with
| RewPrf (rel, prf) ->
Success (apply_constraint env unfresh res.rew_car
rel prf (prop,cstr) res)
| _ -> Success res
in state, res
else rewrite_args state None
| Prod (n, x, b) when noccurn 1 b ->
let b = subst1 mkProp b in
let tx = Retyping.get_type_of env (goalevars evars) x
and tb = Retyping.get_type_of env (goalevars evars) b in
let arr = if prop then PropGlobal.arrow_morphism
else TypeGlobal.arrow_morphism
in
let (evars', mor), unfold = arr env evars tx tb x b in
let state, res = aux { state ; env ; unfresh ;
term1 = mor ; ty1 = ty ;
cstr = (prop,cstr) ; evars = evars' } in
let res =
match res with
| Success r -> Success { r with rew_to = unfold r.rew_to }
| Fail | Identity -> res
in state, res
(* if x' = None && flags.under_lambdas then *)
(* let lam = mkLambda (n, x, b) in *)
(* let lam', occ = aux env lam occ None in *)
(* let res = *)
(* match lam' with *)
(* | None -> None *)
(* | Some (prf, (car, rel, c1, c2)) -> *)
(* Some (resolve_morphism env sigma t *)
(* ~fnewt:unfold_all *)
(* (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *)
(* cstr evars) *)
(* in res, occ *)
(* else *)
| Prod (n, dom, codom) ->
let lam = mkLambda (n, dom, codom) in
let (evars', app), unfold =
if eq_constr ty mkProp then
(app_poly_sort prop env evars coq_all [| dom; lam |]), TypeGlobal.unfold_all
else
let forall = if prop then PropGlobal.coq_forall else TypeGlobal.coq_forall in
(app_poly_sort prop env evars forall [| dom; lam |]), TypeGlobal.unfold_forall
in
let state, res = aux { state ; env ; unfresh ;
term1 = app ; ty1 = ty ;
cstr = (prop,cstr) ; evars = evars' } in
let res =
match res with
| Success r -> Success { r with rew_to = unfold r.rew_to }
| Fail | Identity -> res
in state, res
(* TODO: real rewriting under binders: introduce x x' (H : R x x') and rewrite with
H at any occurrence of x. Ask for (R ==> R') for the lambda. Formalize this.
B. Barras' idea is to have a context of relations, of length 1, with Σ for gluing
dependent relations and using projections to get them out.
*)
(* | Lambda (n, t, b) when flags.under_lambdas -> *)
(* let n' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n in *)
(* let n'' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n' in *)
(* let n''' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n'' in *)
(* let rel = new_cstr_evar cstr env (mkApp (Lazy.force coq_relation, [|t|])) in *)
(* let env' = Environ.push_rel_context [(n'',None,lift 2 rel);(n'',None,lift 1 t);(n', None, t)] env in *)
(* let b' = s env' avoid b (Typing.type_of env' (goalevars evars) (lift 2 b)) (unlift_cstr env (goalevars evars) cstr) evars in *)
(* (match b' with *)
(* | Some (Some r) -> *)
(* let prf = match r.rew_prf with *)
(* | RewPrf (rel, prf) -> *)
(* let rel = pointwise_or_dep_relation n' t r.rew_car rel in *)
(* let prf = mkLambda (n', t, prf) in *)
(* RewPrf (rel, prf) *)
(* | x -> x *)
(* in *)
(* Some (Some { r with *)
(* rew_prf = prf; *)
(* rew_car = mkProd (n, t, r.rew_car); *)
(* rew_from = mkLambda(n, t, r.rew_from); *)
(* rew_to = mkLambda (n, t, r.rew_to) }) *)
(* | _ -> b') *)
| Lambda (n, t, b) when flags.under_lambdas ->
let n' = name_app (fun id -> Tactics.fresh_id_in_env unfresh id env) n in
let open Context.Rel.Declaration in
let env' = Environ.push_rel (LocalAssum (n', t)) env in
let bty = Retyping.get_type_of env' (goalevars evars) b in
let unlift = if prop then PropGlobal.unlift_cstr else TypeGlobal.unlift_cstr in
let state, b' = s.strategy { state ; env = env' ; unfresh ;
term1 = b ; ty1 = bty ;
cstr = (prop, unlift env evars cstr) ;
evars } in
let res =
match b' with
| Success r ->
let r = match r.rew_prf with
| RewPrf (rel, prf) ->
let point = if prop then PropGlobal.pointwise_or_dep_relation else
TypeGlobal.pointwise_or_dep_relation
in
let evars, rel = point env r.rew_evars n' t r.rew_car rel in
let prf = mkLambda (n', t, prf) in
{ r with rew_prf = RewPrf (rel, prf); rew_evars = evars }
| x -> r
in
Success { r with
rew_car = mkProd (n, t, r.rew_car);
rew_from = mkLambda(n, t, r.rew_from);
rew_to = mkLambda (n, t, r.rew_to) }
| Fail | Identity -> b'
in state, res
| Case (ci, p, c, brs) ->
let cty = Retyping.get_type_of env (goalevars evars) c in
let evars', eqty = app_poly_sort prop env evars coq_eq [| cty |] in
let cstr' = Some eqty in
let state, c' = s.strategy { state ; env ; unfresh ;
term1 = c ; ty1 = cty ;
cstr = (prop, cstr') ; evars = evars' } in
let state, res =
match c' with
| Success r ->
let case = mkCase (ci, lift 1 p, mkRel 1, Array.map (lift 1) brs) in
let res = make_leibniz_proof env case ty r in
state, Success (coerce env unfresh (prop,cstr) res)
| Fail | Identity ->
if Array.for_all (Int.equal 0) ci.ci_cstr_ndecls then
let evars', eqty = app_poly_sort prop env evars coq_eq [| ty |] in
let cstr = Some eqty in
let state, found, brs' = Array.fold_left
(fun (state, found, acc) br ->
