1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Term
open Declarations
open Inductive
open Instantiate
open Environ
open Reduction
open Typeops
open Type_errors
open Indtypes (* pour les erreurs *)
let make_prod_dep dep env = if dep then prod_name env else mkProd
(*******************************************)
(* Building curryfied elimination *)
(*******************************************)
(**********************************************************************)
(* Building case analysis schemes *)
(* Nouvelle version, plus concise mais plus coûteuse à cause de
lift_constructor et lift_inductive_family qui ne se contentent pas de
lifter les paramètres globaux *)
let mis_make_case_com depopt env sigma mispec kind =
let lnamespar = mis_params_ctxt mispec in
let nparams = mis_nparams mispec in
let dep = match depopt with
| None -> mis_sort mispec <> (Prop Null)
| Some d -> d
in
if not (List.exists (base_sort_cmp CONV kind) (mis_kelim mispec)) then
raise
(InductiveError
(NotAllowedCaseAnalysis (dep,kind,mis_inductive mispec)));
let nbargsprod = mis_nrealargs mispec + 1 in
(* Pas génant car env ne sert pas à typer mais juste à renommer les Anonym *)
(* mais pas très joli ... (mais manque get_sort_of à ce niveau) *)
let env' = push_rels lnamespar env in
let indf = make_ind_family (mispec, extended_rel_list 0 lnamespar) in
let constrs = get_constructors indf in
let rec add_branch env k =
if k = mis_nconstr mispec then
let nbprod = k+1 in
let indf = make_ind_family (mispec,extended_rel_list nbprod lnamespar) in
let lnamesar,_ = get_arity indf in
let ci = make_default_case_info mispec in
it_mkLambda_or_LetIn_name env'
(lambda_create env'
(build_dependent_inductive indf,
mkMutCase (ci,
mkRel (nbprod+nbargsprod),
mkRel 1,
rel_vect nbargsprod k)))
lnamesar
else
let cs = lift_constructor (k+1) constrs.(k) in
let t = build_branch_type env dep (mkRel (k+1)) cs in
mkLambda_string "f" t
(add_branch (push_rel (Anonymous, None, t) env) (k+1))
in
let typP = make_arity env' dep indf kind in
it_mkLambda_or_LetIn_name env
(mkLambda_string "P" typP
(add_branch (push_rel (Anonymous,None,typP) env') 0)) lnamespar
(* check if the type depends recursively on one of the inductive scheme *)
(**********************************************************************)
(* Building the recursive elimination *)
(*
* t is the type of the constructor co and recargs is the information on
* the recursive calls. (It is assumed to be in form given by the user).
* build the type of the corresponding branch of the recurrence principle
* assuming f has this type, branch_rec gives also the term
* [x1]..[xk](f xi (F xi) ...) to be put in the corresponding branch of
* the case operation
* FPvect gives for each inductive definition if we want an elimination
* on it with which predicate and which recursive function.
*)
let type_rec_branch dep env sigma (vargs,depPvect,decP) tyi cs recargs =
let make_prod = make_prod_dep dep in
let nparams = List.length vargs in
let process_pos env depK pk =
let rec prec env i sign p =
let p',largs = whd_betadeltaiota_nolet_stack env sigma p in
match kind_of_term p' with
| IsProd (n,t,c) ->
let d = (n,None,t) in
make_prod env (n,t,prec (push_rel d env) (i+1) (d::sign) c)
| IsLetIn (n,b,t,c) ->
let d = (n,Some b,t) in
mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::sign) c)
| IsMutInd (_,_) ->
let (_,realargs) = list_chop nparams largs in
let base = applist (lift i pk,realargs) in
if depK then
mkApp (base, [|applist (mkRel (i+1),extended_rel_list 0 sign)|])
else
base
| _ -> assert false
in
prec env 0 []
in
let rec process_constr env i c recargs nhyps li =
if nhyps > 0 then match kind_of_term c with
