1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** This module is about the low-level declaration of logical objects *)
open Pp
open Errors
open Util
open Names
open Libnames
open Globnames
open Nameops
open Term
open Declarations
open Entries
open Libobject
open Lib
open Impargs
open Safe_typing
open Cooking
open Decls
open Decl_kinds
(** flag for internal message display *)
type internal_flag =
| UserAutomaticRequest (* kernel action, a message is displayed *)
| InternalTacticRequest (* kernel action, no message is displayed *)
| UserIndividualRequest (* user action, a message is displayed *)
(** Declaration of section variables and local definitions *)
type section_variable_entry =
| SectionLocalDef of definition_entry
| SectionLocalAssum of types Univ.in_universe_context_set * polymorphic * bool (** Implicit status *)
type variable_declaration = DirPath.t * section_variable_entry * logical_kind
let cache_variable ((sp,_),o) =
match o with
| Inl ctx -> Global.push_context_set false ctx
| Inr (id,(p,d,mk)) ->
(* Constr raisonne sur les noms courts *)
if variable_exists id then
alreadydeclared (pr_id id ++ str " already exists");
let impl,opaq,poly,ctx = match d with (* Fails if not well-typed *)
| SectionLocalAssum ((ty,ctx),poly,impl) ->
let () = Global.push_named_assum ((id,ty,poly),ctx) in
let impl = if impl then Implicit else Explicit in
impl, true, poly, ctx
| SectionLocalDef (de) ->
let univs = Global.push_named_def (id,de) in
Explicit, de.const_entry_opaque,
de.const_entry_polymorphic, univs in
Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id);
add_section_variable id impl poly ctx;
Dischargedhypsmap.set_discharged_hyps sp [];
add_variable_data id (p,opaq,ctx,poly,mk)
let discharge_variable (_,o) = match o with
| Inr (id,_) ->
if variable_polymorphic id then None
else Some (Inl (variable_context id))
| Inl _ -> Some o
type variable_obj =
(Univ.ContextSet.t, Id.t * variable_declaration) union
let inVariable : variable_obj -> obj =
declare_object { (default_object "VARIABLE") with
cache_function = cache_variable;
discharge_function = discharge_variable;
classify_function = (fun _ -> Dispose) }
(* for initial declaration *)
let declare_variable id obj =
let oname = add_leaf id (inVariable (Inr (id,obj))) in
declare_var_implicits id;
Notation.declare_ref_arguments_scope (VarRef id);
Heads.declare_head (EvalVarRef id);
oname
(** Declaration of constants and parameters *)
type constant_obj = {
cst_decl : global_declaration;
cst_hyps : Dischargedhypsmap.discharged_hyps;
cst_kind : logical_kind;
cst_locl : bool;
}
type constant_declaration = constant_entry * logical_kind
(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant i ((sp,kn), obj) =
if Nametab.exists_cci sp then
alreadydeclared (pr_id (basename sp) ++ str " already exists");
let con = Global.constant_of_delta_kn kn in
Nametab.push (Nametab.Until i) sp (ConstRef con);
add_constant_kind con obj.cst_kind
(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn), obj) =
(** Never open a local definition *)
if obj.cst_locl then ()
else
let con = Global.constant_of_delta_kn kn in
Nametab.push (Nametab.Exactly i) sp (ConstRef con);
match (Global.lookup_constant con).const_body with
| (Def _ | Undef _) -> ()
| OpaqueDef lc ->
match Opaqueproof.get_constraints (Global.opaque_tables ()) lc with
| Some f when Future.is_val f ->
Global.push_context_set false (Future.force f)
| _ -> ()
let exists_name id =
variable_exists id || Global.exists_objlabel (Label.of_id id)
let check_exists sp =
let id = basename sp in
if exists_name id then alreadydeclared (pr_id id ++ str " already exists")
let cache_constant ((sp,kn), obj) =
let id = basename sp in
let _,dir,_ = repr_kn kn in
let () = check_exists sp in
let kn' = Global.add_constant dir id obj.cst_decl in
assert (eq_constant kn' (constant_of_kn kn));
Nametab.push (Nametab.Until 1) sp (ConstRef (constant_of_kn kn));
let cst = Global.lookup_constant kn' in
add_section_constant (cst.const_proj <> None) kn' cst.const_hyps;
Dischargedhypsmap.set_discharged_hyps sp obj.cst_hyps;