if not (Option.is_empty found) then
(state, found, fun x -> lift 1 br :: acc x)
else
let state, res = s.strategy { state ; env ; unfresh ;
term1 = br ; ty1 = ty ;
cstr = (prop,cstr) ; evars } in
match res with
| Success r -> (state, Some r, fun x -> mkRel 1 :: acc x)
| Fail | Identity -> (state, None, fun x -> lift 1 br :: acc x))
(state, None, fun x -> []) brs
in
match found with
| Some r ->
let ctxc = mkCase (ci, lift 1 p, lift 1 c, Array.of_list (List.rev (brs' c'))) in
state, Success (make_leibniz_proof env ctxc ty r)
| None -> state, c'
else
match try Some (fold_match env (goalevars evars) t) with Not_found -> None with
| None -> state, c'
| Some (cst, _, t', eff (*FIXME*)) ->
let state, res = aux { state ; env ; unfresh ;
term1 = t' ; ty1 = ty ;
cstr = (prop,cstr) ; evars } in
let res =
match res with
| Success prf ->
Success { prf with
rew_from = t;
rew_to = unfold_match env (goalevars evars) cst prf.rew_to }
| x' -> c'
in state, res
in
let res =
match res with
| Success r ->
let rel, prf = get_rew_prf r in
Success (apply_constraint env unfresh r.rew_car rel prf (prop,cstr) r)
| Fail | Identity -> res
in state, res
| _ -> state, Fail
in { strategy = aux }
let all_subterms = subterm true default_flags
let one_subterm = subterm false default_flags
(** Requires transitivity of the rewrite step, if not a reduction.
Not tail-recursive. *)
let transitivity state env unfresh prop (res : rewrite_result_info) (next : 'a pure_strategy) :
'a * rewrite_result =
let state, nextres =
next.strategy { state ; env ; unfresh ;
term1 = res.rew_to ; ty1 = res.rew_car ;
cstr = (prop, get_opt_rew_rel res.rew_prf) ;
evars = res.rew_evars }
in
let res =
match nextres with
| Fail -> Fail
| Identity -> Success res
| Success res' ->
match res.rew_prf with
| RewCast c -> Success { res' with rew_from = res.rew_from }
| RewPrf (rew_rel, rew_prf) ->
match res'.rew_prf with
| RewCast _ -> Success { res with rew_to = res'.rew_to }
| RewPrf (res'_rel, res'_prf) ->
let trans =
if prop then PropGlobal.transitive_type
else TypeGlobal.transitive_type
in
let evars, prfty =
app_poly_sort prop env res'.rew_evars trans [| res.rew_car; rew_rel |]
in
let evars, prf = new_cstr_evar evars env prfty in
let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to;
rew_prf; res'_prf |])
in Success { res' with rew_from = res.rew_from;
rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) }
in state, res
(** Rewriting strategies.
Inspired by ELAN's rewriting strategies:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
*)
module Strategies =
struct
let fail : 'a pure_strategy =
{ strategy = fun { state } -> state, Fail }
let id : 'a pure_strategy =
{ strategy = fun { state } -> state, Identity }
let refl : 'a pure_strategy =
{ strategy =
fun { state ; env ;
term1 = t ; ty1 = ty ;
cstr = (prop,cstr) ; evars } ->
let evars, rel = match cstr with
| None ->
let mkr = if prop then PropGlobal.mk_relation else TypeGlobal.mk_relation in
let evars, rty = mkr env evars ty in
new_cstr_evar evars env rty
| Some r -> evars, r
in
let evars, proof =
let proxy =
if prop then PropGlobal.proper_proxy_type
else TypeGlobal.proper_proxy_type
in
let evars, mty = app_poly_sort prop env evars proxy [| ty ; rel; t |] in
new_cstr_evar evars env mty
in
let res = Success { rew_car = ty; rew_from = t; rew_to = t;
rew_prf = RewPrf (rel, proof); rew_evars = evars }
in state, res
}
let progress (s : 'a pure_strategy) : 'a pure_strategy = { strategy =
fun input ->
let state, res = s.strategy input in
match res with
| Fail -> state, Fail
| Identity -> state, Fail
| Success r -> state, Success r
}
let seq first snd : 'a pure_strategy = { strategy =
fun ({ env ; unfresh ; cstr } as input) ->
let state, res = first.strategy input in
match res with
| Fail -> state, Fail
| Identity -> snd.strategy { input with state }
| Success res -> transitivity state env unfresh (fst cstr) res snd
}
let choice fst snd : 'a pure_strategy = { strategy =
fun input ->
let state, res = fst.strategy input in
match res with
| Fail -> snd.strategy { input with state }
| Identity | Success _ -> state, res
}
let try_ str : 'a pure_strategy = choice str id
let check_interrupt str input =
Control.check_for_interrupt ();
str input
let fix (f : 'a pure_strategy -> 'a pure_strategy) : 'a pure_strategy =
let rec aux input = (f { strategy = fun input -> check_interrupt aux input }).strategy input in
{ strategy = aux }
let any (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun any -> try_ (seq s any))
let repeat (s : 'a pure_strategy) : 'a pure_strategy =
seq s (any s)
let bu (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s'))
let td (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s'))
let innermost (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun ins -> choice (one_subterm ins) s)
let outermost (s : 'a pure_strategy) : 'a pure_strategy =
