1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
open Names
open Libnames
open Nameops
open Term
open Sign
open Declarations
open Entries
open Inductive
open Indtypes
open Reduction
open Type_errors
open Typeops
open Libobject
open Lib
open Impargs
open Nametab
open Safe_typing
open Decl_kinds
(**********************************************)
(* Strength *)
open Nametab
let strength_min (stre1,stre2) =
if stre1 = Local or stre2 = Local then Local else Global
let string_of_strength = function
| Local -> "(local)"
| Global -> "(global)"
(* XML output hooks *)
let xml_declare_variable = ref (fun (sp:object_name) -> ())
let xml_declare_constant = ref (fun (sp:bool * constant)-> ())
let xml_declare_inductive = ref (fun (sp:bool * object_name) -> ())
let if_xml f x = if !Options.xml_export then f x else ()
let set_xml_declare_variable f = xml_declare_variable := if_xml f
let set_xml_declare_constant f = xml_declare_constant := if_xml f
let set_xml_declare_inductive f = xml_declare_inductive := if_xml f
(* Section variables. *)
type section_variable_entry =
| SectionLocalDef of constr * types option * bool (* opacity *)
| SectionLocalAssum of types
type variable_declaration = dir_path * section_variable_entry * logical_kind
type checked_section_variable =
| CheckedSectionLocalDef of constr * types * Univ.constraints * bool
| CheckedSectionLocalAssum of types * Univ.constraints
type checked_variable_declaration =
dir_path * checked_section_variable * logical_kind
let vartab = ref (Idmap.empty : checked_variable_declaration Idmap.t)
let _ = Summary.declare_summary "VARIABLE"
{ Summary.freeze_function = (fun () -> !vartab);
Summary.unfreeze_function = (fun ft -> vartab := ft);
Summary.init_function = (fun () -> vartab := Idmap.empty);
Summary.survive_module = false;
Summary.survive_section = false }
let cache_variable ((sp,_),o) =
match o with
| Inl cst -> Global.add_constraints cst
| Inr (id,(p,d,mk)) ->
(* Constr raisonne sur les noms courts *)
if Idmap.mem id !vartab then
errorlabstrm "cache_variable" (pr_id id ++ str " already exists");
let vd = match d with (* Fails if not well-typed *)
| SectionLocalAssum ty ->
let cst = Global.push_named_assum (id,ty) in
let (_,bd,ty) = Global.lookup_named id in
CheckedSectionLocalAssum (ty,cst)
| SectionLocalDef (c,t,opaq) ->
let cst = Global.push_named_def (id,c,t) in
let (_,bd,ty) = Global.lookup_named id in
CheckedSectionLocalDef (out_some bd,ty,cst,opaq) in
Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id);
add_section_variable id;
Dischargedhypsmap.set_discharged_hyps sp [];
vartab := Idmap.add id (p,vd,mk) !vartab
let get_variable_constraints id =
match pi2 (Idmap.find id !vartab) with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> cst
| CheckedSectionLocalAssum (ty,cst) -> cst
let discharge_variable (_,o) = match o with
| Inr (id,_) -> Some (Inl (get_variable_constraints id))
| Inl _ -> Some o
let (in_variable, out_variable) =
declare_object { (default_object "VARIABLE") with
cache_function = cache_variable;
discharge_function = discharge_variable;
classify_function = (fun _ -> Dispose) }
(* for initial declaration *)
let declare_variable id obj =
let oname = add_leaf id (in_variable (Inr (id,obj))) in
declare_var_implicits id;
Notation.declare_ref_arguments_scope (VarRef id);
!xml_declare_variable oname;
oname
(* Globals: constants and parameters *)
type constant_declaration = constant_entry * logical_kind
let csttab = ref (Spmap.empty : logical_kind Spmap.t)
let _ = Summary.declare_summary "CONSTANT"
{ Summary.freeze_function = (fun () -> !csttab);
Summary.unfreeze_function = (fun ft -> csttab := ft);
Summary.init_function = (fun () -> csttab := Spmap.empty);
Summary.survive_module = false;
Summary.survive_section = false }
(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant i ((sp,kn),(_,_,_,kind)) =
if Nametab.exists_cci sp then
errorlabstrm "cache_constant"
(pr_id (basename sp) ++ str " already exists");
Nametab.push (Nametab.Until i) sp (ConstRef (constant_of_kn kn));
