aboutsummaryrefslogtreecommitdiffhomepage
path: root/library/declare.ml
blob: c87ec0d34184a41f7088be769417a62c2bb594de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

open Pp
open Util
open Names
open Nameops
open Term
open Sign
open Declarations
open Inductive
open Indtypes
open Reduction
open Type_errors
open Typeops
open Libobject
open Lib
open Impargs
open Nametab
open Library
open Safe_typing

(**********************************************)

(* For [DischargeAt (dir,n)], [dir] is the minimum prefix that a
   construction keeps in its name (if persistent), or the section name
   beyond which it is discharged (if volatile); the integer [n]
   (useful only for persistent constructions), is the length of the section
   part in [dir] *)

type strength = 
  | NotDeclare
  | DischargeAt of dir_path * int
  | NeverDischarge

let depth_of_strength = function
  | DischargeAt (sp',n) -> n
  | NeverDischarge -> 0
  | NotDeclare -> assert false

let make_strength_0 () = 
  let depth = Lib.sections_depth () in
  let cwd = Lib.cwd() in
  if depth > 0 then DischargeAt (cwd, depth) else NeverDischarge

let make_strength_1 () =
  let depth = Lib.sections_depth () in
  let cwd = Lib.cwd() in
  if depth > 1 then DischargeAt (extract_dirpath_prefix 1 cwd, depth-1)
  else NeverDischarge

let make_strength_2 () =
  let depth = Lib.sections_depth () in
  let cwd = Lib.cwd() in
  if depth > 2 then DischargeAt (extract_dirpath_prefix 2 cwd, depth-2)
  else NeverDischarge


(* Section variables. *)

type section_variable_entry =
  | SectionLocalDef of constr * types option
  | SectionLocalAssum of types

type variable_declaration = dir_path * section_variable_entry * strength

type checked_section_variable = constr option * types * Univ.constraints

type checked_variable_declaration =
    dir_path * checked_section_variable * strength

let vartab = ref (Idmap.empty : checked_variable_declaration Idmap.t)

let _ = Summary.declare_summary "VARIABLE"
	  { Summary.freeze_function = (fun () -> !vartab);
	    Summary.unfreeze_function = (fun ft -> vartab := ft);
	    Summary.init_function = (fun () -> vartab := Idmap.empty);
	    Summary.survive_section = false }

let cache_variable (sp,(id,(p,d,str))) =
  (* Constr raisonne sur les noms courts *)
  if Idmap.mem id !vartab then
    errorlabstrm "cache_variable" [< pr_id id; 'sTR " already exists" >];
  let cst = match d with (* Fails if not well-typed *)
    | SectionLocalAssum ty -> Global.push_named_assum (id,ty)
    | SectionLocalDef (c,t) -> Global.push_named_def (id,c,t) in
  let (_,bd,ty) = Global.lookup_named id in
  let vd = (bd,ty,cst) in
  Nametab.push 0 (restrict_path 0 sp) (VarRef id);
  vartab := Idmap.add id (p,vd,str) !vartab

let (in_variable, out_variable) =
  let od = {
    cache_function = cache_variable;
    load_function = (fun _ -> ());
    open_function = (fun _ -> ());
    export_function = (fun x -> Some x) }
  in
  declare_object ("VARIABLE", od)

let declare_variable id obj =
  let sp = add_leaf id (in_variable (id,obj)) in
  if is_implicit_args() then declare_var_implicits id;
  sp

(* Globals: constants and parameters *)

type constant_declaration = global_declaration * strength

let csttab = ref (Spmap.empty : strength Spmap.t)

let _ = Summary.declare_summary "CONSTANT"
	  { Summary.freeze_function = (fun () -> !csttab);
	    Summary.unfreeze_function = (fun ft -> csttab := ft);
	    Summary.init_function = (fun () -> csttab := Spmap.empty);
	    Summary.survive_section = false }

let cache_constant (sp,(cdt,stre)) =
  (if Nametab.exists_cci sp then
    let (_,id) = repr_path sp in
    errorlabstrm "cache_constant" [< pr_id id; 'sTR " already exists" >]);
  Global.add_constant sp cdt;
  (match stre with
    | DischargeAt (dp,n) when not (is_dirpath_prefix_of dp (Lib.cwd ())) ->
        (* Only qualifications including the sections segment from the current
           section to the discharge section is available for Remark & Fact *)
        Nametab.push (n-Lib.sections_depth()) sp (ConstRef sp)
    | (NeverDischarge| DischargeAt _) -> 
        (* All qualifications of Theorem, Lemma & Definition are visible *)
        Nametab.push 0 sp (ConstRef sp)
    | NotDeclare -> assert false);
  csttab := Spmap.add sp stre !csttab

