aboutsummaryrefslogtreecommitdiffhomepage
path: root/lib/util.ml
blob: 1025417310d77e869b7373fd885ee82d279ce7f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* Mapping under pairs *)

let on_fst f (a,b) = (f a,b)
let on_snd f (a,b) = (a,f b)
let map_pair f (a,b) = (f a,f b)

(* Mapping under pairs *)

let on_pi1 f (a,b,c) = (f a,b,c)
let on_pi2 f (a,b,c) = (a,f b,c)
let on_pi3 f (a,b,c) = (a,b,f c)

(* Projections from triplets *)

let pi1 (a,_,_) = a
let pi2 (_,a,_) = a
let pi3 (_,_,a) = a

(* Projection operator *)

let down_fst f x = f (fst x)
let down_snd f x = f (snd x)

(* Characters *)

let is_letter c = (c >= 'a' && c <= 'z') or (c >= 'A' && c <= 'Z')
let is_digit c = (c >= '0' && c <= '9')
let is_ident_tail c =
  is_letter c or is_digit c or c = '\'' or c = '_'
let is_blank = function
  | ' ' | '\r' | '\t' | '\n' -> true
  | _ -> false

(* Strings *)

let explode s =
  let rec explode_rec n =
    if n >= String.length s then
      []
    else
      String.make 1 (String.get s n) :: explode_rec (succ n)
  in
  explode_rec 0

let implode sl = String.concat "" sl

let strip s =
  let n = String.length s in
  let rec lstrip_rec i =
    if i < n && is_blank s.[i] then
      lstrip_rec (i+1)
    else i
  in
  let rec rstrip_rec i =
    if i >= 0 && is_blank s.[i] then
      rstrip_rec (i-1)
    else i
  in
  let a = lstrip_rec 0 and b = rstrip_rec (n-1) in
  String.sub s a (b-a+1)

let string_map f s =
  let l = String.length s in
  let r = String.create l in
  for i= 0 to (l - 1) do r.[i] <- f (s.[i]) done;
  r

let drop_simple_quotes s =
  let n = String.length s in
  if n > 2 & s.[0] = '\'' & s.[n-1] = '\'' then String.sub s 1 (n-2) else s

(* substring searching... *)

(* gdzie = where, co = what *)
(* gdzie=gdzie(string) gl=gdzie(length) gi=gdzie(index) *)
let rec is_sub gdzie gl gi co cl ci =
  (ci>=cl) ||
  ((String.unsafe_get gdzie gi = String.unsafe_get co ci) &&
   (is_sub gdzie gl (gi+1) co cl (ci+1)))

let rec raw_str_index i gdzie l c co cl =
  (* First adapt to ocaml 3.11 new semantics of index_from *)
  if (i+cl > l) then raise Not_found;
  (* Then proceed as in ocaml < 3.11 *)
  let i' = String.index_from gdzie i c in
    if (i'+cl <= l) && (is_sub gdzie l i' co cl 0) then i' else
      raw_str_index (i'+1) gdzie l c co cl

let string_index_from gdzie i co =
  if co="" then i else
    raw_str_index i gdzie (String.length gdzie)
      (String.unsafe_get co 0) co (String.length co)

let string_string_contains ~where ~what =
  try
    let _ = string_index_from where 0 what in true
  with
      Not_found -> false

let plural n s = if n<>1 then s^"s" else s

let ordinal n =
  let s = match n mod 10 with 1 -> "st" | 2 -> "nd" | 3 -> "rd" | _ -> "th" in
  string_of_int n ^ s

(* string parsing *)

let split_string_at c s =
  let len = String.length s in
  let rec split n =
    try
      let pos = String.index_from s n c in
      let dir = String.sub s n (pos-n) in
      dir :: split (succ pos)
    with
      | Not_found -> [String.sub s n (len-n)]
  in
  if len = 0 then [] else split 0

let parse_loadpath s =
  let l = split_string_at '/' s in
  if List.mem "" l then
    invalid_arg "parse_loadpath: find an empty dir in loadpath";
  l

let subst_command_placeholder s t =
  let buff = Buffer.create (String.length s + String.length t) in
  let i = ref 0 in
  while (!i < String.length s) do
    if s.[!i] = '%' & !i+1 < String.length s & s.[!i+1] = 's'
    then (Buffer.add_string buff t;incr i)
    else Buffer.add_char buff s.[!i];
    incr i
  done;
  Buffer.contents buff

module Stringset = Set.Make(struct type t = string let compare (x:t) (y:t) = compare x y end)

module Stringmap = Map.Make(struct type t = string let compare (x:t) (y:t) = compare x y end)

type utf8_status = UnicodeLetter | UnicodeIdentPart | UnicodeSymbol

exception UnsupportedUtf8

(* The following table stores classes of Unicode characters that
   are used by the lexer. There are 3 different classes so 2 bits are
   allocated for each character. We only use 16 bits over the 31 bits
   to simplify the masking process. (This choice seems to be a good
   trade-off between speed and space after some benchmarks.) *)

