1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Util
open Names
open Term
open Reduction
open Declarations
open Environ
open Inductive
open Libobject
open Lib
open Nametab
(* calcul des arguments implicites *)
(* la seconde liste est ordonne'e *)
let ord_add x l =
let rec aux l = match l with
| [] -> [x]
| y::l' -> if y > x then x::l else if x = y then l else y::(aux l')
in
aux l
let add_free_rels_until bound m acc =
let rec frec depth acc c = match kind_of_term c with
| Rel n when (n < bound+depth) & (n >= depth) ->
Intset.add (bound+depth-n) acc
| _ -> fold_constr_with_binders succ frec depth acc c
in
frec 1 acc m
(* calcule la liste des arguments implicites *)
let compute_implicits env t =
let rec aux env n t =
match kind_of_term (whd_betadeltaiota env t) with
| Prod (x,a,b) ->
add_free_rels_until n a
(aux (push_rel (x,None,a) env) (n+1) b)
| _ -> Intset.empty
in
match kind_of_term (whd_betadeltaiota env t) with
| Prod (x,a,b) ->
Intset.elements (aux (push_rel (x,None,a) env) 1 b)
| _ -> []
type implicits_list = int list
type implicits =
| Impl_auto of implicits_list
| Impl_manual of implicits_list
| No_impl
let implicit_args = ref false
let make_implicit_args flag = implicit_args := flag
let is_implicit_args () = !implicit_args
let with_implicits b f x =
let oimplicit = !implicit_args in
try
implicit_args := b;
let rslt = f x in
implicit_args := oimplicit;
rslt
with e -> begin
implicit_args := oimplicit;
raise e
end
let implicitely f = with_implicits true f
let using_implicits = function
| No_impl -> with_implicits false
| _ -> with_implicits true
let auto_implicits env ty = Impl_auto (compute_implicits env ty)
let list_of_implicits = function
| Impl_auto l -> l
| Impl_manual l -> l
| No_impl -> []
(*s Constants. *)
let constants_table = ref Spmap.empty
let compute_constant_implicits sp =
let env = Global.env () in
let cb = lookup_constant sp env in
auto_implicits env (body_of_type cb.const_type)
let cache_constant_implicits (_,(sp,imps)) =
constants_table := Spmap.add sp imps !constants_table
let (in_constant_implicits, _) =
let od = {
cache_function = cache_constant_implicits;
load_function = cache_constant_implicits;
open_function = (fun _ -> ());
export_function = (fun x -> Some x) }
in
declare_object ("CONSTANT-IMPLICITS", od)
let declare_constant_implicits sp =
let imps = compute_constant_implicits sp in
add_anonymous_leaf (in_constant_implicits (sp,imps))
let constant_implicits sp =
try Spmap.find sp !constants_table with Not_found -> No_impl
let constant_implicits_list sp =
list_of_implicits (constant_implicits sp)
(*s Inductives and constructors. Their implicit arguments are stored
in an array, indexed by the inductive number, of pairs $(i,v)$ where
$i$ are the implicit arguments of the inductive and $v$ the array of
implicit arguments of the constructors. *)
module Inductive_path = struct
type t = inductive
let compare (spx,ix) (spy,iy) =
let c = ix - iy in if c = 0 then compare spx spy else c
end
module Indmap = Map.Make(Inductive_path)
let inductives_table = ref Indmap.empty
module Construtor_path = struct
type t = constructor
let compare (indx,ix) (indy,iy) =
let c = ix - iy in if c = 0 then Inductive_path.compare indx indy else c
end
module Constrmap = Map.Make(Construtor_path)
let inductives_table = ref Indmap.empty
let constructors_table = ref Constrmap.empty
let cache_inductive_implicits (_,(indp,imps)) =
inductives_table := Indmap.add indp imps !inductives_table
let (in_inductive_implicits, _) =
let od = {
cache_function = cache_inductive_implicits;
load_function = cache_inductive_implicits;
open_function = (fun _ -> ());
export_function = (fun x -> Some x) }
in
declare_object ("INDUCTIVE-IMPLICITS", od)
let cache_constructor_implicits (_,(consp,imps)) =
constructors_table := Constrmap.add consp imps !constructors_table
let (in_constructor_implicits, _) =
let od = {
cache_function = cache_constructor_implicits;
load_function = cache_constructor_implicits;
open_function = (fun _ -> ());
export_function = (fun x -> Some x) }
in
declare_object ("CONSTRUCTOR-IMPLICITS", od)
let compute_mib_implicits sp =
let env = Global.env () in
let mib = lookup_mind sp env in
let ar =
Array.to_list
(Array.map (* No need to lift, arities contain no de Bruijn *)
(fun mip -> (Name mip.mind_typename, None, mip.mind_user_arity))
mib.mind_packets) in
let env_ar = push_rel_context ar env in
let imps_one_inductive mip =
(auto_implicits env (body_of_type mip.mind_user_arity),
Array.map (fun c -> auto_implicits env_ar (body_of_type c))