fix (fun out -> choice s (one_subterm out))
let lemmas cs : 'a pure_strategy =
List.fold_left (fun tac (l,l2r,by) ->
choice tac (apply_lemma l2r rewrite_unif_flags l by AllOccurrences))
fail cs
let inj_open hint = (); fun sigma ->
let ctx = Evd.evar_universe_context_of hint.Autorewrite.rew_ctx in
let sigma = Evd.merge_universe_context sigma ctx in
(sigma, (hint.Autorewrite.rew_lemma, NoBindings))
let old_hints (db : string) : 'a pure_strategy =
let rules = Autorewrite.find_rewrites db in
lemmas
(List.map (fun hint -> (inj_open hint, hint.Autorewrite.rew_l2r,
hint.Autorewrite.rew_tac)) rules)
let hints (db : string) : 'a pure_strategy = { strategy =
fun ({ term1 = t } as input) ->
let rules = Autorewrite.find_matches db t in
let lemma hint = (inj_open hint, hint.Autorewrite.rew_l2r,
hint.Autorewrite.rew_tac) in
let lems = List.map lemma rules in
(lemmas lems).strategy input
}
let reduce (r : Redexpr.red_expr) : 'a pure_strategy = { strategy =
fun { state = state ; env = env ; term1 = t ; ty1 = ty ; cstr = cstr ; evars = evars } ->
let rfn, ckind = Redexpr.reduction_of_red_expr env r in
let sigma = Sigma.Unsafe.of_evar_map (goalevars evars) in
let Sigma (t', sigma, _) = rfn.Reductionops.e_redfun env sigma t in
let evars' = Sigma.to_evar_map sigma in
if eq_constr t' t then
state, Identity
else
state, Success { rew_car = ty; rew_from = t; rew_to = t';
rew_prf = RewCast ckind;
rew_evars = evars', cstrevars evars }
}
let fold_glob c : 'a pure_strategy = { strategy =
fun { state ; env ; term1 = t ; ty1 = ty ; cstr ; evars } ->
(* let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *)
let sigma, c = Pretyping.understand_tcc env (goalevars evars) c in
let unfolded =
try Tacred.try_red_product env sigma c
with e when CErrors.noncritical e ->
error "fold: the term is not unfoldable !"
in
try
let sigma = Unification.w_unify env sigma CONV ~flags:(Unification.elim_flags ()) unfolded t in
let c' = Evarutil.nf_evar sigma c in
state, Success { rew_car = ty; rew_from = t; rew_to = c';
rew_prf = RewCast DEFAULTcast;
rew_evars = (sigma, snd evars) }
with e when CErrors.noncritical e -> state, Fail
}
end
(** The strategy for a single rewrite, dealing with occurrences. *)
(** A dummy initial clauseenv to avoid generating initial evars before
even finding a first application of the rewriting lemma, in setoid_rewrite
mode *)
let rewrite_with l2r flags c occs : strategy = { strategy =
fun ({ state = () } as input) ->
let unify env evars t =
let (sigma, cstrs) = evars in
let (sigma, rew) = refresh_hypinfo env sigma c in
unify_eqn rew l2r flags env (sigma, cstrs) None t
in
let app = apply_rule unify occs in
let strat =
Strategies.fix (fun aux ->
Strategies.choice app (subterm true default_flags aux))
in
let _, res = strat.strategy { input with state = 0 } in
((), res)
}
let apply_strategy (s : strategy) env unfresh concl (prop, cstr) evars =
let ty = Retyping.get_type_of env (goalevars evars) concl in
let _, res = s.strategy { state = () ; env ; unfresh ;
term1 = concl ; ty1 = ty ;
cstr = (prop, Some cstr) ; evars } in
res
let solve_constraints env (evars,cstrs) =
let filter = all_constraints cstrs in
Typeclasses.resolve_typeclasses env ~filter ~split:false ~fail:true
(Typeclasses.mark_resolvables ~filter evars)
let nf_zeta =
Reductionops.clos_norm_flags (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA])
exception RewriteFailure of Pp.std_ppcmds
type result = (evar_map * constr option * types) option option
let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result =
let evdref = ref sigma in
let sort = Typing.e_sort_of env evdref concl in
let evars = (!evdref, Evar.Set.empty) in
let evars, cstr =
let prop, (evars, arrow) =
if is_prop_sort sort then true, app_poly_sort true env evars impl [||]
else false, app_poly_sort false env evars TypeGlobal.arrow [||]
in
match is_hyp with
| None ->
let evars, t = poly_inverse prop env evars (mkSort sort) arrow in
evars, (prop, t)
| Some _ -> evars, (prop, arrow)
in
let eq = apply_strategy strat env avoid concl cstr evars in
match eq with
| Fail -> None
| Identity -> Some None
| Success res ->
let (_, cstrs) = res.rew_evars in
let evars' = solve_constraints env res.rew_evars in
let newt = Evarutil.nf_evar evars' res.rew_to in
let evars = (* Keep only original evars (potentially instantiated) and goal evars,
the rest has been defined and substituted already. *)
Evar.Set.fold
(fun ev acc ->
if not (Evd.is_defined acc ev) then
errorlabstrm "rewrite"
(str "Unsolved constraint remaining: " ++ spc () ++
Evd.pr_evar_info (Evd.find acc ev))
else Evd.remove acc ev)
cstrs evars'
in
let res = match res.rew_prf with
| RewCast c -> None
| RewPrf (rel, p) ->
let p = nf_zeta env evars' (Evarutil.nf_evar evars' p) in
let term =
match abs with
| None -> p
| Some (t, ty) ->
let t = Evarutil.nf_evar evars' t in
let ty = Evarutil.nf_evar evars' ty in