(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant (sp,(ce,stre)) =
  (if Nametab.exists_cci sp then
    let (_,id) = repr_path sp in
    errorlabstrm "cache_constant" [< pr_id id; 'sTR " already exists" >]);
  csttab := Spmap.add sp stre !csttab;
  Nametab.push (depth_of_strength stre + 1) sp (ConstRef sp)

(* Opening means making the name without its module qualification available *)
let open_constant (sp,(_,stre)) =
  let n = depth_of_strength stre in
  Nametab.push n (restrict_path n sp) (ConstRef sp)

(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant_entry = ParameterEntry mkProp

let export_constant (ce,stre) = Some (dummy_constant_entry,stre)

let (in_constant, out_constant) =
  let od = {
    cache_function = cache_constant;
    load_function = load_constant;
    open_function = open_constant;
    export_function = export_constant } 
  in
  declare_object ("CONSTANT", od)

let hcons_constant_declaration = function
  | (ConstantEntry ce, stre) ->
      (ConstantEntry
       { const_entry_body = hcons1_constr ce.const_entry_body;
	 const_entry_type = option_app hcons1_constr ce.const_entry_type;
         const_entry_opaque = ce.const_entry_opaque }, stre)
  | cd -> cd

let declare_constant id cd =
  (* let cd = hcons_constant_declaration cd in *)
  let sp = add_leaf id (in_constant cd) in
  if is_implicit_args() then declare_constant_implicits sp;
  sp

let redeclare_constant sp (cd,stre) =
  add_absolutely_named_leaf sp (in_constant (GlobalRecipe cd,stre));
  if is_implicit_args() then declare_constant_implicits sp

(* Inductives. *)

let inductive_names sp mie =
  let (dp,_) = repr_path sp in
  let names, _ = 
    List.fold_left
      (fun (names, n) ind ->
	 let indsp = (sp,n) in
	 let names, _ =
	   List.fold_left
	     (fun (names, p) id ->
		let sp = Names.make_path dp id in
		((sp, ConstructRef (indsp,p)) :: names, p+1))
	     (names, 1) ind.mind_entry_consnames in
	 let sp = Names.make_path dp ind.mind_entry_typename in
	 ((sp, IndRef indsp) :: names, n+1))
      ([], 0) mie.mind_entry_inds
  in names

let check_exists_inductive (sp,_) =
  if Nametab.exists_cci sp then
    let (_,id) = repr_path sp in
    errorlabstrm "cache_inductive" [< pr_id id; 'sTR " already exists" >]

let cache_inductive (sp,mie) =
  let names = inductive_names sp mie in
  List.iter check_exists_inductive names;
  Global.add_mind sp mie;
  List.iter 
    (fun (sp, ref) -> Nametab.push 0 sp ref)
    names

let load_inductive (sp,mie) =
  let names = inductive_names sp mie in
  List.iter check_exists_inductive names;
  List.iter (fun (sp, ref) -> Nametab.push 1 sp ref) names

let open_inductive (sp,mie) =
  let names = inductive_names sp mie in
  List.iter (fun (sp, ref) -> Nametab.push 0 (restrict_path 0 sp) ref) names

let dummy_one_inductive_entry mie = {
  mind_entry_nparams = 0;
  mind_entry_params = [];
  mind_entry_typename = mie.mind_entry_typename;
  mind_entry_arity = mkProp;
  mind_entry_consnames = mie.mind_entry_consnames;
  mind_entry_lc = []
}

(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry m = {
  mind_entry_finite = true;
  mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds }

let export_inductive x = Some (dummy_inductive_entry x)

let (in_inductive, out_inductive) =
  let od = {
    cache_function = cache_inductive;
    load_function = load_inductive;
    open_function = open_inductive;
    export_function = export_inductive } 
  in
  declare_object ("INDUCTIVE", od)

let declare_mind mie =
  let id = match mie.mind_entry_inds with
    | ind::_ -> ind.mind_entry_typename
    | [] -> anomaly "cannot declare an empty list of inductives"
  in
  let sp = add_leaf id (in_inductive mie) in
  if is_implicit_args() then declare_mib_implicits sp;
  sp