(* A 256ko table, initially filled with zeros. *)
let table = Array.create (1 lsl 17) 0

(* Associate a 2-bit pattern to each status at position [i]. 
   Only the 3 lowest bits of [i] are taken into account to 
   define the position of the pattern in the word. 
   Notice that pattern "00" means "undefined". *)
let mask i = function
  | UnicodeLetter    -> 1 lsl ((i land 7) lsl 1) (* 01 *)
  | UnicodeIdentPart -> 2 lsl ((i land 7) lsl 1) (* 10 *)
  | UnicodeSymbol    -> 3 lsl ((i land 7) lsl 1) (* 11 *)

(* Helper to reset 2 bits in a word. *)
let reset_mask i =
  lnot (3 lsl ((i land 7) lsl 1))

(* Initialize the lookup table from a list of segments, assigning
   a status to every character of each segment. The order of these
   assignments is relevant: it is possible to assign status [s] to
   a segment [(c1, c2)] and later assign [s'] to [c] even if [c] is
   between [c1] and [c2]. *)
let mk_lookup_table_from_unicode_tables_for status tables =
  List.iter
    (List.iter
       (fun (c1, c2) ->
          for i = c1 to c2 do
            table.(i lsr 3) <-
              (table.(i lsr 3) land (reset_mask i)) lor (mask i status)
          done))
    tables

(* Look up into the table and interpret the found pattern. *)
let lookup x =
  let v = (table.(x lsr 3) lsr ((x land 7) lsl 1)) land 3 in
    if      v = 1 then UnicodeLetter
    else if v = 2 then UnicodeIdentPart
    else if v = 3 then UnicodeSymbol
    else raise UnsupportedUtf8

(* [classify_unicode] discriminates between 3 different kinds of
   symbols based on the standard unicode classification (extracted from
   Camomile). *)
let classify_unicode =
  let single c = [ (c, c) ] in
    (* General tables. *)
    mk_lookup_table_from_unicode_tables_for UnicodeSymbol
      [
        Unicodetable.sm;           (* Symbol, maths.             *)
        Unicodetable.sc;           (* Symbol, currency.          *)
        Unicodetable.so;           (* Symbol, modifier.          *)
        Unicodetable.pd;           (* Punctation, dash.          *)
        Unicodetable.pc;           (* Punctation, connector.     *)
        Unicodetable.pe;           (* Punctation, open.          *)
        Unicodetable.ps;           (* Punctation, close.         *)
        Unicodetable.pi;           (* Punctation, initial quote. *)
        Unicodetable.pf;           (* Punctation, final quote.   *)
        Unicodetable.po;           (* Punctation, other.         *)
      ];
    mk_lookup_table_from_unicode_tables_for UnicodeLetter
      [
        Unicodetable.lu;           (* Letter, uppercase.         *)
        Unicodetable.ll;           (* Letter, lowercase.         *)
        Unicodetable.lt;           (* Letter, titlecase.         *)
        Unicodetable.lo;           (* Letter, others.            *)
      ];
    mk_lookup_table_from_unicode_tables_for UnicodeIdentPart
      [
        Unicodetable.nd;           (* Number, decimal digits.    *)
        Unicodetable.nl;           (* Number, letter.            *)
        Unicodetable.no;           (* Number, other.             *)
      ];
    (* Exceptions (from a previous version of this function). *)
    mk_lookup_table_from_unicode_tables_for UnicodeSymbol
      [
        single 0x000B2;            (* Squared.                   *)
        single 0x0002E;            (* Dot.                       *)
      ];
    mk_lookup_table_from_unicode_tables_for UnicodeLetter
      [
        single 0x005F;             (* Underscore.                *)
        single 0x00A0;             (* Non breaking space.        *)
      ];
    mk_lookup_table_from_unicode_tables_for UnicodeIdentPart
      [
        single 0x0027;             (* Special space.             *)
      ];
    (* Lookup *)
    lookup

exception End_of_input

let utf8_of_unicode n =
  if n < 128 then
    String.make 1 (Char.chr n)
  else if n < 2048 then
    let s = String.make 2 (Char.chr (128 + n mod 64)) in
    begin
      s.[0] <- Char.chr (192 + n / 64);
      s
    end
  else if n < 65536 then
    let s = String.make 3 (Char.chr (128 + n mod 64)) in
    begin
      s.[1] <- Char.chr (128 + (n / 64) mod 64);
      s.[0] <- Char.chr (224 + n / 4096);
      s
    end
  else
    let s = String.make 4 (Char.chr (128 + n mod 64)) in
    begin
      s.[2] <- Char.chr (128 + (n / 64) mod 64);
      s.[1] <- Char.chr (128 + (n / 4096) mod 64);
      s.[0] <- Char.chr (240 + n / 262144);
      s
    end