mkApp (mkLambda (Name (Id.of_string "lemma"), ty, p), [| t |])
in
let proof = match is_hyp with
| None -> term
| Some id -> mkApp (term, [| mkVar id |])
in Some proof
in Some (Some (evars, res, newt))
(** Insert a declaration after the last declaration it depends on *)
let rec insert_dependent env decl accu hyps = match hyps with
| [] -> List.rev_append accu [decl]
| ndecl :: rem ->
if occur_var_in_decl env (get_id ndecl) decl then
List.rev_append accu (decl :: hyps)
else
insert_dependent env decl (ndecl :: accu) rem
let assert_replacing id newt tac =
let prf = Proofview.Goal.nf_enter { enter = begin fun gl ->
let concl = Proofview.Goal.concl gl in
let env = Proofview.Goal.env gl in
let ctx = Environ.named_context env in
let after, before = List.split_when (Id.equal id % get_id) ctx in
let nc = match before with
| [] -> assert false
| d :: rem -> insert_dependent env (LocalAssum (get_id d, newt)) [] after @ rem
in
let env' = Environ.reset_with_named_context (val_of_named_context nc) env in
Refine.refine ~unsafe:false { run = begin fun sigma ->
let Sigma (ev, sigma, p) = Evarutil.new_evar env' sigma concl in
let Sigma (ev', sigma, q) = Evarutil.new_evar env sigma newt in
let map d =
let n = get_id d in
if Id.equal n id then ev' else mkVar n
in
let (e, _) = destEvar ev in
Sigma (mkEvar (e, Array.map_of_list map nc), sigma, p +> q)
end }
end } in
Proofview.tclTHEN prf (Proofview.tclFOCUS 2 2 tac)
let newfail n s =
Proofview.tclZERO (Refiner.FailError (n, lazy s))
let cl_rewrite_clause_newtac ?abs ?origsigma ~progress strat clause =
let open Proofview.Notations in
(** For compatibility *)
let beta_red _ sigma c = Reductionops.nf_betaiota sigma c in
let beta = Tactics.reduct_in_concl (beta_red, DEFAULTcast) in
let beta_hyp id = Tactics.reduct_in_hyp beta_red (id, InHyp) in
let treat sigma res =
match res with
| None -> newfail 0 (str "Nothing to rewrite")
| Some None -> if progress then newfail 0 (str"Failed to progress")
else Proofview.tclUNIT ()
| Some (Some res) ->
let (undef, prf, newt) = res in
let fold ev _ accu = if Evd.mem sigma ev then accu else ev :: accu in
let gls = List.rev (Evd.fold_undefined fold undef []) in
match clause, prf with
| Some id, Some p ->
let tac = tclTHENLIST [
Refine.refine ~unsafe:false { run = fun h -> Sigma.here p h };
Proofview.Unsafe.tclNEWGOALS gls;
] in
Proofview.Unsafe.tclEVARS undef <*>
tclTHENFIRST (assert_replacing id newt tac) (beta_hyp id)
| Some id, None ->
Proofview.Unsafe.tclEVARS undef <*>
convert_hyp_no_check (LocalAssum (id, newt)) <*>
beta_hyp id
| None, Some p ->
Proofview.Unsafe.tclEVARS undef <*>
Proofview.Goal.enter { enter = begin fun gl ->
let env = Proofview.Goal.env gl in
let make = { run = begin fun sigma ->
let Sigma (ev, sigma, q) = Evarutil.new_evar env sigma newt in
Sigma (mkApp (p, [| ev |]), sigma, q)
end } in
Refine.refine ~unsafe:false make <*> Proofview.Unsafe.tclNEWGOALS gls
end }
| None, None ->
Proofview.Unsafe.tclEVARS undef <*>
convert_concl_no_check newt DEFAULTcast
in
Proofview.Goal.nf_enter { enter = begin fun gl ->
let concl = Proofview.Goal.concl gl in
let env = Proofview.Goal.env gl in
let sigma = Tacmach.New.project gl in
let ty = match clause with
| None -> concl
| Some id -> Environ.named_type id env
in
let env = match clause with
| None -> env
| Some id ->
(** Only consider variables not depending on [id] *)
let ctx = Environ.named_context env in
let filter decl = not (occur_var_in_decl env id decl) in
let nctx = List.filter filter ctx in
Environ.reset_with_named_context (Environ.val_of_named_context nctx) env
in
try
let res =
cl_rewrite_clause_aux ?abs strat env [] sigma ty clause
in
let sigma = match origsigma with None -> sigma | Some sigma -> sigma in
treat sigma res <*>
(** For compatibility *)
beta <*> Proofview.shelve_unifiable
with
| PretypeError (env, evd, (UnsatisfiableConstraints _ as e)) ->
raise (RewriteFailure (Himsg.explain_pretype_error env evd e))
end }
let tactic_init_setoid () =
try init_setoid (); Proofview.tclUNIT ()
with e when CErrors.noncritical e -> Tacticals.New.tclFAIL 0 (str"Setoid library not loaded")
let cl_rewrite_clause_strat progress strat clause =
tactic_init_setoid () <*>
(if progress then Proofview.tclPROGRESS else fun x -> x)
(Proofview.tclOR
(cl_rewrite_clause_newtac ~progress strat clause)
(fun (e, info) -> match e with
| RewriteFailure e ->
tclZEROMSG (str"setoid rewrite failed: " ++ e)
| Refiner.FailError (n, pp) ->
tclFAIL n (str"setoid rewrite failed: " ++ Lazy.force pp)
| e -> Proofview.tclZERO ~info e))
(** Setoid rewriting when called with "setoid_rewrite" *)
let cl_rewrite_clause l left2right occs clause =
let strat = rewrite_with left2right (general_rewrite_unif_flags ()) l occs in
cl_rewrite_clause_strat true strat clause
(** Setoid rewriting when called with "rewrite_strat" *)
let cl_rewrite_clause_strat strat clause =