| IsProd (n,t,c_0) ->
let (optionpos,rest) =
match recargs with
| [] -> None,[]
| Param _ :: rest -> (None,rest)
| Norec :: rest -> (None,rest)
| Imbr _ :: rest ->
warning "Ignoring recursive call"; (None,rest)
| Mrec j :: rest -> (depPvect.(j),rest)
in
(match optionpos with
| None ->
make_prod env
(n,t,
process_constr (push_rel (n,None,t) env) (i+1) c_0 rest
(nhyps-1) (i::li))
| Some(dep',p) ->
let nP = lift (i+1+decP) p in
let t_0 = process_pos env dep' nP (lift 1 t) in
make_prod_dep (dep or dep') env
(n,t,
mkArrow t_0
(process_constr
(push_rel (n,None,t)
(push_rel (Anonymous,None,t_0) env))
(i+2) (lift 1 c_0) rest (nhyps-1) (i::li))))
| IsLetIn (n,b,t,c_0) ->
mkLetIn (n,b,t,
process_constr
(push_rel (n,Some b,t) env)
(i+1) c_0 recargs (nhyps-1) li)
| _ -> assert false
else
if dep then
let realargs = List.map (fun k -> mkRel (i-k)) (List.rev li) in
let params = List.map (lift i) vargs in
let co = applist (mkMutConstruct cs.cs_cstr,params@realargs) in
mkApp (c, [|co|])
else c
(*
let c', largs = whd_stack c in
match kind_of_term c' with
| IsProd (n,t,c_0) ->
let (optionpos,rest) =
match recargs with
| [] -> None,[]
| Param _ :: rest -> (None,rest)
| Norec :: rest -> (None,rest)
| Imbr _ :: rest ->
warning "Ignoring recursive call"; (None,rest)
| Mrec j :: rest -> (depPvect.(j),rest)
in
(match optionpos with
| None ->
make_prod env
(n,t,
process_constr (push_rel (n,None,t) env) (i+1) c_0 rest
(mkApp (lift 1 co, [|mkRel 1|])))
| Some(dep',p) ->
let nP = lift (i+1+decP) p in
let t_0 = process_pos env dep' nP (lift 1 t) in
make_prod_dep (dep or dep') env
(n,t,
mkArrow t_0
(process_constr
(push_rel (n,None,t)
(push_rel (Anonymous,None,t_0) env))
(i+2) (lift 1 c_0) rest
(mkApp (lift 2 co, [|mkRel 2|])))))
| IsLetIn (n,b,t,c_0) ->
mkLetIn (n,b,t,
process_constr
(push_rel (n,Some b,t) env)
(i+1) c_0 recargs (lift 1 co))
| IsMutInd ((_,tyi),_) ->
let nP = match depPvect.(tyi) with
| Some(_,p) -> lift (i+decP) p
| _ -> assert false in
let (_,realargs) = list_chop nparams largs in
let base = applist (nP,realargs) in
if dep then mkApp (base, [|co|]) else base
| _ -> assert false
*)
in
let nhyps = List.length cs.cs_args in
let nP = match depPvect.(tyi) with
| Some(_,p) -> lift (nhyps+decP) p
| _ -> assert false in
let base = appvect (nP,cs.cs_concl_realargs) in
let c = it_mkProd_or_LetIn base cs.cs_args in
process_constr env 0 c recargs nhyps []
let make_rec_branch_arg env sigma (nparams,fvect,decF) f cstr recargs =
let process_pos env fk =
let rec prec env i hyps p =
let p',largs = whd_betadeltaiota_nolet_stack env sigma p in
match kind_of_term p' with
| IsProd (n,t,c) ->
let d = (n,None,t) in
lambda_name env (n,t,prec (push_rel d env) (i+1) (d::hyps) c)
| IsLetIn (n,b,t,c) ->
let d = (n,Some b,t) in
mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::hyps) c)
| IsMutInd _ ->
let (_,realargs) = list_chop nparams largs
and arg = appvect (mkRel (i+1),extended_rel_vect 0 hyps) in
applist(lift i fk,realargs@[arg])
| _ -> assert false
in
prec env 0 []
in
(* ici, cstrprods est la liste des produits du constructeur instantié *)
let rec process_constr env i f = function
| (n,None,t as d)::cprest, recarg::rest ->
let optionpos =
match recarg with
| Param i -> None
| Norec -> None
| Imbr _ -> None
| Mrec i -> fvect.(i)
in
(match optionpos with
| None ->
lambda_name env
(n,t,process_constr (push_rel d env) (i+1)
(whd_beta (applist (lift 1 f, [(mkRel 1)])))
(cprest,rest))
| Some(_,f_0) ->
let nF = lift (i+1+decF) f_0 in
let arg = process_pos env nF (lift 1 (body_of_type t)) in
lambda_name env
(n,t,process_constr (push_rel d env) (i+1)
(whd_beta (applist (lift 1 f, [(mkRel 1); arg])))
(cprest,rest)))
| (n,Some c,t as d)::cprest, rest ->
