aboutsummaryrefslogtreecommitdiffhomepage
path: root/library/impargs.ml
blob: fe0e2cca47efc23f4cca4fb35127a1c2d436cc33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id$ *)

open Util
open Names
open Libnames
open Term
open Reduction
open Declarations
open Environ
open Inductive
open Libobject
open Lib
open Nametab
open Pp
open Termops
open Topconstr

(*s Flags governing the computation of implicit arguments *)

(* les implicites sont stricts par défaut en v8 *)
let implicit_args = ref false
let strict_implicit_args = ref true
let contextual_implicit_args = ref false

let make_implicit_args flag =
  implicit_args := flag

let make_strict_implicit_args flag =
  strict_implicit_args := flag

let make_contextual_implicit_args flag =
  contextual_implicit_args := flag

let is_implicit_args () = !implicit_args
let is_strict_implicit_args () = !strict_implicit_args
let is_contextual_implicit_args () = !contextual_implicit_args

type implicits_flags = bool * bool * bool

let implicits_flags () = 
  (!implicit_args, !strict_implicit_args, !contextual_implicit_args)

let with_implicits (a,b,c) f x =
  let oa = !implicit_args in
  let ob = !strict_implicit_args in
  let oc = !contextual_implicit_args in
  try 
    implicit_args := a;
    strict_implicit_args := b;
    contextual_implicit_args := c;
    let rslt = f x in 
    implicit_args := oa;
    strict_implicit_args := ob;
    contextual_implicit_args := oc;
    rslt
  with e -> begin
    implicit_args := oa;
    strict_implicit_args := ob;
    contextual_implicit_args := oc;
    raise e
  end

(*s Computation of implicit arguments *)

(* We remember various information about why an argument is (automatically)
   inferable as implicit

- [DepRigid] means that the implicit argument can be found by
  unification along a rigid path (we do not print the arguments of
  this kind if there is enough arguments to infer them)

- [DepFlex] means that the implicit argument can be found by unification
  along a collapsable path only (e.g. as x in (P x) where P is another
  argument) (we do (defensively) print the arguments of this kind)

- [DepFlexAndRigid] means that the least argument from which the
  implicit argument can be inferred is following a collapsable path
  but there is a greater argument from where the implicit argument is
  inferable following a rigid path (useful to know how to print a
  partial application)

  We also consider arguments inferable from the conclusion but it is
  operational only if [conclusion_matters] is true.
*)

type argument_position =
  | Conclusion
  | Hyp of int

type implicit_explanation =
  | DepRigid of argument_position
  | DepFlex of argument_position
  | DepFlexAndRigid of (*flex*) argument_position * (*rig*) argument_position
  | Manual

let argument_less = function
  | Hyp n, Hyp n' -> n<n'
  | Hyp _, Conclusion -> true
  | Conclusion, _ -> false

let update pos rig (na,st) =
  let e =
  if rig then
    match st with
      | None -> DepRigid pos
      | Some (DepRigid n as x) ->
          if argument_less (pos,n) then DepRigid pos else x
      | Some (DepFlexAndRigid (fpos,rpos) as x) ->
          if argument_less (pos,fpos) or pos=fpos then DepRigid pos else
          if argument_less (pos,rpos) then DepFlexAndRigid (fpos,pos) else x
      | Some (DepFlex fpos) ->
          if argument_less (pos,fpos) or pos=fpos then DepRigid pos
          else DepFlexAndRigid (fpos,pos)
      | Some Manual -> assert false
  else
    match st with
      | None -> DepFlex pos
      | Some (DepRigid rpos as x) ->
          if argument_less (pos,rpos) then DepFlexAndRigid (pos,rpos) else x
      | Some (DepFlexAndRigid (fpos,rpos) as x) ->
          if argument_less (pos,fpos) then DepFlexAndRigid (pos,rpos) else x
      | Some (DepFlex fpos as x) ->
          if argument_less (pos,fpos) then DepFlex pos else x
      | Some Manual -> assert false
  in na, Some e