cl_rewrite_clause_strat false strat clause
let apply_glob_constr c l2r occs = (); fun ({ state = () ; env = env } as input) ->
let c sigma =
let (sigma, c) = Pretyping.understand_tcc env sigma c in
(sigma, (c, NoBindings))
in
let flags = general_rewrite_unif_flags () in
(apply_lemma l2r flags c None occs).strategy input
let interp_glob_constr_list env =
let make c = (); fun sigma ->
let sigma, c = Pretyping.understand_tcc env sigma c in
(sigma, (c, NoBindings))
in
List.map (fun c -> make c, true, None)
(* Syntax for rewriting with strategies *)
type unary_strategy =
Subterms | Subterm | Innermost | Outermost
| Bottomup | Topdown | Progress | Try | Any | Repeat
type binary_strategy =
| Compose | Choice
type ('constr,'redexpr) strategy_ast =
| StratId | StratFail | StratRefl
| StratUnary of unary_strategy * ('constr,'redexpr) strategy_ast
| StratBinary of binary_strategy
* ('constr,'redexpr) strategy_ast * ('constr,'redexpr) strategy_ast
| StratConstr of 'constr * bool
| StratTerms of 'constr list
| StratHints of bool * string
| StratEval of 'redexpr
| StratFold of 'constr
let rec map_strategy (f : 'a -> 'a2) (g : 'b -> 'b2) : ('a,'b) strategy_ast -> ('a2,'b2) strategy_ast = function
| StratId | StratFail | StratRefl as s -> s
| StratUnary (s, str) -> StratUnary (s, map_strategy f g str)
| StratBinary (s, str, str') -> StratBinary (s, map_strategy f g str, map_strategy f g str')
| StratConstr (c, b) -> StratConstr (f c, b)
| StratTerms l -> StratTerms (List.map f l)
| StratHints (b, id) -> StratHints (b, id)
| StratEval r -> StratEval (g r)
| StratFold c -> StratFold (f c)
let pr_ustrategy = function
| Subterms -> str "subterms"
| Subterm -> str "subterm"
| Innermost -> str "innermost"
| Outermost -> str "outermost"
| Bottomup -> str "bottomup"
| Topdown -> str "topdown"
| Progress -> str "progress"
| Try -> str "try"
| Any -> str "any"
| Repeat -> str "repeat"
let paren p = str "(" ++ p ++ str ")"
let rec pr_strategy prc prr = function
| StratId -> str "id"
| StratFail -> str "fail"
| StratRefl -> str "refl"
| StratUnary (s, str) ->
pr_ustrategy s ++ spc () ++ paren (pr_strategy prc prr str)
| StratBinary (Choice, str1, str2) ->
str "choice" ++ spc () ++ paren (pr_strategy prc prr str1) ++ spc () ++
paren (pr_strategy prc prr str2)
| StratBinary (Compose, str1, str2) ->
pr_strategy prc prr str1 ++ str ";" ++ spc () ++ pr_strategy prc prr str2
| StratConstr (c, true) -> prc c
| StratConstr (c, false) -> str "<-" ++ spc () ++ prc c
| StratTerms cl -> str "terms" ++ spc () ++ pr_sequence prc cl
| StratHints (old, id) ->
let cmd = if old then "old_hints" else "hints" in
str cmd ++ spc () ++ str id
| StratEval r -> str "eval" ++ spc () ++ prr r
| StratFold c -> str "fold" ++ spc () ++ prc c
let rec strategy_of_ast = function
| StratId -> Strategies.id
| StratFail -> Strategies.fail
| StratRefl -> Strategies.refl
| StratUnary (f, s) ->
let s' = strategy_of_ast s in
let f' = match f with
| Subterms -> all_subterms
| Subterm -> one_subterm
| Innermost -> Strategies.innermost
| Outermost -> Strategies.outermost
| Bottomup -> Strategies.bu
| Topdown -> Strategies.td
| Progress -> Strategies.progress
| Try -> Strategies.try_
| Any -> Strategies.any
| Repeat -> Strategies.repeat
in f' s'
| StratBinary (f, s, t) ->
let s' = strategy_of_ast s in
let t' = strategy_of_ast t in
let f' = match f with
| Compose -> Strategies.seq
| Choice -> Strategies.choice
in f' s' t'
| StratConstr (c, b) -> { strategy = apply_glob_constr (fst c) b AllOccurrences }
| StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id
| StratTerms l -> { strategy =
(fun ({ state = () ; env } as input) ->
let l' = interp_glob_constr_list env (List.map fst l) in
(Strategies.lemmas l').strategy input)
}
| StratEval r -> { strategy =
(fun ({ state = () ; env ; evars } as input) ->
let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in
(Strategies.reduce r_interp).strategy { input with
evars = (sigma,cstrevars evars) }) }
| StratFold c -> Strategies.fold_glob (fst c)
(* By default the strategy for "rewrite_db" is top-down *)
let mkappc s l = CAppExpl (Loc.ghost,(None,(Libnames.Ident (Loc.ghost,Id.of_string s)),None),l)
let declare_an_instance n s args =
(((Loc.ghost,Name n),None), Explicit,
CAppExpl (Loc.ghost, (None, Qualid (Loc.ghost, qualid_of_string s),None),
args))
let declare_instance a aeq n s = declare_an_instance n s [a;aeq]
let anew_instance global binders instance fields =
new_instance (Flags.is_universe_polymorphism ())
binders instance (Some (true, CRecord (Loc.ghost,fields)))
~global ~generalize:false ~refine:false None
let declare_instance_refl global binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
in anew_instance global binders instance
[(Ident (Loc.ghost,Id.of_string "reflexivity"),lemma)]
let declare_instance_sym global binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
