1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Util
open Libnames
(* Informal mathematical status of declarations *)
type locality =
| Local
| Global
type boxed_flag = bool
type theorem_kind =
| Theorem
| Lemma
| Fact
| Remark
| Property
| Proposition
| Corollary
type definition_object_kind =
| Definition
| Coercion
| SubClass
| CanonicalStructure
| Example
| Fixpoint
| CoFixpoint
| Scheme
| StructureComponent
| IdentityCoercion
| Instance
| Method
type assumption_object_kind = Definitional | Logical | Conjectural
(* [assumption_kind]
| Local | Global
------------------------------------
Definitional | Variable | Parameter
Logical | Hypothesis | Axiom
*)
type assumption_kind = locality * assumption_object_kind
type definition_kind = locality * boxed_flag * definition_object_kind
(* Kinds used in proofs *)
type goal_object_kind =
| DefinitionBody of definition_object_kind
| Proof of theorem_kind
type goal_kind = locality * goal_object_kind
(* Kinds used in library *)
type logical_kind =
| IsAssumption of assumption_object_kind
| IsDefinition of definition_object_kind
| IsProof of theorem_kind
(* Utils *)
let logical_kind_of_goal_kind = function
| DefinitionBody d -> IsDefinition d
| Proof s -> IsProof s
let string_of_theorem_kind = function
| Theorem -> "Theorem"
| Lemma -> "Lemma"
| Fact -> "Fact"
| Remark -> "Remark"
| Property -> "Property"
| Proposition -> "Proposition"
| Corollary -> "Corollary"
let string_of_definition_kind (l,boxed,d) =
match (l,d) with
| Local, Coercion -> "Coercion Local"
| Global, Coercion -> "Coercion"
| Local, Definition -> "Let"
| Global, Definition -> if boxed then "Boxed Definition" else "Definition"
| Local, SubClass -> "Local SubClass"
| Global, SubClass -> "SubClass"
| Global, CanonicalStructure -> "Canonical Structure"
| Global, Example -> "Example"
| Local, (CanonicalStructure|Example) ->
anomaly "Unsupported local definition kind"
| Local, Instance -> "Instance"
| Global, Instance -> "Global Instance"
| _, (StructureComponent|Scheme|CoFixpoint|Fixpoint|IdentityCoercion|Method)
-> anomaly "Internal definition kind"
(* Strength *)
let strength_of_global = function
| VarRef _ -> Local
| IndRef _ | ConstructRef _ | ConstRef _ -> Global
let string_of_strength = function
| Local -> "Local"
| Global -> "Global"
(* Recursive power *)
(* spiwack: this definition might be of use in the kernel, for now I do not
push them deeper than needed, though. *)
type recursivity_kind =
| Finite (* = inductive *)
| CoFinite (* = coinductive *)
| BiFinite (* = non-recursive, like in "Record" definitions *)
(* helper, converts to "finiteness flag" booleans *)
let recursivity_flag_of_kind = function
| Finite | BiFinite -> true
| CoFinite -> false
|