mkLetIn
(n,c,t,
process_constr (push_rel d env) (i+1) (lift 1 f)
(cprest,rest))
| [],[] -> f
| _,[] | [],_ -> anomaly "process_constr"
in
process_constr env 0 f (List.rev cstr.cs_args, recargs)
(* Main function *)
let mis_make_indrec env sigma listdepkind mispec =
let nparams = mis_nparams mispec in
let lnamespar = mis_params_ctxt mispec in
let env' = (* push_rels lnamespar *) env in
let nrec = List.length listdepkind in
let depPvec =
Array.create (mis_ntypes mispec) (None : (bool * constr) option) in
let _ =
let rec
assign k = function
| [] -> ()
| (mispeci,dep,_)::rest ->
(Array.set depPvec (mis_index mispeci) (Some(dep,mkRel k));
assign (k-1) rest)
in
assign nrec listdepkind
in
let recargsvec = mis_recargs mispec in
let make_one_rec p =
let makefix nbconstruct =
let rec mrec i ln ltyp ldef = function
| (mispeci,dep,_)::rest ->
let tyi = mis_index mispeci in
let nctyi = mis_nconstr mispeci in (* nb constructeurs du type *)
(* arity in the context P1..P_nrec f1..f_nbconstruct *)
let args = extended_rel_list (nrec+nbconstruct) lnamespar in
let indf = make_ind_family (mispeci,args) in
let lnames,_ = get_arity indf in
let nar = mis_nrealargs mispeci in
let decf = nar+nrec+nbconstruct+nrec in
let dect = nar+nrec+nbconstruct in
let vecfi = rel_vect (dect+1-i-nctyi) nctyi in
let args = extended_rel_list (decf+1) lnamespar in
let constrs = get_constructors (make_ind_family (mispeci,args)) in
let branches =
array_map3
(make_rec_branch_arg env sigma (nparams,depPvec,nar+1))
vecfi constrs recargsvec.(tyi) in
let j = (match depPvec.(tyi) with
| Some (_,c) when isRel c -> destRel c
| _ -> assert false) in
let args = extended_rel_list (nrec+nbconstruct) lnamespar in
let indf = make_ind_family (mispeci,args) in
let deftyi =
it_mkLambda_or_LetIn_name env
(lambda_create env
(build_dependent_inductive
(lift_inductive_family nrec indf),
mkMutCase (make_default_case_info mispeci,
mkRel (dect+j+1), mkRel 1, branches)))
(Sign.lift_rel_context nrec lnames)
in
let ind = build_dependent_inductive indf in
let typtyi =
it_mkProd_or_LetIn_name env
(prod_create env
(ind,
(if dep then
let ext_lnames = (Anonymous,None,ind)::lnames in
let args = extended_rel_list 0 ext_lnames in
applist (mkRel (nbconstruct+nar+j+1), args)
else
let args = extended_rel_list 1 lnames in
applist (mkRel (nbconstruct+nar+j+1), args))))
lnames
in
mrec (i+nctyi) (nar::ln) (typtyi::ltyp) (deftyi::ldef) rest
| [] ->
let fixn = Array.of_list (List.rev ln) in
let fixtyi = Array.of_list (List.rev ltyp) in
let fixdef = Array.of_list (List.rev ldef) in
let names = Array.create nrec (Name(id_of_string "F")) in
mkFix ((fixn,p),(names,fixtyi,fixdef))
in
mrec 0 [] [] []
in
let rec make_branch env i = function
| (mispeci,dep,_)::rest ->
let tyi = mis_index mispeci in
let nconstr = mis_nconstr mispeci in
let rec onerec env j =
if j = nconstr then
make_branch env (i+j) rest
else
let recarg = recargsvec.(tyi).(j) in
let vargs = extended_rel_list (nrec+i+j) lnamespar in
let indf = make_ind_family (mispeci, vargs) in
let cs = get_constructor indf (j+1) in
let p_0 =
type_rec_branch dep env sigma (vargs,depPvec,i+j) tyi cs recarg
in
mkLambda_string "f" p_0
(onerec (push_rel (Anonymous,None,p_0) env) (j+1))
in onerec env 0
| [] ->
makefix i listdepkind
in
let rec put_arity env i = function
| (mispeci,dep,kinds)::rest ->
let indf = make_ind_family (mispeci,extended_rel_list i lnamespar) in
let typP = make_arity env dep indf kinds in
mkLambda_string "P" typP
(put_arity (push_rel (Anonymous,None,typP) env) (i+1) rest)
| [] ->
make_branch env 0 listdepkind
in
let (mispeci,dep,kind) = List.nth listdepkind p in
let env' = push_rels lnamespar env in
if mis_is_recursive_subset
