1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Declarations
open Entries
open Libnames
open Libobject
open Mod_subst
open Vernacexpr
open Misctypes
(** {6 Inlining levels} *)
let default_inline () = Some (Flags.get_inline_level ())
let inl2intopt = function
| NoInline -> None
| InlineAt i -> Some i
| DefaultInline -> default_inline ()
(** {6 Substitutive objects}
- The list of bound identifiers is nonempty only if the objects
are owned by a functor
- Then comes either the object segment itself (for interactive
modules), or a compact way to store derived objects (path to
a earlier module + subtitution).
*)
type algebraic_objects =
| Objs of Lib.lib_objects
| Ref of module_path * substitution
type substitutive_objects = MBId.t list * algebraic_objects
(** ModSubstObjs : a cache of module substitutive objects
This table is common to modules and module types.
- For a Module M:=N, the objects of N will be reloaded
with M after substitution.
- For a Module M:SIG:=..., the module M gets its objects from SIG
Invariants:
- A alias (i.e. a module path inside a Ref constructor) should
never lead to another alias, but rather to a concrete Objs
constructor.
We will plug later a handler dealing with missing entries in the
cache. Such missing entries may come from inner parts of module
types, which aren't registered by the standard libobject machinery.
*)
module ModSubstObjs :
sig
val set : module_path -> substitutive_objects -> unit
val get : module_path -> substitutive_objects
val set_missing_handler : (module_path -> substitutive_objects) -> unit
end =
struct
let table =
Summary.ref (MPmap.empty : substitutive_objects MPmap.t)
~name:"MODULE-SUBSTOBJS"
let missing_handler = ref (fun mp -> assert false)
let set_missing_handler f = (missing_handler := f)
let set mp objs = (table := MPmap.add mp objs !table)
let get mp =
try MPmap.find mp !table with Not_found -> !missing_handler mp
end
(** Some utilities about substitutive objects :
substitution, expansion *)
let sobjs_no_functor (mbids,_) = List.is_empty mbids
let subst_aobjs sub = function
| Objs o -> Objs (Lib.subst_objects sub o)
| Ref (mp, sub0) -> Ref (mp, join sub0 sub)
let subst_sobjs sub (mbids,aobjs) = (mbids, subst_aobjs sub aobjs)
let expand_aobjs = function
| Objs o -> o
| Ref (mp, sub) ->
match ModSubstObjs.get mp with
| (_,Objs o) -> Lib.subst_objects sub o
| _ -> assert false (* Invariant : any alias points to concrete objs *)
let expand_sobjs (_,aobjs) = expand_aobjs aobjs
(** {6 ModObjs : a cache of module objects}
For each module, we also store a cache of
"prefix", "substituted objects", "keep objects".
This is used for instance to implement the "Import" command.
substituted objects :
roughly the objects above after the substitution - we need to
keep them to call open_object when the module is opened (imported)
keep objects :
The list of non-substitutive objects - as above, for each of
them we will call open_object when the module is opened
(Some) Invariants:
* If the module is a functor, it won't appear in this cache.
* Module objects in substitutive_objects part have empty substituted
objects.
* Modules which where created with Module M:=mexpr or with
Module M:SIG. ... End M. have the keep list empty.
*)
type module_objects = object_prefix * Lib.lib_objects * Lib.lib_objects
module ModObjs :
sig
val set : module_path -> module_objects -> unit
val get : module_path -> module_objects (* may raise Not_found *)
val all : unit -> module_objects MPmap.t
end =
struct
let table =
Summary.ref (MPmap.empty : module_objects MPmap.t)
~name:"MODULE-OBJS"
let set mp objs = (table := MPmap.add mp objs !table)
let get mp = MPmap.find mp !table
let all () = !table
end
(** {6 Name management}
Auxiliary functions to transform full_path and kernel_name given
by Lib into module_path and DirPath.t needed for modules
*)
let mp_of_kn kn =
let mp,sec,l = repr_kn kn in
assert (DirPath.is_empty sec);
MPdot (mp,l)
let dir_of_sp sp =
let dir,id = repr_path sp in
add_dirpath_suffix dir id
(** {6 Declaration of module substitutive objects} *)
(** These functions register the visibility of the module and iterates
through its components. They are called by plenty of module functions *)
let consistency_checks exists dir dirinfo =
if exists then
let globref =
try Nametab.locate_dir (qualid_of_dirpath dir)
with Not_found ->
anomaly (pr_dirpath dir ++ str " should already exist!")