in anew_instance global binders instance
[(Ident (Loc.ghost,Id.of_string "symmetry"),lemma)]
let declare_instance_trans global binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
in anew_instance global binders instance
[(Ident (Loc.ghost,Id.of_string "transitivity"),lemma)]
let declare_relation ?(binders=[]) a aeq n refl symm trans =
init_setoid ();
let global = not (Locality.make_section_locality (Locality.LocalityFixme.consume ())) in
let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation"
in ignore(anew_instance global binders instance []);
match (refl,symm,trans) with
(None, None, None) -> ()
| (Some lemma1, None, None) ->
ignore (declare_instance_refl global binders a aeq n lemma1)
| (None, Some lemma2, None) ->
ignore (declare_instance_sym global binders a aeq n lemma2)
| (None, None, Some lemma3) ->
ignore (declare_instance_trans global binders a aeq n lemma3)
| (Some lemma1, Some lemma2, None) ->
ignore (declare_instance_refl global binders a aeq n lemma1);
ignore (declare_instance_sym global binders a aeq n lemma2)
| (Some lemma1, None, Some lemma3) ->
let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in
let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder"
in ignore(
anew_instance global binders instance
[(Ident (Loc.ghost,Id.of_string "PreOrder_Reflexive"), lemma1);
(Ident (Loc.ghost,Id.of_string "PreOrder_Transitive"),lemma3)])
| (None, Some lemma2, Some lemma3) ->
let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in
let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER"
in ignore(
anew_instance global binders instance
[(Ident (Loc.ghost,Id.of_string "PER_Symmetric"), lemma2);
(Ident (Loc.ghost,Id.of_string "PER_Transitive"),lemma3)])
| (Some lemma1, Some lemma2, Some lemma3) ->
let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in
let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in
let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
in ignore(
anew_instance global binders instance
[(Ident (Loc.ghost,Id.of_string "Equivalence_Reflexive"), lemma1);
(Ident (Loc.ghost,Id.of_string "Equivalence_Symmetric"), lemma2);
(Ident (Loc.ghost,Id.of_string "Equivalence_Transitive"), lemma3)])
let cHole = CHole (Loc.ghost, None, Misctypes.IntroAnonymous, None)
let proper_projection r ty =
let ctx, inst = decompose_prod_assum ty in
let mor, args = destApp inst in
let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
let app = mkApp (Lazy.force PropGlobal.proper_proj,
Array.append args [| instarg |]) in
it_mkLambda_or_LetIn app ctx
let declare_projection n instance_id r =
let poly = Global.is_polymorphic r in
let env = Global.env () in
let sigma = Evd.from_env env in
let sigma,c = Evd.fresh_global env sigma r in
let ty = Retyping.get_type_of env sigma c in
let term = proper_projection c ty in
let sigma, typ = Typing.type_of env sigma term in
let ctx, typ = decompose_prod_assum typ in
let typ =
let n =
let rec aux t =
match kind_of_term t with
| App (f, [| a ; a' ; rel; rel' |])
when Globnames.is_global (PropGlobal.respectful_ref ()) f ->
succ (aux rel')
| _ -> 0
in
let init =
match kind_of_term typ with
App (f, args) when Globnames.is_global (PropGlobal.respectful_ref ()) f ->
mkApp (f, fst (Array.chop (Array.length args - 2) args))
| _ -> typ
in aux init
in
let ctx,ccl = Reductionops.splay_prod_n (Global.env()) Evd.empty (3 * n) typ
in it_mkProd_or_LetIn ccl ctx
in
let typ = it_mkProd_or_LetIn typ ctx in
let pl, ctx = Evd.universe_context sigma in
let cst =
Declare.definition_entry ~types:typ ~poly ~univs:ctx term
in
ignore(Declare.declare_constant n
(Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition))
let build_morphism_signature env sigma m =
let m,ctx = Constrintern.interp_constr env sigma m in
let sigma = Evd.from_ctx ctx in
let t = Typing.unsafe_type_of env sigma m in
let cstrs =
let rec aux t =
match kind_of_term t with
| Prod (na, a, b) ->
None :: aux b
| _ -> []
in aux t
in
let evars, t', sig_, cstrs =
PropGlobal.build_signature (sigma, Evar.Set.empty) env t cstrs None in
let evd = ref evars in
let _ = List.iter
(fun (ty, rel) ->
Option.iter (fun rel ->
let default = e_app_poly env evd PropGlobal.default_relation [| ty; rel |] in
ignore(e_new_cstr_evar env evd default))
rel)
cstrs
in
let morph = e_app_poly env evd PropGlobal.proper_type [| t; sig_; m |] in
let evd = solve_constraints env !evd in
let evd = Evd.nf_constraints evd in
let m = Evarutil.nf_evars_universes evd morph in
Pretyping.check_evars env Evd.empty evd m;
Evd.evar_universe_context evd, m
let default_morphism sign m =
let env = Global.env () in
let sigma = Evd.from_env env in
let t = Typing.unsafe_type_of env sigma m in
let evars, _, sign, cstrs =
PropGlobal.build_signature (sigma, Evar.Set.empty) env t (fst sign) (snd sign)
in
let evars, morph = app_poly_check env evars PropGlobal.proper_type [| t; sign; m |] in