(*s Test and access functions. *)

let is_constant sp = 
  try let _ = Global.lookup_constant sp in true with Not_found -> false

let constant_strength sp = Spmap.find sp !csttab

let get_variable id = 
  let (p,(c,ty,cst),str) = Idmap.find id !vartab in
  ((id,c,ty),str)

let get_variable_with_constraints id = 
  let (p,(c,ty,cst),str) = Idmap.find id !vartab in
  ((id,c,ty),cst,str)

let variable_strength id =
  let (_,_,str) = Idmap.find id !vartab in str

let find_section_variable id =
  let (p,_,_) = Idmap.find id !vartab in Names.make_path p id

(* Global references. *)

let first f v =
  let n = Array.length v in
  let rec look_for i =
    if i = n then raise Not_found;
    try f i v.(i) with Not_found -> look_for (succ i)
  in
  look_for 0

let mind_oper_of_id sp id mib =
  first
    (fun tyi mip ->
       if id = mip.mind_typename then 
	 IndRef (sp,tyi)
       else
	 first 
	   (fun cj cid -> 
	      if id = cid then 
		ConstructRef ((sp,tyi),succ cj) 
	      else raise Not_found) 
	   mip.mind_consnames)
    mib.mind_packets

let context_of_global_reference = function
  | VarRef id -> []
  | ConstRef sp -> (Global.lookup_constant sp).const_hyps
  | IndRef (sp,_) -> (Global.lookup_mind sp).mind_hyps
  | ConstructRef ((sp,_),_) -> (Global.lookup_mind sp).mind_hyps

let reference_of_constr c = match kind_of_term c with
  | Const sp -> ConstRef sp
  | Ind ind_sp -> IndRef ind_sp
  | Construct cstr_cp -> ConstructRef cstr_cp
  | Var id -> VarRef id
  |  _ -> raise Not_found

let last_section_hyps dir =
  fold_named_context
    (fun (id,_,_) sec_ids ->
      try
        let (p,_,_) = Idmap.find id !vartab in
        if dir=p then id::sec_ids else sec_ids
      with Not_found -> sec_ids)
    (Environ.named_context (Global.env()))
    ~init:[]

let constr_of_reference = function
  | VarRef id -> mkVar id
  | ConstRef sp -> mkConst sp
  | ConstructRef sp -> mkConstruct sp
  | IndRef sp -> mkInd sp

let construct_absolute_reference sp =
  constr_of_reference (Nametab.absolute_reference sp)

let construct_qualified_reference qid =
  let ref = Nametab.locate qid in
  constr_of_reference ref

let construct_reference env id =
  try
    mkVar (let _ = Environ.lookup_named id env in id)
  with Not_found ->
    let ref = Nametab.sp_of_id id in
    constr_of_reference ref

let global_qualified_reference qid =
  construct_qualified_reference qid

let global_absolute_reference sp = 
  construct_absolute_reference sp

let global_reference_in_absolute_module dir id = 
  constr_of_reference (Nametab.locate_in_absolute_module dir id)

let global_reference id = 
  construct_reference (Global.env()) id

let dirpath sp = let (p,_) = repr_path sp in p

let dirpath_of_global = function
  | VarRef id -> empty_dirpath
  | ConstRef sp -> dirpath sp
  | IndRef (sp,_) -> dirpath sp
  | ConstructRef ((sp,_),_) -> dirpath sp

let is_section_variable = function
  | VarRef _ -> true
  | _ -> false

let is_global id =
  try 
    let osp = Nametab.locate (make_short_qualid id) in
    (* Compatibilité V6.3: Les variables de section ne sont pas globales
    not (is_section_variable osp) && *)
    is_dirpath_prefix_of (dirpath_of_global osp) (Lib.cwd())
  with Not_found -> 
    false

let strength_of_global = function
  | ConstRef sp -> constant_strength sp
  | VarRef id -> variable_strength id
  | IndRef _ | ConstructRef _ -> NeverDischarge