in
assert (eq_global_dir_reference globref dirinfo)
else
if Nametab.exists_dir dir then
anomaly (pr_dirpath dir ++ str " already exists")
let compute_visibility exists i =
if exists then Nametab.Exactly i else Nametab.Until i
(** Iterate some function [iter_objects] on all components of a module *)
let do_module exists iter_objects i dir mp sobjs kobjs =
let prefix = (dir,(mp,DirPath.empty)) in
let dirinfo = DirModule prefix in
consistency_checks exists dir dirinfo;
Nametab.push_dir (compute_visibility exists i) dir dirinfo;
ModSubstObjs.set mp sobjs;
(* If we're not a functor, let's iter on the internal components *)
if sobjs_no_functor sobjs then begin
let objs = expand_sobjs sobjs in
ModObjs.set mp (prefix,objs,kobjs);
iter_objects (i+1) prefix objs;
iter_objects (i+1) prefix kobjs
end
let do_module' exists iter_objects i ((sp,kn),sobjs) =
do_module exists iter_objects i (dir_of_sp sp) (mp_of_kn kn) sobjs []
(** Nota: Interactive modules and module types cannot be recached!
This used to be checked here via a flag along the substobjs. *)
let cache_module = do_module' false Lib.load_objects 1
let load_module = do_module' false Lib.load_objects
let open_module = do_module' true Lib.open_objects
let subst_module (subst,sobjs) = subst_sobjs subst sobjs
let classify_module sobjs = Substitute sobjs
let (in_module : substitutive_objects -> obj),
(out_module : obj -> substitutive_objects) =
declare_object_full {(default_object "MODULE") with
cache_function = cache_module;
load_function = load_module;
open_function = open_module;
subst_function = subst_module;
classify_function = classify_module }
(** {6 Declaration of module keep objects} *)
let cache_keep _ = anomaly (Pp.str "This module should not be cached!")
let load_keep i ((sp,kn),kobjs) =
(* Invariant : seg isn't empty *)
let dir = dir_of_sp sp and mp = mp_of_kn kn in
let prefix = (dir,(mp,DirPath.empty)) in
let prefix',sobjs,kobjs0 =
try ModObjs.get mp
with Not_found -> assert false (* a substobjs should already be loaded *)
in
assert (eq_op prefix' prefix);
assert (List.is_empty kobjs0);
ModObjs.set mp (prefix,sobjs,kobjs);
Lib.load_objects i prefix kobjs
let open_keep i ((sp,kn),kobjs) =
let dir = dir_of_sp sp and mp = mp_of_kn kn in
let prefix = (dir,(mp,DirPath.empty)) in
Lib.open_objects i prefix kobjs
let in_modkeep : Lib.lib_objects -> obj =
declare_object {(default_object "MODULE KEEP") with
cache_function = cache_keep;
load_function = load_keep;
open_function = open_keep }
(** {6 Declaration of module type substitutive objects} *)
(** Nota: Interactive modules and module types cannot be recached!