add_constant_kind (constant_of_kn kn) obj.cst_kind
let discharged_hyps kn sechyps =
let (_,dir,_) = repr_kn kn in
let args = Array.to_list (instance_from_variable_context sechyps) in
List.rev_map (Libnames.make_path dir) args
let discharge_constant ((sp, kn), obj) =
let con = constant_of_kn kn in
let from = Global.lookup_constant con in
let modlist = replacement_context () in
let hyps,subst,uctx = section_segment_of_constant con in
let new_hyps = (discharged_hyps kn hyps) @ obj.cst_hyps in
let abstract = (named_of_variable_context hyps, subst, uctx) in
let new_decl = GlobalRecipe{ from; info = { Opaqueproof.modlist; abstract}} in
Some { obj with cst_hyps = new_hyps; cst_decl = new_decl; }
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant_entry =
ConstantEntry (ParameterEntry (None,false,(mkProp,Univ.UContext.empty),None))
let dummy_constant cst = {
cst_decl = dummy_constant_entry;
cst_hyps = [];
cst_kind = cst.cst_kind;
cst_locl = cst.cst_locl;
}
let classify_constant cst = Substitute (dummy_constant cst)
let inConstant : constant_obj -> obj =
declare_object { (default_object "CONSTANT") with
cache_function = cache_constant;
load_function = load_constant;
open_function = open_constant;
classify_function = classify_constant;
subst_function = ident_subst_function;
discharge_function = discharge_constant }
let declare_constant_common id cst =
let (sp,kn) = add_leaf id (inConstant cst) in
let c = Global.constant_of_delta_kn kn in
declare_constant_implicits c;
Heads.declare_head (EvalConstRef c);
Notation.declare_ref_arguments_scope (ConstRef c);
c
let definition_entry ?(opaque=false) ?(inline=false) ?types
?(poly=false) ?(univs=Univ.UContext.empty) ?(eff=Declareops.no_seff) body =
{ const_entry_body = Future.from_val ((body,Univ.ContextSet.empty), eff);
const_entry_secctx = None;
const_entry_type = types;
const_entry_polymorphic = poly;
const_entry_universes = univs;
const_entry_opaque = opaque;
const_entry_feedback = None;
const_entry_inline_code = inline}
let declare_scheme = ref (fun _ _ -> assert false)
let set_declare_scheme f = declare_scheme := f
let declare_sideff env fix_exn se =
let cbl, scheme = match se with
| SEsubproof (c, cb, pt) -> [c, cb, pt], None
| SEscheme (cbl, k) ->
List.map (fun (_,c,cb,pt) -> c,cb,pt) cbl, Some (cbl,k) in
let id_of c = Names.Label.to_id (Names.Constant.label c) in
let pt_opaque_of cb pt =
match cb, pt with
| { const_body = Def sc }, _ -> (Mod_subst.force_constr sc, Univ.ContextSet.empty), false
| { const_body = OpaqueDef _ }, `Opaque(pt,univ) -> (pt, univ), true
| _ -> assert false
in
let ty_of cb =
match cb.Declarations.const_type with
| Declarations.RegularArity t -> Some t
| Declarations.TemplateArity _ -> None in
let cst_of cb pt =
let pt, opaque = pt_opaque_of cb pt in
let univs, subst =
if cb.const_polymorphic then
let univs = Univ.instantiate_univ_context cb.const_universes in
univs, Vars.subst_instance_constr (Univ.UContext.instance univs)
else cb.const_universes, fun x -> x
in
let pt = (subst (fst pt), snd pt) in
let ty = Option.map subst (ty_of cb) in
{ cst_decl = ConstantEntry (DefinitionEntry {
const_entry_body = Future.from_here ~fix_exn (pt, Declareops.no_seff);
const_entry_secctx = Some cb.Declarations.const_hyps;
const_entry_type = ty;
const_entry_opaque = opaque;
const_entry_inline_code = false;
const_entry_feedback = None;
const_entry_polymorphic = cb.const_polymorphic;
const_entry_universes = univs;
});
cst_hyps = [] ;
cst_kind = Decl_kinds.IsDefinition Decl_kinds.Definition;
cst_locl = true;
} in
let exists c =
try ignore(Environ.lookup_constant c env); true
with Not_found -> false in
let knl =
CList.map_filter (fun (c,cb,pt) ->
if exists c then None
else Some (c,declare_constant_common (id_of c) (cst_of cb pt))) cbl in
match scheme with
| None -> ()
| Some (inds_consts,kind) ->
!declare_scheme kind (Array.of_list
(List.map (fun (c,kn) ->
CList.find_map (fun (x,c',_,_) ->
if Constant.equal c c' then Some (x,kn) else None) inds_consts)
knl))
let declare_constant ?(internal = UserIndividualRequest) ?(local = false) id ?(export_seff=false) (cd, kind) =
