1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Libnames
open Nameops
open Term
open Sign
open Declarations
open Entries
open Inductive
open Indtypes
open Reduction
open Type_errors
open Typeops
open Libobject
open Lib
open Impargs
open Nametab
open Safe_typing
open Decl_kinds
(**********************************************)
(* For [DischargeAt (dir,n)], [dir] is the minimum prefix that a
construction keeps in its name (if persistent), or the section name
beyond which it is discharged (if volatile); the integer [n]
(useful only for persistent constructions), is the length of the section
part in [dir] *)
open Nametab
let strength_min (stre1,stre2) =
if stre1 = Local or stre2 = Local then Local else Global
let string_of_strength = function
| Local -> "(local)"
| Global -> "(global)"
(* XML output hooks *)
let xml_declare_variable = ref (fun sp -> ())
let xml_declare_constant = ref (fun sp -> ())
let xml_declare_inductive = ref (fun sp -> ())
let if_xml f x = if !Options.xml_export then f x else ()
let set_xml_declare_variable f = xml_declare_variable := if_xml f
let set_xml_declare_constant f = xml_declare_constant := if_xml f
let set_xml_declare_inductive f = xml_declare_inductive := if_xml f
(* Section variables. *)
type section_variable_entry =
| SectionLocalDef of constr * types option * bool (* opacity *)
| SectionLocalAssum of types
type variable_declaration = dir_path * section_variable_entry * local_kind
type checked_section_variable =
| CheckedSectionLocalDef of constr * types * Univ.constraints * bool
| CheckedSectionLocalAssum of types * Univ.constraints
type checked_variable_declaration = dir_path * checked_section_variable
let vartab = ref (Idmap.empty : checked_variable_declaration Idmap.t)
let _ = Summary.declare_summary "VARIABLE"
{ Summary.freeze_function = (fun () -> !vartab);
Summary.unfreeze_function = (fun ft -> vartab := ft);
Summary.init_function = (fun () -> vartab := Idmap.empty);
Summary.survive_section = false }
let cache_variable ((sp,_),(id,(p,d,mk))) =
(* Constr raisonne sur les noms courts *)
if Idmap.mem id !vartab then
errorlabstrm "cache_variable" (pr_id id ++ str " already exists");
let vd = match d with (* Fails if not well-typed *)
| SectionLocalAssum ty ->
let cst = Global.push_named_assum (id,ty) in
let (_,bd,ty) = Global.lookup_named id in
CheckedSectionLocalAssum (ty,cst)
| SectionLocalDef (c,t,opaq) ->
let cst = Global.push_named_def (id,c,t) in
let (_,bd,ty) = Global.lookup_named id in
CheckedSectionLocalDef (out_some bd,ty,cst,opaq) in
Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id);
vartab := Idmap.add id (p,vd) !vartab
let (in_variable, out_variable) =
declare_object { (default_object "VARIABLE") with
cache_function = cache_variable;
classify_function = (fun _ -> Dispose) }
let declare_variable_common id obj =
let oname = add_leaf id (in_variable (id,obj)) in
declare_var_implicits id;
oname
(* for initial declaration *)
let declare_variable id obj =
let (sp,kn as oname) = declare_variable_common id obj in
!xml_declare_variable oname;
Dischargedhypsmap.set_discharged_hyps sp [];
oname
(* when coming from discharge: no xml output *)
let redeclare_variable id discharged_hyps obj =
let oname = declare_variable_common id obj in
Dischargedhypsmap.set_discharged_hyps (fst oname) discharged_hyps
(* Globals: constants and parameters *)
type constant_declaration = constant_entry * global_kind
let csttab = ref (Spmap.empty : global_kind Spmap.t)
let _ = Summary.declare_summary "CONSTANT"
{ Summary.freeze_function = (fun () -> !csttab);
Summary.unfreeze_function = (fun ft -> csttab := ft);
Summary.init_function = (fun () -> csttab := Spmap.empty);
Summary.survive_section = false }
let cache_constant ((sp,kn),(cdt,kind)) =
(if Idmap.mem (basename sp) !vartab then
errorlabstrm "cache_constant"
(pr_id (basename sp) ++ str " already exists"));
(if Nametab.exists_cci sp then
let (_,id) = repr_path sp in
errorlabstrm "cache_constant" (pr_id id ++ str " already exists"));
let _,dir,_ = repr_kn kn in
let kn' = Global.add_constant dir (basename sp) cdt in
if kn' <> kn then
anomaly "Kernel and Library names do not match";
Nametab.push (Nametab.Until 1) sp (ConstRef kn);
csttab := Spmap.add sp kind !csttab