This used to be checked more properly here. *)
let do_modtype i sp mp sobjs =
if Nametab.exists_modtype sp then
anomaly (pr_path sp ++ str " already exists");
Nametab.push_modtype (Nametab.Until i) sp mp;
ModSubstObjs.set mp sobjs
let cache_modtype ((sp,kn),sobjs) = do_modtype 1 sp (mp_of_kn kn) sobjs
let load_modtype i ((sp,kn),sobjs) = do_modtype i sp (mp_of_kn kn) sobjs
let subst_modtype (subst,sobjs) = subst_sobjs subst sobjs
let classify_modtype sobjs = Substitute sobjs
let open_modtype i ((sp,kn),_) =
let mp = mp_of_kn kn in
let mp' =
try Nametab.locate_modtype (qualid_of_path sp)
with Not_found ->
anomaly (pr_path sp ++ str " should already exist!");
in
assert (ModPath.equal mp mp');
Nametab.push_modtype (Nametab.Exactly i) sp mp
let (in_modtype : substitutive_objects -> obj),
(out_modtype : obj -> substitutive_objects) =
declare_object_full {(default_object "MODULE TYPE") with
cache_function = cache_modtype;
open_function = open_modtype;
load_function = load_modtype;
subst_function = subst_modtype;
classify_function = classify_modtype }
(** {6 Declaration of substitutive objects for Include} *)
let do_include do_load do_open i ((sp,kn),aobjs) =
let dir = Libnames.dirpath sp in
let mp = KerName.modpath kn in
let prefix = (dir,(mp,DirPath.empty)) in
let o = expand_aobjs aobjs in
if do_load then Lib.load_objects i prefix o;
if do_open then Lib.open_objects i prefix o
let cache_include = do_include true true 1
let load_include = do_include true false
let open_include = do_include false true
let subst_include (subst,aobjs) = subst_aobjs subst aobjs
let classify_include aobjs = Substitute aobjs
let (in_include : algebraic_objects -> obj),
(out_include : obj -> algebraic_objects) =
declare_object_full {(default_object "INCLUDE") with
cache_function = cache_include;
load_function = load_include;
open_function = open_include;
subst_function = subst_include;
classify_function = classify_include }
(** {6 Handler for missing entries in ModSubstObjs} *)
(** Since the inner of Module Types are not added by default to
the ModSubstObjs table, we compensate this by explicit traversal
of Module Types inner objects when needed. Quite a hack... *)
let mp_id mp id = MPdot (mp, Label.of_id id)
let rec register_mod_objs mp (id,obj) = match object_tag obj with
| "MODULE" -> ModSubstObjs.set (mp_id mp id) (out_module obj)
| "MODULE TYPE" -> ModSubstObjs.set (mp_id mp id) (out_modtype obj)
| "INCLUDE" ->
List.iter (register_mod_objs mp) (expand_aobjs (out_include obj))
| _ -> ()
let handle_missing_substobjs mp = match mp with
| MPdot (mp',l) ->
let objs = expand_sobjs (ModSubstObjs.get mp') in
List.iter (register_mod_objs mp') objs;
ModSubstObjs.get mp
| _ ->
assert false (* Only inner parts of module types should be missing *)
let () = ModSubstObjs.set_missing_handler handle_missing_substobjs
(** {6 From module expression to substitutive objects *)
(** Turn a chain of [MSEapply] into the head module_path and the
list of module_path parameters (deepest param coming first).
The left part of a [MSEapply] must be either [MSEident] or
another [MSEapply]. *)
let get_applications mexpr =
let rec get params = function
| MEident mp -> mp, params
| MEapply (fexpr, mp) -> get (mp::params) fexpr
| MEwith _ -> error "Non-atomic functor application."
in get [] mexpr
(** Create the substitution corresponding to some functor applications *)
let rec compute_subst env mbids sign mp_l inl =
match mbids,mp_l with
| _,[] -> mbids,empty_subst
| [],r -> error "Application of a functor with too few arguments."