let evars, mor = resolve_one_typeclass env (goalevars evars) morph in
mor, proper_projection mor morph
let add_setoid global binders a aeq t n =
init_setoid ();
let _lemma_refl = declare_instance_refl global binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
let _lemma_sym = declare_instance_sym global binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
let _lemma_trans = declare_instance_trans global binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
in ignore(
anew_instance global binders instance
[(Ident (Loc.ghost,Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
(Ident (Loc.ghost,Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
(Ident (Loc.ghost,Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])])
let make_tactic name =
let open Tacexpr in
let loc = Loc.ghost in
let tacpath = Libnames.qualid_of_string name in
let tacname = Qualid (loc, tacpath) in
TacArg (loc, TacCall (loc, tacname, []))
let add_morphism_infer glob m n =
init_setoid ();
let poly = Flags.is_universe_polymorphism () in
let instance_id = add_suffix n "_Proper" in
let env = Global.env () in
let evd = Evd.from_env env in
let uctx, instance = build_morphism_signature env evd m in
if Lib.is_modtype () then
let cst = Declare.declare_constant ~internal:Declare.InternalTacticRequest instance_id
(Entries.ParameterEntry
(None,poly,(instance,Evd.evar_context_universe_context uctx),None),
Decl_kinds.IsAssumption Decl_kinds.Logical)
in
add_instance (Typeclasses.new_instance
(Lazy.force PropGlobal.proper_class) None glob
poly (ConstRef cst));
declare_projection n instance_id (ConstRef cst)
else
let kind = Decl_kinds.Global, poly,
Decl_kinds.DefinitionBody Decl_kinds.Instance
in
let tac = make_tactic "Coq.Classes.SetoidTactics.add_morphism_tactic" in
let hook _ = function
| Globnames.ConstRef cst ->
add_instance (Typeclasses.new_instance
(Lazy.force PropGlobal.proper_class) None
glob poly (ConstRef cst));
declare_projection n instance_id (ConstRef cst)
| _ -> assert false
in
let hook = Lemmas.mk_hook hook in
Flags.silently
(fun () ->
Lemmas.start_proof instance_id kind (Evd.from_ctx uctx) instance hook;
ignore (Pfedit.by (Tacinterp.interp tac))) ()
let add_morphism glob binders m s n =
init_setoid ();
let poly = Flags.is_universe_polymorphism () in
let instance_id = add_suffix n "_Proper" in
let instance =
(((Loc.ghost,Name instance_id),None), Explicit,
CAppExpl (Loc.ghost,
(None, Qualid (Loc.ghost, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper"),None),
[cHole; s; m]))
in
let tac = Tacinterp.interp (make_tactic "add_morphism_tactic") in
ignore(new_instance ~global:glob poly binders instance
(Some (true, CRecord (Loc.ghost,[])))
~generalize:false ~tac ~hook:(declare_projection n instance_id) None)
(** Bind to "rewrite" too *)
(** Taken from original setoid_replace, to emulate the old rewrite semantics where
lemmas are first instantiated and then rewrite proceeds. *)
let check_evar_map_of_evars_defs evd =
let metas = Evd.meta_list evd in
let check_freemetas_is_empty rebus =
Evd.Metaset.iter
(fun m ->
if Evd.meta_defined evd m then () else
raise
(Logic.RefinerError (Logic.UnresolvedBindings [Evd.meta_name evd m])))
in
List.iter
(fun (_,binding) ->
match binding with
Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
check_freemetas_is_empty rebus freemetas
| Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
{Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
check_freemetas_is_empty rebus1 freemetas1 ;
check_freemetas_is_empty rebus2 freemetas2
) metas
(* Find a subterm which matches the pattern to rewrite for "rewrite" *)
let unification_rewrite l2r c1 c2 sigma prf car rel but env =
let (sigma,c') =
try
(* ~flags:(false,true) to allow to mark occurrences that must not be
rewritten simply by replacing them with let-defined definitions
in the context *)
Unification.w_unify_to_subterm
~flags:rewrite_unif_flags
env sigma ((if l2r then c1 else c2),but)
with
| ex when Pretype_errors.precatchable_exception ex ->
(* ~flags:(true,true) to make Ring work (since it really
exploits conversion) *)
Unification.w_unify_to_subterm
~flags:rewrite_conv_unif_flags
env sigma ((if l2r then c1 else c2),but)
in
let nf c = Evarutil.nf_evar sigma c in
let c1 = if l2r then nf c' else nf c1
and c2 = if l2r then nf c2 else nf c'
and car = nf car and rel = nf rel in
check_evar_map_of_evars_defs sigma;
let prf = nf prf in
let prfty = nf (Retyping.get_type_of env sigma prf) in
let sort = sort_of_rel env sigma but in
let abs = prf, prfty in
let prf = mkRel 1 in
let res = (car, rel, prf, c1, c2) in
abs, sigma, res, Sorts.is_prop sort
let get_hyp gl (c,l) clause l2r =
let evars = Tacmach.New.project gl in
let env = Tacmach.New.pf_env gl in
let sigma, hi = decompose_applied_relation env evars (c,l) in
let but = match clause with
| Some id -> Tacmach.New.pf_get_hyp_typ id gl