(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant i ((sp,kn),(_,kind)) =
(if Nametab.exists_cci sp then
let (_,id) = repr_path sp in
errorlabstrm "cache_constant" (pr_id id ++ str " already exists"));
csttab := Spmap.add sp kind !csttab;
Nametab.push (Nametab.Until i) sp (ConstRef kn)
(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn),_) =
Nametab.push (Nametab.Exactly i) sp (ConstRef kn)
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant_entry = ConstantEntry (ParameterEntry mkProp)
let dummy_constant (ce,mk) = dummy_constant_entry,mk
let export_constant cst = Some (dummy_constant cst)
let classify_constant (_,cst) = Substitute (dummy_constant cst)
let (in_constant, out_constant) =
declare_object { (default_object "CONSTANT") with
cache_function = cache_constant;
load_function = load_constant;
open_function = open_constant;
classify_function = classify_constant;
subst_function = ident_subst_function;
export_function = export_constant }
let hcons_constant_declaration = function
| DefinitionEntry ce ->
let (hcons1_constr,_) = hcons_constr (hcons_names()) in
DefinitionEntry
{ const_entry_body = hcons1_constr ce.const_entry_body;
const_entry_type = option_app hcons1_constr ce.const_entry_type;
const_entry_opaque = ce.const_entry_opaque }
| cd -> cd
let declare_constant id (cd,kind) =
let cd = hcons_constant_declaration cd in
let (sp,kn as oname) = add_leaf id (in_constant (ConstantEntry cd,kind)) in
declare_constant_implicits kn;
Dischargedhypsmap.set_discharged_hyps sp [] ;
!xml_declare_constant oname;
oname
(* when coming from discharge *)
let redeclare_constant id discharged_hyps (cd,kind) =
let _,kn as oname = add_leaf id (in_constant (GlobalRecipe cd,kind)) in
declare_constant_implicits kn;
Dischargedhypsmap.set_discharged_hyps (fst oname) discharged_hyps
(* Inductives. *)
let inductive_names sp kn mie =
let (dp,_) = repr_path sp in
let names, _ =
List.fold_left
(fun (names, n) ind ->
let ind_p = (kn,n) in
let names, _ =
List.fold_left
(fun (names, p) l ->
let sp =
Libnames.make_path dp l
in
((sp, ConstructRef (ind_p,p)) :: names, p+1))
(names, 1) ind.mind_entry_consnames in
let sp = Libnames.make_path dp ind.mind_entry_typename
in
((sp, IndRef ind_p) :: names, n+1))
([], 0) mie.mind_entry_inds
in names
let check_exists_inductive (sp,_) =
(if Idmap.mem (basename sp) !vartab then
errorlabstrm "cache_inductive"
(pr_id (basename sp) ++ str " already exists"));
if Nametab.exists_cci sp then
let (_,id) = repr_path sp in
errorlabstrm "cache_inductive" (pr_id id ++ str " already exists")
let cache_inductive ((sp,kn),mie) =
let names = inductive_names sp kn mie in
List.iter check_exists_inductive names;
let _,dir,_ = repr_kn kn in
let kn' = Global.add_mind dir (basename sp) mie in
if kn' <> kn then
anomaly "Kernel and Library names do not match";
List.iter
(fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref)
names
let load_inductive i ((sp,kn),mie) =
let names = inductive_names sp kn mie in
List.iter check_exists_inductive names;
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref) names
let open_inductive i ((sp,kn),mie) =
let names = inductive_names sp kn mie in
(* List.iter (fun (sp, ref) -> Nametab.push 0 (restrict_path 0 sp) ref) names*)
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names
let dummy_one_inductive_entry mie = {
mind_entry_params = [];
mind_entry_typename = mie.mind_entry_typename;
mind_entry_arity = mkProp;
mind_entry_consnames = mie.mind_entry_consnames;
mind_entry_lc = []
}
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry m = {
mind_entry_finite = true;
mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds }
let export_inductive x = Some (dummy_inductive_entry x)
let (in_inductive, out_inductive) =
declare_object {(default_object "INDUCTIVE") with
cache_function = cache_inductive;
load_function = load_inductive;
open_function = open_inductive;
classify_function = (fun (_,a) -> Substitute (dummy_inductive_entry a));
subst_function = ident_subst_function;
export_function = export_inductive }
let declare_inductive_common mie =
let id = match mie.mind_entry_inds with
| ind::_ -> ind.mind_entry_typename
| [] -> anomaly "cannot declare an empty list of inductives"