| mbid::mbids,mp::mp_l ->
let farg_id, farg_b, fbody_b = Modops.destr_functor sign in
let mb = Environ.lookup_module mp env in
let mbid_left,subst = compute_subst env mbids fbody_b mp_l inl in
let resolver =
if Modops.is_functor mb.mod_type then empty_delta_resolver
else
Modops.inline_delta_resolver env inl mp farg_id farg_b mb.mod_delta
in
mbid_left,join (map_mbid mbid mp resolver) subst
(** Create the objects of a "with Module" structure. *)
let rec replace_module_object idl mp0 objs0 mp1 objs1 =
match idl, objs0 with
| _,[] -> []
| id::idl,(id',obj)::tail when Id.equal id id' ->
assert (object_has_tag obj "MODULE");
let mp_id = MPdot(mp0, Label.of_id id) in
let objs = match idl with
| [] -> Lib.subst_objects (map_mp mp1 mp_id empty_delta_resolver) objs1
| _ ->
let objs_id = expand_sobjs (out_module obj) in
replace_module_object idl mp_id objs_id mp1 objs1
in
(id, in_module ([], Objs objs))::tail
| idl,lobj::tail -> lobj::replace_module_object idl mp0 tail mp1 objs1
let type_of_mod mp env = function
|true -> (Environ.lookup_module mp env).mod_type
|false -> (Environ.lookup_modtype mp env).typ_expr
let rec get_module_path = function
|MEident mp -> mp
|MEwith (me,_) -> get_module_path me
|MEapply (me,_) -> get_module_path me
(** Substitutive objects of a module expression (or module type) *)
let rec get_module_sobjs is_mod env inl = function
|MEident mp ->
begin match ModSubstObjs.get mp with
|(mbids,Objs _) when not (ModPath.is_bound mp) ->
(mbids,Ref (mp, empty_subst)) (* we create an alias *)
|sobjs -> sobjs
end
|MEwith (mty, WithDef _) -> get_module_sobjs is_mod env inl mty
|MEwith (mty, WithMod (idl,mp1)) ->
assert (not is_mod);
let sobjs0 = get_module_sobjs is_mod env inl mty in
assert (sobjs_no_functor sobjs0);
(* For now, we expanse everything, to be safe *)
let mp0 = get_module_path mty in
let objs0 = expand_sobjs sobjs0 in
let objs1 = expand_sobjs (ModSubstObjs.get mp1) in
([], Objs (replace_module_object idl mp0 objs0 mp1 objs1))
|MEapply _ as me ->
let mp1, mp_l = get_applications me in
let mbids, aobjs = get_module_sobjs is_mod env inl (MEident mp1) in
let typ = type_of_mod mp1 env is_mod in
let mbids_left,subst = compute_subst env mbids typ mp_l inl in
(mbids_left, subst_aobjs subst aobjs)
let get_functor_sobjs is_mod env inl (params,mexpr) =
let (mbids, aobjs) = get_module_sobjs is_mod env inl mexpr in
(List.map fst params @ mbids, aobjs)
(** {6 Handling of module parameters} *)
(** For printing modules, [process_module_binding] adds names of
bound module (and its components) to Nametab. It also loads
objects associated to it. *)
let process_module_binding mbid me =
let dir = DirPath.make [MBId.to_id mbid] in
let mp = MPbound mbid in
let sobjs = get_module_sobjs false (Global.env()) (default_inline ()) me in
let subst = map_mp (get_module_path me) mp empty_delta_resolver in
let sobjs = subst_sobjs subst sobjs in
do_module false Lib.load_objects 1 dir mp sobjs []
(** Process a declaration of functor parameter(s) (Id1 .. Idn : Typ)
i.e. possibly multiple names with the same module type.
Global environment is updated on the fly.
Objects in these parameters are also loaded.
Output is accumulated on top of [acc] (in reverse order). *)
let intern_arg interp_modast acc (idl,(typ,ann)) =
let inl = inl2intopt ann in
let lib_dir = Lib.library_dp() in
let env = Global.env() in
let mty,_ = interp_modast env ModType typ in
let sobjs = get_module_sobjs false env inl mty in
let mp0 = get_module_path mty in
List.fold_left
(fun acc (_,id) ->
let dir = DirPath.make [id] in
let mbid = MBId.make lib_dir id in
let mp = MPbound mbid in
let resolver = Global.add_module_parameter mbid mty inl in
let sobjs = subst_sobjs (map_mp mp0 mp resolver) sobjs in
do_module false Lib.load_objects 1 dir mp sobjs [];
(mbid,mty,inl)::acc)
acc idl
(** Process a list of declarations of functor parameters
(Id11 .. Id1n : Typ1)..(Idk1 .. Idkm : Typk)
Global environment is updated on the fly.
The calls to [interp_modast] should be interleaved with these
env updates, otherwise some "with Definition" could be rejected.
Returns a list of mbids and entries (in reversed order).
This used to be a [List.concat (List.map ...)], but this should
be more efficient and independent of [List.map] eval order.