let cd = (* We deal with side effects *)
match cd with
| Entries.DefinitionEntry de ->
if export_seff ||
not de.const_entry_opaque ||
de.const_entry_polymorphic then
let bo = de.const_entry_body in
let _, seff = Future.force bo in
if Declareops.side_effects_is_empty seff then cd
else begin
let seff = Declareops.uniquize_side_effects seff in
Declareops.iter_side_effects
(declare_sideff (Global.env ()) (Future.fix_exn_of bo)) seff;
Entries.DefinitionEntry { de with
const_entry_body = Future.chain ~pure:true bo (fun (pt, _) ->
pt, Declareops.no_seff) }
end
else cd
| _ -> cd
in
let cst = {
cst_decl = ConstantEntry cd;
cst_hyps = [] ;
cst_kind = kind;
cst_locl = local;
} in
let kn = declare_constant_common id cst in
kn
let declare_definition ?(internal=UserIndividualRequest)
?(opaque=false) ?(kind=Decl_kinds.Definition) ?(local = false)
?(poly=false) id ?types (body,ctx) =
let cb =
definition_entry ?types ~poly ~univs:(Univ.ContextSet.to_context ctx) ~opaque body
in
declare_constant ~internal ~local id
(Entries.DefinitionEntry cb, Decl_kinds.IsDefinition kind)
(** Declaration of inductive blocks *)
let declare_inductive_argument_scopes kn mie =
List.iteri (fun i {mind_entry_consnames=lc} ->
Notation.declare_ref_arguments_scope (IndRef (kn,i));
for j=1 to List.length lc do
Notation.declare_ref_arguments_scope (ConstructRef ((kn,i),j));
done) mie.mind_entry_inds
let inductive_names sp kn mie =
let (dp,_) = repr_path sp in
let kn = Global.mind_of_delta_kn kn in
let names, _ =
List.fold_left
(fun (names, n) ind ->
let ind_p = (kn,n) in
let names, _ =
List.fold_left
(fun (names, p) l ->
let sp =
Libnames.make_path dp l
in
((sp, ConstructRef (ind_p,p)) :: names, p+1))
(names, 1) ind.mind_entry_consnames in
let sp = Libnames.make_path dp ind.mind_entry_typename
in
((sp, IndRef ind_p) :: names, n+1))
([], 0) mie.mind_entry_inds
in names
let load_inductive i ((sp,kn),(_,mie)) =
let names = inductive_names sp kn mie in
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref ) names
let open_inductive i ((sp,kn),(_,mie)) =
let names = inductive_names sp kn mie in
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names
let cache_inductive ((sp,kn),(dhyps,mie)) =
let names = inductive_names sp kn mie in
List.iter check_exists (List.map fst names);
let id = basename sp in
let _,dir,_ = repr_kn kn in
let kn' = Global.add_mind dir id mie in
assert (eq_mind kn' (mind_of_kn kn));
let mind = Global.lookup_mind kn' in
add_section_kn kn' mind.mind_hyps;
Dischargedhypsmap.set_discharged_hyps sp dhyps;
List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref) names
let discharge_inductive ((sp,kn),(dhyps,mie)) =
let mind = Global.mind_of_delta_kn kn in
let mie = Global.lookup_mind mind in
let repl = replacement_context () in
let sechyps,usubst,uctx = section_segment_of_mutual_inductive mind in
Some (discharged_hyps kn sechyps,
Discharge.process_inductive (named_of_variable_context sechyps,uctx) repl mie)
let dummy_one_inductive_entry mie = {
mind_entry_typename = mie.mind_entry_typename;
mind_entry_arity = mkProp;
mind_entry_template = false;
mind_entry_consnames = mie.mind_entry_consnames;
mind_entry_lc = []
}
(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry (_,m) = ([],{
mind_entry_params = [];
mind_entry_record = None;
mind_entry_finite = Decl_kinds.BiFinite;
mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds;
mind_entry_polymorphic = false;
mind_entry_universes = Univ.UContext.empty;
mind_entry_private = None })
type inductive_obj = Dischargedhypsmap.discharged_hyps * mutual_inductive_entry
let inInductive : inductive_obj -> obj =
declare_object {(default_object "INDUCTIVE") with
cache_function = cache_inductive;
load_function = load_inductive;
open_function = open_inductive;
classify_function = (fun a -> Substitute (dummy_inductive_entry a));
subst_function = ident_subst_function;
discharge_function = discharge_inductive }
let declare_projections mind =
let spec,_ = Inductive.lookup_mind_specif (Global.env ()) (mind,0) in
match spec.mind_record with
