1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
open Util
(* Type of regular trees:
- Param denotes tree variables (like de Bruijn indices)
the first int is the depth of the occurrence, and the second int
is the index in the array of trees introduced at that depth
- Node denotes the usual tree node, labelled with 'a
- Rec(j,v1..vn) introduces infinite tree. It denotes
v(j+1) with parameters 0..n-1 replaced by
Rec(0,v1..vn)..Rec(n-1,v1..vn) respectively.
Parameters n and higher denote parameters global to the
current Rec node (as usual in de Bruijn binding system)
*)
type 'a t =
Param of int * int
| Node of 'a * 'a t array
| Rec of int * 'a t array
(* Building trees *)
let mk_rec_calls i = Array.init i (fun j -> Param(0,j))
let mk_node lab sons = Node (lab, sons)
(* The usual lift operation *)
let rec lift_rtree_rec depth n = function
Param (i,j) as t -> if i < depth then t else Param (i+n,j)
| Node (l,sons) -> Node (l,Array.map (lift_rtree_rec depth n) sons)
| Rec(j,defs) ->
Rec(j, Array.map (lift_rtree_rec (depth+1) n) defs)
let lift n t = if n=0 then t else lift_rtree_rec 0 n t
(* The usual subst operation *)
let rec subst_rtree_rec depth sub = function
Param (i,j) as t ->
if i < depth then t
else if i-depth < Array.length sub then
lift depth sub.(i-depth).(j)
else Param (i-Array.length sub,j)
| Node (l,sons) -> Node (l,Array.map (subst_rtree_rec depth sub) sons)
| Rec(j,defs) ->
Rec(j, Array.map (subst_rtree_rec (depth+1) sub) defs)
let subst_rtree sub t = subst_rtree_rec 0 [|sub|] t
(* To avoid looping, we must check that every body introduces a node
or a parameter *)
let rec expand = function
| Rec(j,defs) ->
let sub = Array.init (Array.length defs) (fun i -> Rec(i,defs)) in
expand (subst_rtree sub defs.(j))
| t -> t
(* Given a vector of n bodies, builds the n mutual recursive trees.
Recursive calls are made with parameters (0,0) to (0,n-1). We check
the bodies actually build something by checking it is not
directly one of the parameters of depth 0. Some care is taken to
accept definitions like rec X=Y and Y=f(X,Y) *)
let mk_rec defs =
let rec check histo d =
match expand d with
Param(0,j) when List.mem j histo -> failwith "invalid rec call"
| Param(0,j) -> check (j::histo) defs.(j)
| _ -> () in
Array.mapi (fun i d -> check [i] d; Rec(i,defs)) defs
(*
let v(i,j) = lift i (mk_rec_calls(j+1)).(j);;
let r = (mk_rec[|(mk_rec[|v(1,0)|]).(0)|]).(0);;
let r = mk_rec[|v(0,1);v(1,0)|];;
the last one should be accepted
*)
(* Tree destructors, expanding loops when necessary *)
let dest_param t =
match expand t with
Param (i,j) -> (i,j)
| _ -> failwith "Rtree.dest_param"
let dest_node t =
match expand t with
Node (l,sons) -> (l,sons)
| _ -> failwith "Rtree.dest_node"
let is_node t =
match expand t with
Node _ -> true
| _ -> false
let rec map f t = match t with
Param(i,j) -> Param(i,j)
| Node (a,sons) -> Node (f a, Array.map (map f) sons)
| Rec(j,defs) -> Rec (j, Array.map (map f) defs)
let rec smartmap f t = match t with
Param _ -> t
| Node (a,sons) ->
let a'=f a and sons' = Util.array_smartmap (map f) sons in
if a'==a && sons'==sons then
t
else
Node (a',sons')
| Rec(j,defs) ->
let defs' = Util.array_smartmap (map f) defs in
if defs'==defs then
t
else
Rec(j,defs')
(* Fixpoint operator on trees:
f is the body of the fixpoint. Arguments passed to f are:
- a boolean telling if the subtree has already been seen
- the current subtree
- a function to make recursive calls on subtrees
*)
let fold f t =
let rec fold histo t =
let seen = List.mem t histo in
let nhisto = if not seen then t::histo else histo in
f seen (expand t) (fold nhisto) in
fold [] t
(* Tests if a given tree is infinite, i.e. has an branch of infinte length. *)
let is_infinite t = fold
(fun seen t is_inf ->
seen ||
(match t with
Node(_,v) -> array_exists is_inf v
| Param _ -> false
| _ -> assert false))
t
let fold2 f t x =
let rec fold histo t x =
let seen = List.mem (t,x) histo in
let nhisto = if not seen then (t,x)::histo else histo in
f seen (expand t) x (fold nhisto) in
fold [] t x
let compare_rtree f = fold2
(fun seen t1 t2 cmp ->
seen ||
let b = f t1 t2 in
if b < 0 then false
else if b > 0 then true
else match expand t1, expand t2 with
Node(_,v1), Node(_,v2) when Array.length v1 = Array.length v2 ->
array_for_all2 cmp v1 v2
| _ -> false)
let eq_rtree cmp t1 t2 =
t1 == t2 || t1=t2 ||
compare_rtree
(fun t1 t2 ->
if cmp (fst(dest_node t1)) (fst(dest_node t2)) then 0
else (-1)) t1 t2
(* Pretty-print a tree (not so pretty) *)
open Pp
let rec pp_tree prl t =
match t with
Param (i,j) -> str"#"++int i++str","++int j
| Node(lab,[||]) -> hov 2 (str"("++prl lab++str")")
| Node(lab,v) ->
hov 2 (str"("++prl lab++str","++brk(1,0)++
Util.prvect_with_sep Util.pr_coma (pp_tree prl) v++str")")
| Rec(i,v) ->
if Array.length v = 0 then str"Rec{}"
else if Array.length v = 1 then
hov 2 (str"Rec{"++pp_tree prl v.(0)++str"}")
else
hov 2 (str"Rec{"++int i++str","++brk(1,0)++
Util.prvect_with_sep Util.pr_coma (pp_tree prl) v++str"}")
|