1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(** Unicode utilities *)
type status = Letter | IdentPart | Symbol | Unknown
(* The following table stores classes of Unicode characters that
are used by the lexer. There are 3 different classes so 2 bits are
allocated for each character. We only use 16 bits over the 31 bits
to simplify the masking process. (This choice seems to be a good
trade-off between speed and space after some benchmarks.) *)
(* A 256 KiB table, initially filled with zeros. *)
let table = Array.make (1 lsl 17) 0
(* Associate a 2-bit pattern to each status at position [i].
Only the 3 lowest bits of [i] are taken into account to
define the position of the pattern in the word.
Notice that pattern "00" means "undefined". *)
let mask i = function
| Letter -> 1 lsl ((i land 7) lsl 1) (* 01 *)
| IdentPart -> 2 lsl ((i land 7) lsl 1) (* 10 *)
| Symbol -> 3 lsl ((i land 7) lsl 1) (* 11 *)
| Unknown -> 0 lsl ((i land 7) lsl 1) (* 00 *)
(* Helper to reset 2 bits in a word. *)
let reset_mask i =
lnot (3 lsl ((i land 7) lsl 1))
(* Initialize the lookup table from a list of segments, assigning
a status to every character of each segment. The order of these
assignments is relevant: it is possible to assign status [s] to
a segment [(c1, c2)] and later assign [s'] to [c] even if [c] is
between [c1] and [c2]. *)
let mk_lookup_table_from_unicode_tables_for status tables =
List.iter
(List.iter
(fun (c1, c2) ->
for i = c1 to c2 do
table.(i lsr 3) <-
(table.(i lsr 3) land (reset_mask i)) lor (mask i status)
done))
tables
(* Look up into the table and interpret the found pattern. *)
let lookup x =
let v = (table.(x lsr 3) lsr ((x land 7) lsl 1)) land 3 in
if v = 1 then Letter
else if v = 2 then IdentPart
else if v = 3 then Symbol
else Unknown
(* [classify] discriminates between 3 different kinds of
symbols based on the standard unicode classification (extracted from
Camomile). *)
let classify =
let single c = [ (c, c) ] in
(* General tables. *)
mk_lookup_table_from_unicode_tables_for Symbol
[
Unicodetable.sm; (* Symbol, maths. *)
Unicodetable.sc; (* Symbol, currency. *)
Unicodetable.so; (* Symbol, modifier. *)
Unicodetable.pd; (* Punctation, dash. *)
Unicodetable.pc; (* Punctation, connector. *)
Unicodetable.pe; (* Punctation, open. *)
Unicodetable.ps; (* Punctation, close. *)
Unicodetable.pi; (* Punctation, initial quote. *)
Unicodetable.pf; (* Punctation, final quote. *)
Unicodetable.po; (* Punctation, other. *)
];
mk_lookup_table_from_unicode_tables_for Letter
[
Unicodetable.lu; (* Letter, uppercase. *)
Unicodetable.ll; (* Letter, lowercase. *)
Unicodetable.lt; (* Letter, titlecase. *)
Unicodetable.lo; (* Letter, others. *)
];
mk_lookup_table_from_unicode_tables_for IdentPart
[
Unicodetable.nd; (* Number, decimal digits. *)
Unicodetable.nl; (* Number, letter. *)
Unicodetable.no; (* Number, other. *)
];
(* Workaround. Some characters seems to be missing in
Camomile's category tables. We add them manually. *)
mk_lookup_table_from_unicode_tables_for Letter
[