| None -> Evarutil.nf_evar evars (Tacmach.New.pf_concl gl)
in
unification_rewrite l2r hi.c1 hi.c2 sigma hi.prf hi.car hi.rel but env
let general_rewrite_flags = { under_lambdas = false; on_morphisms = true }
(* let rewriteclaustac_key = Profile.declare_profile "cl_rewrite_clause_tac";; *)
(* let cl_rewrite_clause_tac = Profile.profile5 rewriteclaustac_key cl_rewrite_clause_tac *)
(** Setoid rewriting when called with "rewrite" *)
let general_s_rewrite cl l2r occs (c,l) ~new_goals =
Proofview.Goal.nf_enter { enter = begin fun gl ->
let abs, evd, res, sort = get_hyp gl (c,l) cl l2r in
let unify env evars t = unify_abs res l2r sort env evars t in
let app = apply_rule unify occs in
let recstrat aux = Strategies.choice app (subterm true general_rewrite_flags aux) in
let substrat = Strategies.fix recstrat in
let strat = { strategy = fun ({ state = () } as input) ->
let _, res = substrat.strategy { input with state = 0 } in
(), res
}
in
let origsigma = Tacmach.New.project gl in
tactic_init_setoid () <*>
Proofview.tclOR
(tclPROGRESS
(tclTHEN
(Proofview.Unsafe.tclEVARS evd)
(cl_rewrite_clause_newtac ~progress:true ~abs:(Some abs) ~origsigma strat cl)))
(fun (e, info) -> match e with
| RewriteFailure e ->
tclFAIL 0 (str"setoid rewrite failed: " ++ e)
| e -> Proofview.tclZERO ~info e)
end }
let _ = Hook.set Equality.general_setoid_rewrite_clause general_s_rewrite
(** [setoid_]{reflexivity,symmetry,transitivity} tactics *)
let not_declared env ty rel =
tclFAIL 0
(str" The relation " ++ Printer.pr_constr_env env Evd.empty rel ++ str" is not a declared " ++
str ty ++ str" relation. Maybe you need to require the Coq.Classes.RelationClasses library")
let setoid_proof ty fn fallback =
Proofview.Goal.nf_enter { enter = begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Tacmach.New.project gl in
let concl = Proofview.Goal.concl gl in
Proofview.tclORELSE
begin
try
let rel, _, _ = decompose_app_rel env sigma concl in
let open Context.Rel.Declaration in
let (sigma, t) = Typing.type_of env sigma rel in
let car = get_type (List.hd (fst (Reduction.dest_prod env t))) in
(try init_relation_classes () with _ -> raise Not_found);
fn env sigma car rel
with e -> Proofview.tclZERO e
end
begin function
| e ->
Proofview.tclORELSE
fallback
begin function (e', info) -> match e' with
| Hipattern.NoEquationFound ->
begin match e with
| (Not_found, _) ->
let rel, _, _ = decompose_app_rel env sigma concl in
not_declared env ty rel
| (e, info) -> Proofview.tclZERO ~info e
end
| e' -> Proofview.tclZERO ~info e'
end
end
end }
let tac_open ((evm,_), c) tac =
(tclTHEN (Proofview.Unsafe.tclEVARS evm) (tac c))
let poly_proof getp gett env evm car rel =
if Sorts.is_prop (sort_of_rel env evm rel) then
getp env (evm,Evar.Set.empty) car rel
else gett env (evm,Evar.Set.empty) car rel
let setoid_reflexivity =
setoid_proof "reflexive"
(fun env evm car rel ->
tac_open (poly_proof PropGlobal.get_reflexive_proof
TypeGlobal.get_reflexive_proof
env evm car rel)
(fun c -> tclCOMPLETE (apply c)))
(reflexivity_red true)
let setoid_symmetry =
setoid_proof "symmetric"
(fun env evm car rel ->
tac_open
(poly_proof PropGlobal.get_symmetric_proof TypeGlobal.get_symmetric_proof
env evm car rel)
(fun c -> apply c))
(symmetry_red true)
let setoid_transitivity c =
setoid_proof "transitive"
(fun env evm car rel ->
tac_open (poly_proof PropGlobal.get_transitive_proof TypeGlobal.get_transitive_proof
env evm car rel)
(fun proof -> match c with
| None -> eapply proof
| Some c -> apply_with_bindings (proof,ImplicitBindings [ c ])))
(transitivity_red true c)
let setoid_symmetry_in id =
Proofview.V82.tactic (fun gl ->
let ctype = pf_unsafe_type_of gl (mkVar id) in
let binders,concl = decompose_prod_assum ctype in
let (equiv, args) = decompose_app concl in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z -> let l,res = split_last_two (y::z) in x::l, res
| _ -> error "Cannot find an equivalence relation to rewrite."
in
let others,(c1,c2) = split_last_two args in
let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in
let new_hyp' = mkApp (he, [| c2 ; c1 |]) in
let new_hyp = it_mkProd_or_LetIn new_hyp' binders in
Proofview.V82.of_tactic
(tclTHENLAST
(Tactics.assert_after_replacing id new_hyp)
(tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ]))
gl)
let _ = Hook.set Tactics.setoid_reflexivity setoid_reflexivity
let _ = Hook.set Tactics.setoid_symmetry setoid_symmetry
let _ = Hook.set Tactics.setoid_symmetry_in setoid_symmetry_in
let _ = Hook.set Tactics.setoid_transitivity setoid_transitivity
let get_lemma_proof f env evm x y =
let (evm, _), c = f env (evm,Evar.Set.empty) x y in
evm, c
let get_reflexive_proof =
get_lemma_proof PropGlobal.get_reflexive_proof
let get_symmetric_proof =
get_lemma_proof PropGlobal.get_symmetric_proof
let get_transitive_proof =
get_lemma_proof PropGlobal.get_transitive_proof
|