(* modified is_rigid_reference with a truncated env *)
let is_flexible_reference env bound depth f =
  match kind_of_term f with
    | Rel n when n >= bound+depth -> (* inductive type *) false
    | Rel n when n >= depth -> (* previous argument *) true
    | Rel n -> (* since local definitions have been expanded *) false
    | Const kn ->
        let cb = Environ.lookup_constant kn env in
        cb.const_body <> None & not cb.const_opaque
    | Var id ->
        let (_,value,_) = Environ.lookup_named id env in value <> None
    | Ind _ | Construct _ -> false
    |  _ -> true

let push_lift d (e,n) = (push_rel d e,n+1)

(* Precondition: rels in env are for inductive types only *)
let add_free_rels_until strict bound env m pos acc =
  let rec frec rig (env,depth as ed) c =
    match kind_of_term (whd_betadeltaiota env c) with
    | Rel n when (n < bound+depth) & (n >= depth) ->
        acc.(bound+depth-n-1) <- update pos rig (acc.(bound+depth-n-1))
    | App (f,_) when rig & is_flexible_reference env bound depth f ->
	if strict then () else
          iter_constr_with_full_binders push_lift (frec false) ed c
    | Case _ when rig ->
	if strict then () else
          iter_constr_with_full_binders push_lift (frec false) ed c
    | _ ->
        iter_constr_with_full_binders push_lift (frec rig) ed c
  in 
  frec true (env,1) m; acc

(* calcule la liste des arguments implicites *)

let my_concrete_name avoid names t = function
  | Anonymous -> Anonymous, avoid, Anonymous::names
  | na -> 
      let id = Termops.next_name_not_occuring false na avoid names t in
      Name id, id::avoid, Name id::names
  
let compute_implicits_gen strict contextual env t =
  let rec aux env avoid n names t =
    let t = whd_betadeltaiota env t in
    match kind_of_term t with
      | Prod (na,a,b) ->
	  let na',avoid' = Termops.concrete_name false avoid names na b in
	  add_free_rels_until strict n env a (Hyp (n+1))
            (aux (push_rel (na',None,a) env) avoid' (n+1) (na'::names) b)
      | _ -> 
	  let names = List.rev names in
	  let v = Array.map (fun na -> na,None) (Array.of_list names) in
	  if contextual then add_free_rels_until strict n env t Conclusion v
	  else v
  in 
  match kind_of_term (whd_betadeltaiota env t) with 
    | Prod (na,a,b) ->
	let na',avoid = Termops.concrete_name false [] [] na b in
	let v = aux (push_rel (na',None,a) env) avoid 1 [na'] b in
	Array.to_list v
    | _ -> []

let compute_implicits env t =
  let strict = !strict_implicit_args in
  let contextual = !contextual_implicit_args in
  let l = compute_implicits_gen strict contextual env t in
  List.map (function
    | (Name id, Some imp) -> Some (id,imp)
    | (Anonymous, Some _) -> anomaly "Unnamed implicit"
    | _ -> None) l

type implicit_status =
    (* None = Not implicit *)
    (identifier * implicit_explanation) option

type implicits_list = implicit_status list

let is_status_implicit = function
  | None -> false
  | _ -> true

let name_of_implicit = function
  | None -> anomaly "Not an implicit argument"
  | Some (id,_) -> id

(* [in_ctx] means we now the expected type, [n] is the index of the argument *)
let is_inferable_implicit in_ctx n = function
  | None -> false
  | Some (_,DepRigid (Hyp p)) -> n >= p
  | Some (_,DepFlex (Hyp p)) -> false
  | Some (_,DepFlexAndRigid (_,Hyp q)) -> n >= q
  | Some (_,DepRigid Conclusion) -> in_ctx
  | Some (_,DepFlex Conclusion) -> false
  | Some (_,DepFlexAndRigid (_,Conclusion)) -> false
  | Some (_,Manual) -> true