in
let oname = add_leaf id (in_inductive mie) in
declare_mib_implicits (snd oname);
oname
(* for initial declaration *)
let declare_mind mie =
let (sp,kn as oname) = declare_inductive_common mie in
Dischargedhypsmap.set_discharged_hyps sp [] ;
!xml_declare_inductive oname;
oname
(* when coming from discharge: no xml output *)
let redeclare_inductive discharged_hyps mie =
let oname = declare_inductive_common mie in
Dischargedhypsmap.set_discharged_hyps (fst oname) discharged_hyps ;
oname
(*s Test and access functions. *)
let is_constant sp =
try let _ = Spmap.find sp !csttab in true with Not_found -> false
let constant_strength sp = Global
let constant_kind sp = Spmap.find sp !csttab
let get_variable id =
let (p,x) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> (id,Some c,ty)
| CheckedSectionLocalAssum (ty,cst) -> (id,None,ty)
let get_variable_with_constraints id =
let (p,x) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> ((id,Some c,ty),cst)
| CheckedSectionLocalAssum (ty,cst) -> ((id,None,ty),cst)
let variable_strength _ = Local
let find_section_variable id =
let (p,_) = Idmap.find id !vartab in Libnames.make_path p id
let variable_opacity id =
let (_,x) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> opaq
| CheckedSectionLocalAssum (ty,cst) -> false (* any.. *)
let clear_proofs sign =
List.map
(fun (id,c,t as d) -> if variable_opacity id then (id,None,t) else d) sign
(* Global references. *)
let first f v =
let n = Array.length v in
let rec look_for i =
if i = n then raise Not_found;
try f i v.(i) with Not_found -> look_for (succ i)
in
look_for 0
let mind_oper_of_id sp id mib =
first
(fun tyi mip ->
if id = mip.mind_typename then
IndRef (sp,tyi)
else
first
(fun cj cid ->
if id = cid then
ConstructRef ((sp,tyi),succ cj)
else raise Not_found)
mip.mind_consnames)
mib.mind_packets
let context_of_global_reference = function
| VarRef id -> []
| ConstRef sp -> (Global.lookup_constant sp).const_hyps
| IndRef (sp,_) -> (Global.lookup_mind sp).mind_hyps
| ConstructRef ((sp,_),_) -> (Global.lookup_mind sp).mind_hyps
let last_section_hyps dir =
fold_named_context
(fun (id,_,_) sec_ids ->
try
let (p,_) = Idmap.find id !vartab in
if dir=p then id::sec_ids else sec_ids
with Not_found -> sec_ids)
(Environ.named_context (Global.env()))
~init:[]
let construct_absolute_reference sp =
constr_of_reference (Nametab.absolute_reference sp)
let construct_qualified_reference qid =
let ref = Nametab.locate qid in
constr_of_reference ref
let construct_reference ctx_opt id =
match ctx_opt with
| None -> construct_qualified_reference (make_short_qualid id)
| Some ctx ->
try
mkVar (let _ = Sign.lookup_named id ctx in id)
with Not_found ->
construct_qualified_reference (make_short_qualid id)
let global_qualified_reference qid =
construct_qualified_reference qid
let global_absolute_reference sp =
construct_absolute_reference sp
let global_reference_in_absolute_module dir id =
constr_of_reference (Nametab.absolute_reference (Libnames.make_path dir id))
let global_reference id =
construct_qualified_reference (make_short_qualid id)
let is_section_variable = function
| VarRef _ -> true
| _ -> false
(* TODO temporary hack!!! *)
let rec is_imported_modpath = function
| MPfile dp -> dp <> (Lib.library_dp ())
(* | MPdot (mp,_) -> is_imported_modpath mp *)
| _ -> false
let is_imported_ref = function
| VarRef _ -> false
| ConstRef kn
| IndRef (kn,_)
| ConstructRef ((kn,_),_)
(* | ModTypeRef ln *) ->
let (mp,_,_) = repr_kn kn in is_imported_modpath mp
(* | ModRef mp ->
is_imported_modpath mp
*)
let is_global id =
try
let ref = Nametab.locate (make_short_qualid id) in
not (is_imported_ref ref)
with Not_found ->
false
let strength_of_global = function
| VarRef _ -> Local
| IndRef _ | ConstructRef _ | ConstRef _ -> Global
let library_part ref =
let sp = Nametab.sp_of_global ref in
let dir,_ = repr_path sp in
match strength_of_global ref with
| Local ->
anomaly "TODO";
extract_dirpath_prefix (Lib.sections_depth ()) (Lib.cwd ())
| Global ->
if is_dirpath_prefix_of dir (Lib.cwd ()) then
(* Not yet (fully) discharged *)
extract_dirpath_prefix (Lib.sections_depth ()) (Lib.cwd ())
else
(* Theorem/Lemma outside its outer section of definition *)
dir
|