[(0x01D00, 0x01D7F)]; (* Phonetic Extensions. *)
[(0x01D80, 0x01DBF)]; (* Phonetic Extensions Suppl. *)
[(0x01DC0, 0x01DFF)]; (* Combining Diacritical Marks Suppl.*)
];
(* Exceptions (from a previous version of this function). *)
mk_lookup_table_from_unicode_tables_for Symbol
[
[(0x000B2, 0x000B3)]; (* Superscript 2-3. *)
single 0x000B9; (* Superscript 1. *)
single 0x02070; (* Superscript 0. *)
[(0x02074, 0x02079)]; (* Superscript 4-9. *)
single 0x0002E; (* Dot. *)
];
mk_lookup_table_from_unicode_tables_for Letter
[
single 0x005F; (* Underscore. *)
single 0x00A0; (* Non breaking space. *)
];
mk_lookup_table_from_unicode_tables_for IdentPart
[
single 0x0027; (* Special space. *)
];
(* Lookup *)
lookup
exception End_of_input
let utf8_of_unicode n =
if n < 128 then
String.make 1 (Char.chr n)
else
let (m,s) = if n < 2048 then (2,192) else if n < 65536 then (3,224) else (4,240) in
String.init m (fun i ->
let j = (n lsr ((m - 1 - i) * 6)) land 63 in
Char.chr (j + if i = 0 then s else 128))
(* If [s] is some UTF-8 encoded string
and [i] is a position of some UTF-8 character within [s]
then [next_utf8 s i] returns [(j,n)] where:
- [j] indicates the position of the next UTF-8 character
- [n] represents the UTF-8 character at index [i] *)
let next_utf8 s i =
let err () = invalid_arg "utf8" in
let l = String.length s - i in
if l = 0 then raise End_of_input
else let a = Char.code s.[i] in if a <= 0x7F then
1, a
else if a land 0x40 = 0 || l = 1 then err ()
else let b = Char.code s.[i+1] in if b land 0xC0 <> 0x80 then err ()
else if a land 0x20 = 0 then
2, (a land 0x1F) lsl 6 + (b land 0x3F)
else if l = 2 then err ()
else let c = Char.code s.[i+2] in if c land 0xC0 <> 0x80 then err ()
else if a land 0x10 = 0 then
3, (a land 0x0F) lsl 12 + (b land 0x3F) lsl 6 + (c land 0x3F)
else if l = 3 then err ()
else let d = Char.code s.[i+3] in if d land 0xC0 <> 0x80 then err ()
else if a land 0x08 = 0 then
4, (a land 0x07) lsl 18 + (b land 0x3F) lsl 12 +
(c land 0x3F) lsl 6 + (d land 0x3F)
else err ()
let is_utf8 s =
let rec check i =
let (off, _) = next_utf8 s i in
check (i + off)
in
try check 0 with End_of_input -> true | Invalid_argument _ -> false
(* Check the well-formedness of an identifier *)
let initial_refutation j n s =
match classify n with
| Letter -> None
| _ ->
let c = String.sub s 0 j in
Some (false,
"Invalid character '"^c^"' at beginning of identifier \""^s^"\".")
let trailing_refutation i j n s =
match classify n with
| Letter | IdentPart -> None
| _ ->
let c = String.sub s i j in
Some (false,
"Invalid character '"^c^"' in identifier \""^s^"\".")
let ident_refutation s =
if s = ".." then None else try
let j, n = next_utf8 s 0 in
match initial_refutation j n s with
|None ->
begin try
let rec aux i =
let j, n = next_utf8 s i in
match trailing_refutation i j n s with
|None -> aux (i + j)
|x -> x
in aux j
with End_of_input -> None
end
|x -> x
with
| End_of_input -> Some (true,"The empty string is not an identifier.")
| Invalid_argument _ -> Some (true,s^": invalid utf8 sequence.")