*)
let intern_args interp_modast params =
List.fold_left (intern_arg interp_modast) [] params
(** {6 Auxiliary functions concerning subtyping checks} *)
let check_sub mtb sub_mtb_l =
(* The constraints are checked and forgot immediately : *)
ignore (List.fold_right
(fun sub_mtb env ->
Environ.add_constraints
(Subtyping.check_subtypes env mtb sub_mtb) env)
sub_mtb_l (Global.env()))
(** This function checks if the type calculated for the module [mp] is
a subtype of all signatures in [sub_mtb_l]. Uses only the global
environment. *)
let check_subtypes mp sub_mtb_l =
let mb =
try Global.lookup_module mp with Not_found -> assert false
in
let mtb = Modops.module_type_of_module mb in
check_sub mtb sub_mtb_l
(** Same for module type [mp] *)
let check_subtypes_mt mp sub_mtb_l =
let mtb =
try Global.lookup_modtype mp with Not_found -> assert false
in
check_sub mtb sub_mtb_l
(** Create a params entry.
In [args], the youngest module param now comes first. *)
let mk_params_entry args =
List.rev_map (fun (mbid,arg_t,_) -> (mbid,arg_t)) args
(** Create a functor type struct.
In [args], the youngest module param now comes first. *)
let mk_funct_type env args seb0 =
List.fold_left
(fun seb (arg_id,arg_t,arg_inl) ->
let mp = MPbound arg_id in
let arg_t = Mod_typing.translate_modtype env mp arg_inl ([],arg_t) in
MoreFunctor(arg_id,arg_t,seb))
seb0 args
(** Prepare the module type list for check of subtypes *)
let build_subtypes interp_modast env mp args mtys =
List.map
(fun (m,ann) ->
let inl = inl2intopt ann in
let mte,_ = interp_modast env ModType m in
let mtb = Mod_typing.translate_modtype env mp inl ([],mte) in
{ mtb with typ_expr = mk_funct_type env args mtb.typ_expr })
mtys
(** {6 Current module information}
This information is stored by each [start_module] for use
in a later [end_module]. *)
type current_module_info = {
cur_typ : (module_struct_entry * int option) option; (** type via ":" *)
cur_typs : module_type_body list (** types via "<:" *)
}
let default_module_info = { cur_typ = None; cur_typs = [] }
let openmod_info = Summary.ref default_module_info ~name:"MODULE-INFO"
(** {6 Current module type information}
This information is stored by each [start_modtype] for use
in a later [end_modtype]. *)
let openmodtype_info =
Summary.ref ([] : module_type_body list) ~name:"MODTYPE-INFO"
(** {6 Modules : start, end, declare} *)
module RawModOps = struct
let start_module interp_modast export id args res fs =
let mp = Global.start_module id in
let arg_entries_r = intern_args interp_modast args in
let env = Global.env () in
let res_entry_o, subtyps = match res with
| Enforce (res,ann) ->
let inl = inl2intopt ann in
let mte,_ = interp_modast env ModType res in
(* We check immediately that mte is well-formed *)
let _ = Mod_typing.translate_mse env None inl mte in
Some (mte,inl), []
| Check resl ->
None, build_subtypes interp_modast env mp arg_entries_r resl
in
openmod_info := { cur_typ = res_entry_o; cur_typs = subtyps };
let prefix = Lib.start_module export id mp fs in
Nametab.push_dir (Nametab.Until 1) (fst prefix) (DirOpenModule prefix);
Lib.add_frozen_state (); mp
let end_module () =
let oldoname,oldprefix,fs,lib_stack = Lib.end_module () in
let substitute, keep, special = Lib.classify_segment lib_stack in
let m_info = !openmod_info in
(* For sealed modules, we use the substitutive objects of their signatures *)
let sobjs0, keep, special = match m_info.cur_typ with
| None -> ([], Objs substitute), keep, special
| Some (mty, inline) ->
get_module_sobjs false (Global.env()) inline mty, [], []
in
let id = basename (fst oldoname) in
let mp,mbids,resolver = Global.end_module fs id m_info.cur_typ in
let sobjs = let (ms,objs) = sobjs0 in (mbids@ms,objs) in
check_subtypes mp m_info.cur_typs;