let next_utf8 s i =
  let err () = invalid_arg "utf8" in
  let l = String.length s - i in
  if l = 0 then raise End_of_input
  else let a = Char.code s.[i] in if a <= 0x7F then
    1, a
  else if a land 0x40 = 0 or l = 1 then err ()
  else let b = Char.code s.[i+1] in if b land 0xC0 <> 0x80 then err ()
  else if a land 0x20 = 0 then
    2, (a land 0x1F) lsl 6 + (b land 0x3F)
  else if l = 2 then err ()
  else let c = Char.code s.[i+2] in if c land 0xC0 <> 0x80 then err ()
  else if a land 0x10 = 0 then
    3, (a land 0x0F) lsl 12 + (b land 0x3F) lsl 6 + (c land 0x3F)
  else if l = 3 then err ()
  else let d = Char.code s.[i+3] in if d land 0xC0 <> 0x80 then err ()
  else if a land 0x08 = 0 then
    4, (a land 0x07) lsl 18 + (b land 0x3F) lsl 12 +
       (c land 0x3F) lsl 6 + (d land 0x3F)
  else err ()

(* Check the well-formedness of an identifier *)

let initial_refutation j n s =
  match classify_unicode n with
  | UnicodeLetter -> None
  | _ ->
      let c = String.sub s 0 j in
      Some (false,"Invalid character '"^c^"' at beginning of identifier \""^s^"\".")

let trailing_refutation i j n s =
  match classify_unicode n with
  | UnicodeLetter | UnicodeIdentPart -> None
  | _ ->
      let c = String.sub s i j in
      Some (false,"Invalid character '"^c^"' in identifier \""^s^"\".")

let ident_refutation s =
  if s = ".." then None else try
    let j, n = next_utf8 s 0 in
      match initial_refutation j n s with
	|None ->
	   begin try
	     let rec aux i =
	       let j, n = next_utf8 s i in
		 match trailing_refutation i j n s with
		   |None -> aux (i + j)
		   |x -> x
	     in aux j
	   with End_of_input -> None
	   end
	|x -> x
  with
  | End_of_input -> Some (true,"The empty string is not an identifier.")
  | UnsupportedUtf8 -> Some (true,s^": unsupported character in utf8 sequence.")
  | Invalid_argument _ -> Some (true,s^": invalid utf8 sequence.")

let lowercase_unicode =
  let tree = Segmenttree.make Unicodetable.to_lower in
  fun unicode ->
    try
      match Segmenttree.lookup unicode tree with
	| `Abs c -> c
	| `Delta d -> unicode + d
    with Not_found -> unicode

let lowercase_first_char_utf8 s =
  assert (s <> "");
  let j, n = next_utf8 s 0 in
  utf8_of_unicode (lowercase_unicode n)

(** For extraction, we need to encode unicode character into ascii ones *)

let ascii_of_ident s =
  let check_ascii s =
    let ok = ref true in
    String.iter (fun c -> if Char.code c >= 128 then ok := false) s;
    !ok
  in
  if check_ascii s then s else
    let i = ref 0 and out = ref "" in
    begin try while true do
      let j, n = next_utf8 s !i in
      out :=
	if n >= 128
	then Printf.sprintf "%s__U%04x_" !out n
	else Printf.sprintf "%s%c" !out s.[!i];
      i := !i + j
    done with End_of_input -> () end;
    !out

(* Lists *)

module List : CList.ExtS = CList

let (@) = CList.append

(* Arrays *)

module Array : CArray.ExtS = CArray

(* Matrices *)

let matrix_transpose mat =
  List.fold_right (List.map2 (fun p c -> p::c)) mat
    (if mat = [] then [] else List.map (fun _ -> []) (List.hd mat))

(* Functions *)

let identity x = x

let compose f g x = f (g x)

let const x _ = x

let iterate f =
  let rec iterate_f n x =
    if n <= 0 then x else iterate_f (pred n) (f x)
  in
  iterate_f

let repeat n f x =
  let rec loop i = if i <> 0 then (f x; loop (i - 1)) in loop n

let iterate_for a b f x =
  let rec iterate i v = if i > b then v else iterate (succ i) (f i v) in
  iterate a x

let app_opt f x =
  match f with
  | Some f -> f x
  | None -> x

(* Stream *)

let stream_nth n st =
  try List.nth (Stream.npeek (n+1) st) n
  with Failure _ -> raise Stream.Failure

let stream_njunk n st =
  repeat n Stream.junk st

(* Delayed computations *)

type 'a delayed = unit -> 'a

let delayed_force f = f ()