let positions_of_implicits =
  let rec aux n = function
      [] -> []
    | Some _ :: l -> n :: aux (n+1) l
    | None :: l -> aux (n+1) l
  in aux 1

type strict_flag = bool     (* true = strict *)
type contextual_flag = bool (* true = contextual *)

type implicits =
  | Impl_auto of strict_flag * contextual_flag * implicits_list
  | Impl_manual of implicits_list
  | No_impl

let auto_implicits env ty =
  if !implicit_args then
    let l = compute_implicits env ty in
    Impl_auto (!strict_implicit_args,!contextual_implicit_args,l)
  else
    No_impl

let list_of_implicits = function 
  | Impl_auto (_,_,l) -> l
  | Impl_manual l -> l
  | No_impl -> []

(*s Constants. *)

let constants_table = ref Cmap.empty

let compute_constant_implicits kn =
  let env = Global.env () in
  let cb = lookup_constant kn env in
  auto_implicits env (body_of_type cb.const_type)

let constant_implicits sp =
  try Cmap.find sp !constants_table with Not_found -> No_impl

(*s Inductives and constructors. Their implicit arguments are stored
   in an array, indexed by the inductive number, of pairs $(i,v)$ where
   $i$ are the implicit arguments of the inductive and $v$ the array of 
   implicit arguments of the constructors. *)

let inductives_table = ref Indmap.empty

let constructors_table = ref Constrmap.empty

let compute_mib_implicits kn =
  let env = Global.env () in
  let mib = lookup_mind kn env in
  let ar =
    Array.to_list
      (Array.map  (* No need to lift, arities contain no de Bruijn *)
        (fun mip -> (Name mip.mind_typename, None, mip.mind_user_arity))
        mib.mind_packets) in
  let env_ar = push_rel_context ar env in
  let imps_one_inductive i mip =
    let ind = (kn,i) in
    ((IndRef ind,auto_implicits env (body_of_type mip.mind_user_arity)),
     Array.mapi (fun j c -> (ConstructRef (ind,j+1),auto_implicits env_ar c))
       mip.mind_user_lc)
  in
  Array.mapi imps_one_inductive mib.mind_packets

let inductive_implicits indp =
  try Indmap.find indp !inductives_table with Not_found -> No_impl

let constructor_implicits consp =
  try Constrmap.find consp !constructors_table with Not_found -> No_impl

(*s Variables. *)

let var_table = ref Idmap.empty

let compute_var_implicits id =
  let env = Global.env () in
  let (_,_,ty) = lookup_named id env in
  auto_implicits env ty

let var_implicits id = 
  try Idmap.find id !var_table with Not_found -> No_impl

(* Implicits of a global reference. *)

let compute_global_implicits = function
  | VarRef id -> compute_var_implicits id
  | ConstRef kn -> compute_constant_implicits kn
  | IndRef (kn,i) -> 
      let ((_,imps),_) = (compute_mib_implicits kn).(i) in imps
  | ConstructRef ((kn,i),j) -> 
      let (_,cimps) = (compute_mib_implicits kn).(i) in snd cimps.(j-1)

(* Caching implicits *)

let cache_implicits_decl (r,imps) =
  match r with
  | VarRef id -> 
      var_table := Idmap.add id imps !var_table
  | ConstRef kn ->
      constants_table := Cmap.add kn imps !constants_table
  | IndRef indp ->
      inductives_table := Indmap.add indp imps !inductives_table;
  | ConstructRef consp -> 
      constructors_table := Constrmap.add consp imps !constructors_table

let load_implicits _ (_,l) = List.iter cache_implicits_decl l

let cache_implicits o =
  load_implicits 1 o

let subst_implicits_decl subst (r,imps as o) =
  let r' = fst (subst_global subst r) in if r==r' then o else (r',imps)

let subst_implicits (_,subst,l) =
  list_smartmap (subst_implicits_decl subst) l

let (in_implicits, _) =
  declare_object {(default_object "IMPLICITS") with 
    cache_function = cache_implicits;
    load_function = load_implicits;
    subst_function = subst_implicits;
    classify_function = (fun (_,x) -> Substitute x);
    export_function = (fun x -> Some x) }