csttab := Spmap.add sp kind !csttab
(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn),_) =
Nametab.push (Nametab.Exactly i) sp (ConstRef (constant_of_kn kn))
let cache_constant ((sp,kn),(cdt,dhyps,imps,kind)) =
let id = basename sp in
let _,dir,_ = repr_kn kn in
if Idmap.mem id !vartab then
errorlabstrm "cache_constant" (pr_id id ++ str " already exists");
if Nametab.exists_cci sp then
errorlabstrm "cache_constant" (pr_id id ++ str " already exists");
let kn' = Global.add_constant dir id cdt in
assert (kn' = constant_of_kn kn);
Nametab.push (Nametab.Until 1) sp (ConstRef (constant_of_kn kn));
add_section_constant kn' (Global.lookup_constant kn').const_hyps;
Dischargedhypsmap.set_discharged_hyps sp dhyps;
with_implicits imps declare_constant_implicits kn';
Notation.declare_ref_arguments_scope (ConstRef kn');
csttab := Spmap.add sp kind !csttab
(*s Registration as global tables and rollback. *)
open Cooking
let discharged_hyps kn sechyps =
let (_,dir,_) = repr_kn kn in
let args = array_map_to_list destVar (instance_from_named_context sechyps) in
List.rev (List.map (Libnames.make_path dir) args)
let discharge_constant ((sp,kn),(cdt,dhyps,imps,kind)) =
let con = constant_of_kn kn in
let cb = Global.lookup_constant con in
let (repl1,_ as repl) = replacement_context () in
let sechyps = section_segment (ConstRef con) in
let recipe = { d_from=cb; d_modlist=repl; d_abstract=sechyps } in
Some (GlobalRecipe recipe,(discharged_hyps kn sechyps)@dhyps,imps,kind)
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant_entry = ConstantEntry (ParameterEntry mkProp)
let dummy_constant (ce,_,imps,mk) = dummy_constant_entry,[],imps,mk
let export_constant cst = Some (dummy_constant cst)
let classify_constant (_,cst) = Substitute (dummy_constant cst)
let (in_constant, out_constant) =
declare_object { (default_object "CONSTANT") with
cache_function = cache_constant;
load_function = load_constant;
open_function = open_constant;
classify_function = classify_constant;
subst_function = ident_subst_function;
discharge_function = discharge_constant;
export_function = export_constant }
let hcons_constant_declaration = function
| DefinitionEntry ce when !Options.hash_cons_proofs ->
let (hcons1_constr,_) = hcons_constr (hcons_names()) in
DefinitionEntry
{ const_entry_body = hcons1_constr ce.const_entry_body;
const_entry_type = option_app hcons1_constr ce.const_entry_type;
const_entry_opaque = ce.const_entry_opaque;
const_entry_boxed = ce.const_entry_boxed }
| cd -> cd
let declare_constant_common id dhyps (cd,kind) =
let imps = implicits_flags () in
let (sp,kn) = add_leaf id (in_constant (cd,dhyps,imps,kind)) in
let kn = constant_of_kn kn in
kn
let declare_constant_gen internal id (cd,kind) =
let cd = hcons_constant_declaration cd in
let kn = declare_constant_common id [] (ConstantEntry cd,kind) in
!xml_declare_constant (internal,kn);
kn
let declare_internal_constant = declare_constant_gen true
let declare_constant = declare_constant_gen false
(* Inductives. *)
let declare_inductive_argument_scopes kn mie =
list_iter_i (fun i {mind_entry_consnames=lc} ->
Notation.declare_ref_arguments_scope (IndRef (kn,i));
for j=1 to List.length lc do
Notation.declare_ref_arguments_scope (ConstructRef ((kn,i),j));
done) mie.mind_entry_inds
let inductive_names sp kn mie =
let (dp,_) = repr_path sp in
let names, _ =
List.fold_left
(fun (names, n) ind ->
let ind_p = (kn,n) in
let names, _ =
List.fold_left
(fun (names, p) l ->
let sp =
Libnames.make_path dp l
in
((sp, ConstructRef (ind_p,p)) :: names, p+1))
(names, 1) ind.mind_entry_consnames in
let sp = Libnames.make_path dp ind.mind_entry_typename
in
((sp, IndRef ind_p) :: names, n+1))
([], 0) mie.mind_entry_inds
in names
let check_exists_inductive (sp,_) =
(if Idmap.mem (basename sp) !vartab then
errorlabstrm ""
(pr_id (basename sp) ++ str " already exists"));
if Nametab.exists_cci sp then
let (_,id) = repr_path sp in
errorlabstrm "" (pr_id id ++ str " already exists")