(List.map (fun (mispec,_,_) -> mis_index mispec) listdepkind) mispeci
then
it_mkLambda_or_LetIn_name env (put_arity env' 0 listdepkind) lnamespar
else
mis_make_case_com (Some dep) env sigma mispeci kind
in
list_tabulate make_one_rec nrec
(**********************************************************************)
(* This builds elimination predicate for Case tactic *)
let make_case_com depopt env sigma ity kind =
let mispec = lookup_mind_specif ity env in
mis_make_case_com depopt env sigma mispec kind
let make_case_dep env = make_case_com (Some true) env
let make_case_nodep env = make_case_com (Some false) env
let make_case_gen env = make_case_com None env
(**********************************************************************)
(* [instanciate_indrec_scheme s rec] replace the sort of the scheme
[rec] by [s] *)
let change_sort_arity sort =
let rec drec a = match kind_of_term a with
| IsCast (c,t) -> drec c
| IsProd (n,t,c) -> mkProd (n, t, drec c)
| IsSort _ -> mkSort sort
| _ -> assert false
in
drec
(* [npar] is the number of expected arguments (then excluding letin's) *)
let instanciate_indrec_scheme sort =
let rec drec npar elim =
match kind_of_term elim with
| IsLambda (n,t,c) ->
if npar = 0 then
mkLambda (n, change_sort_arity sort t, c)
else
mkLambda (n, t, drec (npar-1) c)
| IsLetIn (n,b,t,c) -> mkLetIn (n,b,t,drec npar c)
| _ -> anomaly "instanciate_indrec_scheme: wrong elimination type"
in
drec
(**********************************************************************)
(* Interface to build complex Scheme *)
let check_arities listdepkind =
List.iter
(function (mispeci,dep,kinds) ->
let id = mis_typename mispeci in
let kelim = mis_kelim mispeci in
if not (List.exists (base_sort_cmp CONV kinds) kelim) then
raise (InductiveError (BadInduction (dep, id, kinds))))
listdepkind
let build_mutual_indrec env sigma = function
| (mind,dep,s)::lrecspec ->
let ((sp,tyi),_) = mind in
let mispec = lookup_mind_specif mind env in
let listdepkind =
(mispec, dep,s)::
(List.map
(function (mind',dep',s') ->
let ((sp',_),_) = mind' in
if sp=sp' then
(lookup_mind_specif mind' env,dep',s')
else
raise (InductiveError NotMutualInScheme))
lrecspec)
in
let _ = check_arities listdepkind in
mis_make_indrec env sigma listdepkind mispec
| _ -> anomaly "build_indrec expects a non empty list of inductive types"
let build_indrec env sigma mispec =
let kind = mis_sort mispec in
let dep = kind <> Prop Null in
List.hd (mis_make_indrec env sigma [(mispec,dep,kind)] mispec)
(**********************************************************************)
(* To handle old Case/Match syntax in Pretyping *)
(***********************************)
(* To interpret the Match operator *)
(* TODO: check that we can drop universe constraints ? *)
let type_mutind_rec env sigma (IndType (indf,realargs) as ind) pj c =
let p = pj.uj_val in
let (mispec,params) = dest_ind_family indf in
let tyi = mis_index mispec in
if mis_is_recursive_subset [tyi] mispec then
let (dep,_) = find_case_dep_nparams env sigma (c,pj) indf in
let init_depPvec i = if i = tyi then Some(dep,p) else None in
let depPvec = Array.init (mis_ntypes mispec) init_depPvec in
let vargs = Array.of_list params in
let constructors = get_constructors indf in
let recargs = mis_recarg mispec in
let lft = array_map2 (type_rec_branch dep env sigma (params,depPvec,0) tyi)
constructors recargs in
(lft,
if dep then applist(p,realargs@[c])
else applist(p,realargs) )
else
let (p,ra,_) = type_case_branches env sigma ind pj c in
(p,ra)
let type_rec_branches recursive env sigma ind pj c =
if recursive then
type_mutind_rec env sigma ind pj c
else
let (p,ra,_) = type_case_branches env sigma ind pj c in
(p,ra)
|