(* Misc *)

type ('a,'b) union = Inl of 'a | Inr of 'b

module Intset = Set.Make(struct type t = int let compare (x:t) (y:t) = compare x y end)

module Intmap = Map.Make(struct type t = int let compare (x:t) (y:t) = compare x y end)

let intmap_in_dom x m =
  try let _ = Intmap.find x m in true with Not_found -> false

let intmap_to_list m = Intmap.fold (fun n v l -> (n,v)::l) m []

let intmap_inv m b = Intmap.fold (fun n v l -> if v = b then n::l else l) m []

let interval n m =
  let rec interval_n (l,m) =
    if n > m then l else interval_n (m::l,pred m)
  in
  interval_n ([],m)


let map_succeed f l =
  let filter x = try Some (f x) with Failure _ -> None in
  List.map_filter filter l 

(*s Memoization *)

let memo1_eq eq f =
  let m = ref None in
  fun x ->
    match !m with
        Some(x',y') when eq x x' -> y'
      | _ -> let y = f x in m := Some(x,y); y

let memo1_1 f = memo1_eq (==) f
let memo1_2 f =
  let f' =
    memo1_eq (fun (x,y) (x',y') -> x==x' && y==y') (fun (x,y) -> f x y) in
  (fun x y -> f'(x,y))

(* Memorizes the last n distinct calls to f. Since there is no hash,
   Efficient only for small n. *)
let memon_eq eq n f =
  let cache = ref [] in (* the cache: a stack *)
  let m = ref 0 in      (* usage of the cache *)
  let rec find x = function
    | (x',y')::l when eq x x' -> y', l (* cell is moved to the top *)
    | [] -> (* we assume n>0, so creating one memo cell is OK *)
        incr m; (f x, [])
    | [_] when !m>=n -> f x,[] (* cache is full: dispose of last cell *)
    | p::l (* not(eq x (fst p)) *) -> let (y,l') = find x l in (y, p::l')
  in
  (fun x ->
    let (y,l) = find x !cache in
    cache := (x,y)::l;
    y)


(*s Size of ocaml values. *)

module Size = struct

  (*s Pointers already visited are stored in a hash-table, where
      comparisons are done using physical equality. *)

  module H = Hashtbl.Make(
    struct
      type t = Obj.t
      let equal = (==)
      let hash o = Hashtbl.hash (Obj.magic o : int)
    end)

  let node_table = (H.create 257 : unit H.t)

  let in_table o = try H.find node_table o; true with Not_found -> false

  let add_in_table o = H.add node_table o ()

  let reset_table () = H.clear node_table

  (*s Objects are traversed recursively, as soon as their tags are less than
      [no_scan_tag]. [count] records the numbers of words already visited. *)

  let size_of_double = Obj.size (Obj.repr 1.0)

  let count = ref 0

  let rec traverse t =
    if not (in_table t) then begin
      add_in_table t;
      if Obj.is_block t then begin
	let n = Obj.size t in
	let tag = Obj.tag t in
	if tag < Obj.no_scan_tag then begin
	  count := !count + 1 + n;
	  for i = 0 to n - 1 do
      	    let f = Obj.field t i in
	    if Obj.is_block f then traverse f
	  done
	end else if tag = Obj.string_tag then
	  count := !count + 1 + n
	else if tag = Obj.double_tag then
	  count := !count + size_of_double
	else if tag = Obj.double_array_tag then
	  count := !count + 1 + size_of_double * n
	else
	  incr count
      end
    end

  (*s Sizes of objects in words and in bytes. The size in bytes is computed
      system-independently according to [Sys.word_size]. *)

  let size_w o =
    reset_table ();
    count := 0;
    traverse (Obj.repr o);
    !count

  let size_b o = (size_w o) * (Sys.word_size / 8)

  let size_kb o = (size_w o) / (8192 / Sys.word_size)

end

let size_w = Size.size_w
let size_b = Size.size_b
let size_kb = Size.size_kb

(*s Total size of the allocated ocaml heap. *)

let heap_size () =
  let stat = Gc.stat ()
  and control = Gc.get () in
  let max_words_total = stat.Gc.heap_words + control.Gc.minor_heap_size in
  (max_words_total * (Sys.word_size / 8))

let heap_size_kb () = (heap_size () + 1023) / 1024

(*s interruption *)

let interrupt = ref false
let check_for_interrupt () =
  if !interrupt then begin interrupt := false; raise Sys.Break end