let declare_implicits_gen r = 
  add_anonymous_leaf (in_implicits [r,compute_global_implicits r])

let declare_implicits r =
  with_implicits
    (true,!strict_implicit_args,!contextual_implicit_args)
    declare_implicits_gen r

let declare_var_implicits id =
  if !implicit_args then declare_implicits_gen (VarRef id)

let declare_constant_implicits kn =
  if !implicit_args then declare_implicits_gen (ConstRef kn)

let declare_mib_implicits kn =
  if !implicit_args then
  let imps = compute_mib_implicits kn in
  let imps = array_map_to_list
    (fun (ind,cstrs) -> ind::(Array.to_list cstrs)) imps in
  add_anonymous_leaf (in_implicits (List.flatten imps))

let implicits_of_global_gen = function
  | VarRef id -> var_implicits id
  | ConstRef sp -> constant_implicits sp
  | IndRef isp -> inductive_implicits isp
  | ConstructRef csp ->	constructor_implicits csp

let implicits_of_global r =
  list_of_implicits (implicits_of_global_gen r)

(* Declare manual implicits *)

let rec list_remove a = function
  | b::l when a = b -> l
  | b::l -> b::list_remove a l
  | [] -> raise Not_found

let set_implicit id imp =
  Some (id,match imp with None -> Manual | Some imp -> imp)

let declare_manual_implicits r l =
  let t = Global.type_of_global r in
  let autoimps = compute_implicits_gen false true (Global.env()) t in
  let n = List.length autoimps in
  if not (list_distinct l) then 
    error ("Some parameters are referred more than once");
  (* Compare with automatic implicits to recover printing data and names *)
  let rec merge k l = function
    | (Name id,imp)::imps ->
	let l',imp =
	  try list_remove (ExplByPos k) l, set_implicit id imp
	  with Not_found ->
	  try list_remove (ExplByName id) l, set_implicit id imp
	  with Not_found ->
	  l, None in
	imp :: merge (k+1) l' imps
    | (Anonymous,imp)::imps -> 
	None :: merge (k+1) l imps
    | [] when l = [] -> []
    | _ ->
	match List.hd l with
	| ExplByName id ->
	    error ("Wrong or not dependent implicit argument name: "^(string_of_id id))
	| ExplByPos i ->
	    if i<1 or i>n then 
	      error ("Bad implicit argument number: "^(string_of_int i))
	    else
	      errorlabstrm ""
		(str "Cannot set implicit argument number " ++ int i ++
		 str ": it has no name") in
  let l = Impl_manual (merge 1 l autoimps) in
  add_anonymous_leaf (in_implicits [r,l])

(* Tests if declared implicit *)

let test = function
  | No_impl | Impl_manual _ -> false,false,false
  | Impl_auto (s,c,_) -> true,s,c

let test_if_implicit find a =
  try let b = find a in test b
  with Not_found -> (false,false,false)
    
let is_implicit_constant sp =
  test_if_implicit (Cmap.find sp) !constants_table

let is_implicit_inductive_definition indp =
  test_if_implicit (Indmap.find (indp,0)) !inductives_table

let is_implicit_var id =
  test_if_implicit (Idmap.find id) !var_table

(*s Registration as global tables *)

let init () =
  constants_table := Cmap.empty;
  inductives_table := Indmap.empty;
  constructors_table := Constrmap.empty;
  var_table := Idmap.empty

let freeze () =
  (!constants_table, !inductives_table, 
   !constructors_table, !var_table)

let unfreeze (ct,it,const,vt) =
  constants_table := ct;
  inductives_table := it;
  constructors_table := const;
  var_table := vt

let _ = 
  Summary.declare_summary "implicits"
    { Summary.freeze_function = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function = init;
      Summary.survive_module = false;
      Summary.survive_section = false }