(* We substitute objects if the module is sealed by a signature *)
let sobjs =
match m_info.cur_typ with
| None -> sobjs
| Some (mty, _) ->
subst_sobjs (map_mp (get_module_path mty) mp resolver) sobjs
in
let node = in_module sobjs in
(* We add the keep objects, if any, and if this isn't a functor *)
let objects = match keep, mbids with
| [], _ | _, _ :: _ -> special@[node]
| _ -> special@[node;in_modkeep keep]
in
let newoname = Lib.add_leaves id objects in
(* Name consistency check : start_ vs. end_module, kernel vs. library *)
assert (eq_full_path (fst newoname) (fst oldoname));
assert (ModPath.equal (mp_of_kn (snd newoname)) mp);
Lib.add_frozen_state () (* to prevent recaching *);
mp
let declare_module interp_modast id args res mexpr_o fs =
(* We simulate the beginning of an interactive module,
then we adds the module parameters to the global env. *)
let mp = Global.start_module id in
let arg_entries_r = intern_args interp_modast args in
let params = mk_params_entry arg_entries_r in
let env = Global.env () in
let mty_entry_o, subs, inl_res = match res with
| Enforce (mty,ann) ->
Some (fst (interp_modast env ModType mty)), [], inl2intopt ann
| Check mtys ->
None, build_subtypes interp_modast env mp arg_entries_r mtys,
default_inline ()
in
let mexpr_entry_o, inl_expr = match mexpr_o with
| None -> None, default_inline ()
| Some (mexpr,ann) ->
Some (fst (interp_modast env Module mexpr)), inl2intopt ann
in
let entry = match mexpr_entry_o, mty_entry_o with
| None, None -> assert false (* No body, no type ... *)
| None, Some typ -> MType (params, typ)
| Some body, otyp -> MExpr (params, body, otyp)
in
let sobjs, mp0 = match entry with
| MType (_,mte) | MExpr (_,_,Some mte) ->
get_functor_sobjs false env inl_res (params,mte), get_module_path mte
| MExpr (_,me,None) ->
get_functor_sobjs true env inl_expr (params,me), get_module_path me
in
(* Undo the simulated interactive building of the module
and declare the module as a whole *)
Summary.unfreeze_summaries fs;
let inl = match inl_expr with
| None -> None
| _ -> inl_res
in
let mp_env,resolver = Global.add_module id entry inl in
(* Name consistency check : kernel vs. library *)
assert (ModPath.equal mp (mp_of_kn (Lib.make_kn id)));
assert (ModPath.equal mp mp_env);
check_subtypes mp subs;
let sobjs = subst_sobjs (map_mp mp0 mp resolver) sobjs in
ignore (Lib.add_leaf id (in_module sobjs));
mp
end
(** {6 Module types : start, end, declare *)
module RawModTypeOps = struct
let start_modtype interp_modast id args mtys fs =
let mp = Global.start_modtype id in
let arg_entries_r = intern_args interp_modast args in
let env = Global.env () in
let sub_mty_l = build_subtypes interp_modast env mp arg_entries_r mtys in
openmodtype_info := sub_mty_l;
let prefix = Lib.start_modtype id mp fs in
Nametab.push_dir (Nametab.Until 1) (fst prefix) (DirOpenModtype prefix);
Lib.add_frozen_state (); mp
let end_modtype () =
let oldoname,prefix,fs,lib_stack = Lib.end_modtype () in
let id = basename (fst oldoname) in
let substitute, _, special = Lib.classify_segment lib_stack in
let sub_mty_l = !openmodtype_info in
let mp, mbids = Global.end_modtype fs id in
let modtypeobjs = (mbids, Objs substitute) in
check_subtypes_mt mp sub_mty_l;
let oname = Lib.add_leaves id (special@[in_modtype modtypeobjs])
in
(* Check name consistence : start_ vs. end_modtype, kernel vs. library *)
assert (eq_full_path (fst oname) (fst oldoname));
assert (ModPath.equal (mp_of_kn (snd oname)) mp);
Lib.add_frozen_state ()(* to prevent recaching *);
mp
let declare_modtype interp_modast id args mtys (mty,ann) fs =
let inl = inl2intopt ann in
(* We simulate the beginning of an interactive module,
then we adds the module parameters to the global env. *)