let load_inductive i ((sp,kn),(_,_,mie)) =
let names = inductive_names sp kn mie in
List.iter check_exists_inductive names;
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref) names
let open_inductive i ((sp,kn),(_,_,mie)) =
let names = inductive_names sp kn mie in
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names
let cache_inductive ((sp,kn),(dhyps,imps,mie)) =
let names = inductive_names sp kn mie in
List.iter check_exists_inductive names;
let id = basename sp in
let _,dir,_ = repr_kn kn in
let kn' = Global.add_mind dir id mie in
assert (kn'=kn);
add_section_kn kn (Global.lookup_mind kn').mind_hyps;
Dischargedhypsmap.set_discharged_hyps sp dhyps;
with_implicits imps declare_mib_implicits kn;
declare_inductive_argument_scopes kn mie;
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref) names
let discharge_inductive ((sp,kn),(dhyps,imps,mie)) =
let mie = Global.lookup_mind kn in
let repl = replacement_context () in
let sechyps = section_segment (IndRef (kn,0)) in
Some (discharged_hyps kn sechyps,imps,
Discharge.process_inductive sechyps repl mie)
let dummy_one_inductive_entry mie = {
mind_entry_typename = mie.mind_entry_typename;
mind_entry_arity = mkProp;
mind_entry_consnames = mie.mind_entry_consnames;
mind_entry_lc = []
}
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry (_,imps,m) = ([],imps,{
mind_entry_params = [];
mind_entry_record = false;
mind_entry_finite = true;
mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds })
let export_inductive x = Some (dummy_inductive_entry x)
let (in_inductive, out_inductive) =
declare_object {(default_object "INDUCTIVE") with
cache_function = cache_inductive;
load_function = load_inductive;
open_function = open_inductive;
classify_function = (fun (_,a) -> Substitute (dummy_inductive_entry a));
subst_function = ident_subst_function;
discharge_function = discharge_inductive;
export_function = export_inductive }
(* for initial declaration *)
let declare_mind isrecord mie =
let imps = implicits_flags () in
let id = match mie.mind_entry_inds with
| ind::_ -> ind.mind_entry_typename
| [] -> anomaly "cannot declare an empty list of inductives" in
let oname = add_leaf id (in_inductive ([],imps,mie)) in
!xml_declare_inductive (isrecord,oname);
oname
(*s Test and access functions. *)
let is_constant sp =
try let _ = Spmap.find sp !csttab in true with Not_found -> false
let constant_strength sp = Global
let constant_kind sp = Spmap.find sp !csttab
let get_variable id =
let (p,x,_) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> (id,Some c,ty)
| CheckedSectionLocalAssum (ty,cst) -> (id,None,ty)
let variable_strength _ = Local
let find_section_variable id =
let (p,_,_) = Idmap.find id !vartab in Libnames.make_path p id
let variable_opacity id =
let (_,x,_) = Idmap.find id !vartab in
match x with
| CheckedSectionLocalDef (c,ty,cst,opaq) -> opaq
| CheckedSectionLocalAssum (ty,cst) -> false (* any.. *)
let variable_kind id =
pi3 (Idmap.find id !vartab)
let clear_proofs sign =
List.fold_right
(fun (id,c,t as d) signv ->
let d = if variable_opacity id then (id,None,t) else d in
Environ.push_named_context_val d signv) sign Environ.empty_named_context_val
(* Global references. *)
let first f v =
let n = Array.length v in
let rec look_for i =
if i = n then raise Not_found;
try f i v.(i) with Not_found -> look_for (succ i)
in
look_for 0
let mind_oper_of_id sp id mib =
first
(fun tyi mip ->
if id = mip.mind_typename then
IndRef (sp,tyi)
else
first
(fun cj cid ->
if id = cid then
ConstructRef ((sp,tyi),succ cj)
else raise Not_found)
mip.mind_consnames)
mib.mind_packets
let last_section_hyps dir =
fold_named_context
(fun (id,_,_) sec_ids ->
try
let (p,_,_) = Idmap.find id !vartab in
if dir=p then id::sec_ids else sec_ids
with Not_found -> sec_ids)
(Environ.named_context (Global.env()))
~init:[]
let is_section_variable = function
| VarRef _ -> true
| _ -> false
let strength_of_global = function
| VarRef _ -> Local
| IndRef _ | ConstructRef _ | ConstRef _ -> Global
|