let lowercase_unicode =
let tree = Segmenttree.make Unicodetable.to_lower in
fun unicode ->
try
match Segmenttree.lookup unicode tree with
| `Abs c -> c
| `Delta d -> unicode + d
with Not_found -> unicode
let lowercase_first_char s =
assert (s <> "");
let j, n = next_utf8 s 0 in
utf8_of_unicode (lowercase_unicode n)
(** For extraction, we need to encode unicode character into ascii ones *)
let is_basic_ascii s =
let ok = ref true in
String.iter (fun c -> if Char.code c >= 128 then ok := false) s;
!ok
let ascii_of_ident s =
let len = String.length s in
let has_UU i =
i+2 < len && s.[i]='_' && s.[i+1]='U' && s.[i+2]='U'
in
let i = ref 0 in
while !i < len && Char.code s.[!i] < 128 && not (has_UU !i) do
incr i
done;
if !i = len then s else
let out = Buffer.create (2*len) in
Buffer.add_substring out s 0 !i;
while !i < len do
let j, n = next_utf8 s !i in
if n >= 128 then
(Printf.bprintf out "_UU%04x_" n; i := !i + j)
else if has_UU !i then
(Buffer.add_string out "_UUU"; i := !i + 3)
else
(Buffer.add_char out s.[!i]; incr i)
done;
Buffer.contents out
(* Compute length of an UTF-8 encoded string
Rem 1 : utf8_length <= String.length (equal if pure ascii)
Rem 2 : if used for an iso8859_1 encoded string, the result is
wrong in very rare cases. Such a wrong case corresponds to any
sequence of a character in range 192..253 immediately followed by a
character in range 128..191 (typical case in french is "déçu" which
is counted 3 instead of 4); then no real harm to use always
utf8_length even if using an iso8859_1 encoding *)
(** FIXME: duplicate code with Pp *)
let utf8_length s =
let len = String.length s
and cnt = ref 0
and nc = ref 0
and p = ref 0 in
while !p < len do
begin
match s.[!p] with
| '\000'..'\127' -> nc := 0 (* ascii char *)
| '\128'..'\191' -> nc := 0 (* cannot start with a continuation byte *)
| '\192'..'\223' -> nc := 1 (* expect 1 continuation byte *)
| '\224'..'\239' -> nc := 2 (* expect 2 continuation bytes *)
| '\240'..'\247' -> nc := 3 (* expect 3 continuation bytes *)
| '\248'..'\251' -> nc := 4 (* expect 4 continuation bytes *)
| '\252'..'\253' -> nc := 5 (* expect 5 continuation bytes *)
| '\254'..'\255' -> nc := 0 (* invalid byte *)
end ;
incr p ;
while !p < len && !nc > 0 do
match s.[!p] with
| '\128'..'\191' (* next continuation byte *) -> incr p ; decr nc
| _ (* not a continuation byte *) -> nc := 0
done ;
incr cnt
done ;
!cnt
(* Variant of String.sub for UTF8 character positions *)
let utf8_sub s start_u len_u =
let len_b = String.length s
and end_u = start_u + len_u
and cnt = ref 0
and nc = ref 0
and p = ref 0 in
let start_b = ref len_b in
while !p < len_b && !cnt < end_u do
if !cnt <= start_u then start_b := !p ;
begin
match s.[!p] with
| '\000'..'\127' -> nc := 0 (* ascii char *)
| '\128'..'\191' -> nc := 0 (* cannot start with a continuation byte *)
| '\192'..'\223' -> nc := 1 (* expect 1 continuation byte *)
| '\224'..'\239' -> nc := 2 (* expect 2 continuation bytes *)
| '\240'..'\247' -> nc := 3 (* expect 3 continuation bytes *)
| '\248'..'\251' -> nc := 4 (* expect 4 continuation bytes *)
| '\252'..'\253' -> nc := 5 (* expect 5 continuation bytes *)
| '\254'..'\255' -> nc := 0 (* invalid byte *)
end ;
incr p ;
while !p < len_b && !nc > 0 do
match s.[!p] with
| '\128'..'\191' (* next continuation byte *) -> incr p ; decr nc
| _ (* not a continuation byte *) -> nc := 0
done ;
incr cnt
done ;
let end_b = !p in
String.sub s !start_b (end_b - !start_b)
|