let mp = Global.start_modtype id in
let arg_entries_r = intern_args interp_modast args in
let params = mk_params_entry arg_entries_r in
let env = Global.env () in
let entry = params, fst (interp_modast env ModType mty) in
let sub_mty_l = build_subtypes interp_modast env mp arg_entries_r mtys in
let sobjs = get_functor_sobjs false env inl entry in
let subst = map_mp (get_module_path (snd entry)) mp empty_delta_resolver in
let sobjs = subst_sobjs subst sobjs in
(* Undo the simulated interactive building of the module type
and declare the module type as a whole *)
Summary.unfreeze_summaries fs;
(* We enrich the global environment *)
let mp_env = Global.add_modtype id entry inl in
(* Name consistency check : kernel vs. library *)
assert (ModPath.equal mp_env mp);
(* Subtyping checks *)
check_subtypes_mt mp sub_mty_l;
ignore (Lib.add_leaf id (in_modtype sobjs));
mp
end
(** {6 Include} *)
module RawIncludeOps = struct
let rec include_subst env mp reso mbids sign inline = match mbids with
| [] -> empty_subst
| mbid::mbids ->
let farg_id, farg_b, fbody_b = Modops.destr_functor sign in
let subst = include_subst env mp reso mbids fbody_b inline in
let mp_delta =
Modops.inline_delta_resolver env inline mp farg_id farg_b reso
in
join (map_mbid mbid mp mp_delta) subst
let rec decompose_functor mpl typ =
match mpl, typ with
| [], _ -> typ
| _::mpl, MoreFunctor(_,_,str) -> decompose_functor mpl str
| _ -> error "Application of a functor with too much arguments."
exception NoIncludeSelf
let type_of_incl env is_mod = function
|MEident mp -> type_of_mod mp env is_mod
|MEapply _ as me ->
let mp0, mp_l = get_applications me in
decompose_functor mp_l (type_of_mod mp0 env is_mod)
|MEwith _ -> raise NoIncludeSelf
let declare_one_include interp_modast (me_ast,annot) =
let env = Global.env() in
let me,kind = interp_modast env ModAny me_ast in
let is_mod = (kind == Module) in
let cur_mp = Lib.current_mp () in
let inl = inl2intopt annot in
let mbids,aobjs = get_module_sobjs is_mod env inl me in
let subst_self =
try
if List.is_empty mbids then raise NoIncludeSelf;
let typ = type_of_incl env is_mod me in
let reso,_ = Safe_typing.delta_of_senv (Global.safe_env ()) in
include_subst env cur_mp reso mbids typ inl
with NoIncludeSelf -> empty_subst
in
let base_mp = get_module_path me in
let resolver = Global.add_include me is_mod inl in
let subst = join subst_self (map_mp base_mp cur_mp resolver) in
let aobjs = subst_aobjs subst aobjs in
ignore (Lib.add_leaf (Lib.current_mod_id ()) (in_include aobjs))
let declare_include interp me_asts =
List.iter (declare_one_include interp) me_asts
end
(** {6 Module operations handling summary freeze/unfreeze *)
let protect_summaries f =
let fs = Summary.freeze_summaries ~marshallable:`No in
try f fs
with reraise ->
(* Something wrong: undo the whole process *)
let reraise = Errors.push reraise in
let () = Summary.unfreeze_summaries fs in
raise reraise
let start_module interp export id args res =
protect_summaries (RawModOps.start_module interp export id args res)
let end_module = RawModOps.end_module
let declare_module interp id args mtys me_l =
let declare_me fs = match me_l with
| [] -> RawModOps.declare_module interp id args mtys None fs
| [me] -> RawModOps.declare_module interp id args mtys (Some me) fs
| me_l ->
ignore (RawModOps.start_module interp None id args mtys fs);
RawIncludeOps.declare_include interp me_l;
RawModOps.end_module ()
in
protect_summaries declare_me
let start_modtype interp id args mtys =
protect_summaries (RawModTypeOps.start_modtype interp id args mtys)
let end_modtype = RawModTypeOps.end_modtype
let declare_modtype interp id args mtys mty_l =
let declare_mt fs = match mty_l with
| [] -> assert false
| [mty] -> RawModTypeOps.declare_modtype interp id args mtys mty fs
