blob: 18468661aeb1b206deab72d2ac4cdd1f016e1a48 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** An imperative implementation of partitions via Union-Find *)
(** Paths are compressed imperatively at each lookup of a
canonical representative. Each union also modifies in-place
the partition structure.
Nota: for the moment we use Pervasive's comparison for
choosing the smallest object as representative. This could
be made more generic.
*)
module type PartitionSig = sig
(** The type of elements in the partition *)
type elt
(** A set structure over elements *)
type set
(** The type of partitions *)
type t
(** Initialise an empty partition *)
val create : unit -> t
(** Add (in place) an element in the partition, or do nothing
if the element is already in the partition. *)
val add : elt -> t -> unit
(** Find the canonical representative of an element.
Raise [not_found] if the element isn't known yet. *)
val find : elt -> t -> elt
(** Merge (in place) the equivalence classes of two elements.
This will add the elements in the partition if necessary. *)
val union : elt -> elt -> t -> unit
(** Merge (in place) the equivalence classes of many elements. *)
val union_set : set -> t -> unit
(** Listing the different components of the partition *)
val partition : t -> set list
end
module Make :
functor (S:Set.S) ->
functor (M:Map.S with type key = S.elt) ->
PartitionSig with type elt = S.elt and type set = S.t
|