| Some (Some (_, kns, pjs)) ->
Array.iteri (fun i kn ->
let id = Label.to_id (Constant.label kn) in
let entry = {proj_entry_ind = mind; proj_entry_arg = i} in
let kn' = declare_constant id (ProjectionEntry entry,
IsDefinition StructureComponent)
in
assert(eq_constant kn kn')) kns; true
| Some None | None -> false
(* for initial declaration *)
let declare_mind mie =
let id = match mie.mind_entry_inds with
| ind::_ -> ind.mind_entry_typename
| [] -> anomaly (Pp.str "cannot declare an empty list of inductives") in
let (sp,kn as oname) = add_leaf id (inInductive ([],mie)) in
let mind = Global.mind_of_delta_kn kn in
let isprim = declare_projections mind in
declare_mib_implicits mind;
declare_inductive_argument_scopes mind mie;
oname, isprim
(* Declaration messages *)
let pr_rank i = pr_nth (i+1)
let fixpoint_message indexes l =
Flags.if_verbose msg_info (match l with
| [] -> anomaly (Pp.str "no recursive definition")
| [id] -> pr_id id ++ str " is recursively defined" ++
(match indexes with
| Some [|i|] -> str " (decreasing on "++pr_rank i++str " argument)"
| _ -> mt ())
| l -> hov 0 (prlist_with_sep pr_comma pr_id l ++
spc () ++ str "are recursively defined" ++
match indexes with
| Some a -> spc () ++ str "(decreasing respectively on " ++
prvect_with_sep pr_comma pr_rank a ++
str " arguments)"
| None -> mt ()))
let cofixpoint_message l =
Flags.if_verbose msg_info (match l with
| [] -> anomaly (Pp.str "No corecursive definition.")
| [id] -> pr_id id ++ str " is corecursively defined"
| l -> hov 0 (prlist_with_sep pr_comma pr_id l ++
spc () ++ str "are corecursively defined"))
let recursive_message isfix i l =
(if isfix then fixpoint_message i else cofixpoint_message) l
let definition_message id =
Flags.if_verbose msg_info (pr_id id ++ str " is defined")
let assumption_message id =
Flags.if_verbose msg_info (pr_id id ++ str " is assumed")
(** Global universe names, in a different summary *)
type universe_names =
(Univ.universe_level Idmap.t * Id.t Univ.LMap.t)
(* Discharged or not *)
type universe_decl = polymorphic * (Id.t * Univ.universe_level) list
let cache_universes (p, l) =
let glob = Universes.global_universe_names () in
let glob', ctx =
List.fold_left (fun ((idl,lid),ctx) (id, lev) ->
((Idmap.add id lev idl, Univ.LMap.add lev id lid),
Univ.ContextSet.add_universe lev ctx))
(glob, Univ.ContextSet.empty) l
in
Global.push_context_set false ctx;
if p then Lib.add_section_context ctx;
Universes.set_global_universe_names glob'
let input_universes : universe_decl -> Libobject.obj =
declare_object
{ (default_object "Global universe name state") with
cache_function = (fun (na, pi) -> cache_universes pi);
load_function = (fun _ (_, pi) -> cache_universes pi);
discharge_function = (fun (_, (p, _ as x)) -> if p then None else Some x);
classify_function = (fun a -> Keep a) }
let do_universe poly l =
let l =
List.map (fun (l, id) ->
let lev = Universes.new_univ_level (Global.current_dirpath ()) in
(id, lev)) l
in
Lib.add_anonymous_leaf (input_universes (poly, l))
type constraint_decl = polymorphic * Univ.constraints
let cache_constraints (na, (p, c)) =
Global.add_constraints c;
if p then Lib.add_section_context (Univ.ContextSet.add_constraints c Univ.ContextSet.empty)
let discharge_constraints (_, (p, c as a)) =
if p then None else Some a
let input_constraints : constraint_decl -> Libobject.obj =
let open Libobject in
declare_object
{ (default_object "Global universe constraints") with
cache_function = cache_constraints;
load_function = (fun _ -> cache_constraints);
discharge_function = discharge_constraints;
classify_function = (fun a -> Keep a) }
let do_constraint poly l =
let u_of_id =
let names, _ = Universes.global_universe_names () in
fun (loc, id) ->
try Idmap.find id names
with Not_found ->
user_err_loc (loc, "Constraint", str "Undeclared universe " ++ pr_id id)
in
let constraints = List.fold_left (fun acc (l, d, r) ->
let lu = u_of_id l and ru = u_of_id r in
Univ.Constraint.add (lu, d, ru) acc)
Univ.Constraint.empty l
in
Lib.add_anonymous_leaf (input_constraints (poly, constraints))
|