| mty_l ->
ignore (RawModTypeOps.start_modtype interp id args mtys fs);
RawIncludeOps.declare_include interp mty_l;
RawModTypeOps.end_modtype ()
in
protect_summaries declare_mt
let declare_include interp me_asts =
protect_summaries (fun _ -> RawIncludeOps.declare_include interp me_asts)
(** {6 Libraries} *)
type library_name = DirPath.t
(** A library object is made of some substitutive objects
and some "keep" objects. *)
type library_objects = Lib.lib_objects * Lib.lib_objects
(** For the native compiler, we cache the library values *)
type library_values = Nativecode.symbol array
let library_values =
Summary.ref (Dirmap.empty : library_values Dirmap.t) ~name:"LIBVALUES"
let register_library dir cenv (objs:library_objects) digest =
let mp = MPfile dir in
let () =
try
(* Is this library already loaded ? *)
ignore(Global.lookup_module mp);
with Not_found ->
(* If not, let's do it now ... *)
let mp', values = Global.import cenv digest in
if not (ModPath.equal mp mp') then
anomaly (Pp.str "Unexpected disk module name");
library_values := Dirmap.add dir values !library_values
in
let sobjs,keepobjs = objs in
do_module false Lib.load_objects 1 dir mp ([],Objs sobjs) keepobjs
let get_library_symbols_tbl dir = Dirmap.find dir !library_values
let start_library dir =
let mp = Global.start_library dir in
openmod_info := default_module_info;
Lib.start_compilation dir mp;
Lib.add_frozen_state ()
let end_library dir =
let prefix, lib_stack = Lib.end_compilation dir in
let mp,cenv,ast = Global.export dir in
assert (ModPath.equal mp (MPfile dir));
let substitute, keep, _ = Lib.classify_segment lib_stack in
cenv,(substitute,keep),ast
(** {6 Implementation of Import and Export commands} *)
let really_import_module mp =
(* May raise Not_found for unknown module and for functors *)
let prefix,sobjs,keepobjs = ModObjs.get mp in
Lib.open_objects 1 prefix sobjs;
Lib.open_objects 1 prefix keepobjs
let cache_import (_,(_,mp)) = really_import_module mp
let open_import i obj =
if Int.equal i 1 then cache_import obj
let classify_import (export,_ as obj) =
if export then Substitute obj else Dispose
let subst_import (subst,(export,mp as obj)) =
let mp' = subst_mp subst mp in
if mp'==mp then obj else (export,mp')
let in_import : bool * module_path -> obj =
declare_object {(default_object "IMPORT MODULE") with
cache_function = cache_import;
open_function = open_import;
subst_function = subst_import;
classify_function = classify_import }
let import_module export mp =
Lib.add_anonymous_leaf (in_import (export,mp))
(** {6 Iterators} *)
let iter_all_segments f =
let rec apply_obj prefix (id,obj) = match object_tag obj with
| "INCLUDE" ->
let objs = expand_aobjs (out_include obj) in
List.iter (apply_obj prefix) objs
| _ -> f (make_oname prefix id) obj
in
let apply_mod_obj _ (prefix,substobjs,keepobjs) =
List.iter (apply_obj prefix) substobjs;
List.iter (apply_obj prefix) keepobjs
in
let apply_node = function
| sp, Lib.Leaf o -> f sp o
| _ -> ()
in
MPmap.iter apply_mod_obj (ModObjs.all ());
List.iter apply_node (Lib.contents ())
(** {6 Some types used to shorten declaremods.mli} *)
type 'modast module_interpretor =
Environ.env -> Misctypes.module_kind -> 'modast ->
Entries.module_struct_entry * Misctypes.module_kind
type 'modast module_params =
(Id.t Loc.located list * ('modast * inline)) list
(** {6 Debug} *)
let debug_print_modtab _ =
let pr_seg = function
| [] -> str "[]"
| l -> str ("[." ^ string_of_int (List.length l) ^ ".]")
in
let pr_modinfo mp (prefix,substobjs,keepobjs) s =
s ++ str (string_of_mp mp) ++ (spc ())
++ (pr_seg (Lib.segment_of_objects prefix (substobjs@keepobjs)))
in
let modules = MPmap.fold pr_modinfo (ModObjs.all ()) (mt ()) in
hov 0 modules
|