mip.mind_user_lc)
in
Array.map imps_one_inductive mib.mind_packets
let cache_mib_implicits (_,(sp,mibimps)) =
Array.iteri
(fun i (imps,v) ->
let indp = (sp,i) in
inductives_table := Indmap.add indp imps !inductives_table;
Array.iteri
(fun j imps ->
constructors_table :=
Constrmap.add (indp,succ j) imps !constructors_table) v)
mibimps
let (in_mib_implicits, _) =
let od = {
cache_function = cache_mib_implicits;
load_function = cache_mib_implicits;
open_function = (fun _ -> ());
export_function = (fun x -> Some x) }
in
declare_object ("MIB-IMPLICITS", od)
let declare_mib_implicits sp =
let imps = compute_mib_implicits sp in
add_anonymous_leaf (in_mib_implicits (sp,imps))
let inductive_implicits indp =
try Indmap.find indp !inductives_table with Not_found -> No_impl
let constructor_implicits consp =
try Constrmap.find consp !constructors_table with Not_found -> No_impl
let constructor_implicits_list constr_sp =
list_of_implicits (constructor_implicits constr_sp)
let inductive_implicits_list ind_sp =
list_of_implicits (inductive_implicits ind_sp)
(*s Variables. *)
let var_table = ref Idmap.empty
let compute_var_implicits id =
let env = Global.env () in
let (_,_,ty) = lookup_named id env in
auto_implicits env (body_of_type ty)
let cache_var_implicits (_,(id,imps)) =
var_table := Idmap.add id imps !var_table
let (in_var_implicits, _) =
let od = {
cache_function = cache_var_implicits;
load_function = cache_var_implicits;
open_function = (fun _ -> ());
export_function = (fun x -> Some x) }
in
declare_object ("VARIABLE-IMPLICITS", od)
let declare_var_implicits id =
let imps = compute_var_implicits id in
add_anonymous_leaf (in_var_implicits (id,imps))
let implicits_of_var id =
list_of_implicits (try Idmap.find id !var_table with Not_found -> No_impl)
(*s Implicits of a global reference. *)
let declare_implicits = function
| VarRef sp ->
declare_var_implicits sp
| ConstRef sp ->
declare_constant_implicits sp
| IndRef ((sp,i) as indp) ->
let mib_imps = compute_mib_implicits sp in
let imps = fst mib_imps.(i) in
add_anonymous_leaf (in_inductive_implicits (indp, imps))
| ConstructRef (((sp,i),j) as consp) ->
let mib_imps = compute_mib_implicits sp in
let imps = (snd mib_imps.(i)).(j-1) in
add_anonymous_leaf (in_constructor_implicits (consp, imps))
let context_of_global_reference = function
| VarRef sp -> []
| ConstRef sp -> (Global.lookup_constant sp).const_hyps
| IndRef (sp,_) -> (Global.lookup_mind sp).mind_hyps
| ConstructRef ((sp,_),_) -> (Global.lookup_mind sp).mind_hyps
let check_range n i =
if i<1 or i>n then error ("Bad argument number: "^(string_of_int i))
let declare_manual_implicits r l =
let t = Global.type_of_global r in
let n = List.length (fst (dest_prod (Global.env()) t)) in
if not (list_distinct l) then error ("Some numbers occur several time");
List.iter (check_range n) l;
let l = List.sort (-) l in
match r with
| VarRef id ->
add_anonymous_leaf (in_var_implicits (id,Impl_manual l))
| ConstRef sp ->
add_anonymous_leaf (in_constant_implicits (sp,Impl_manual l))
| IndRef indp ->
add_anonymous_leaf (in_inductive_implicits (indp,Impl_manual l))
| ConstructRef consp ->
add_anonymous_leaf (in_constructor_implicits (consp,Impl_manual l))
(*s Tests if declared implicit *)
let is_implicit_constant sp =
try let _ = Spmap.find sp !constants_table in true with Not_found -> false
let is_implicit_inductive_definition indp =
try let _ = Indmap.find indp !inductives_table in true
with Not_found -> false
let is_implicit_var id =
try let _ = Idmap.find id !var_table in true with Not_found -> false
let implicits_of_global = function
| VarRef id -> implicits_of_var id
| ConstRef sp -> list_of_implicits (constant_implicits sp)
| IndRef isp -> list_of_implicits (inductive_implicits isp)
| ConstructRef csp -> list_of_implicits (constructor_implicits csp)
(*s Registration as global tables and rollback. *)
type frozen_t = implicits Spmap.t
* implicits Indmap.t
* implicits Constrmap.t
* implicits Idmap.t
let init () =
constants_table := Spmap.empty;
inductives_table := Indmap.empty;
constructors_table := Constrmap.empty;
var_table := Idmap.empty
let freeze () =
(!constants_table, !inductives_table,
!constructors_table, !var_table)
let unfreeze (ct,it,const,vt) =
constants_table := ct;
inductives_table := it;
constructors_table := const;
var_table := vt
let _ =
Summary.declare_summary "implicits"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init;
Summary.survive_section = false }
let rollback f x =
let fs = freeze () in
try f x with e -> begin unfreeze fs; raise e end
|