aboutsummaryrefslogtreecommitdiffhomepage
path: root/lib/monad.ml
blob: a1714a41b3592b971c297e7f03762c42d7973109 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)


(** Combinators on monadic computations. *)


(** A definition of monads, each of the combinators is used in the
    [Make] functor. *)
module type Def = sig

  type +'a t
  val return : 'a -> 'a t
  val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
  val (>>) : unit t -> 'a t -> 'a t
  val map : ('a -> 'b) -> 'a t -> 'b t

  (** The monadic laws must hold:
      - [(x>>=f)>>=g] = [x>>=fun x' -> (f x'>>=g)]
      - [return a >>= f] = [f a]
      - [x>>=return] = [x]

      As well as the following identities:
      - [x >> y] = [x >>= fun () -> y]
      - [map f x] = [x >>= fun x' -> f x'] *)

end

module type ListS = sig

  type 'a t

  (** [List.map f l] maps [f] on the elements of [l] in left to right
      order. *)
  val map : ('a -> 'b t) -> 'a list -> 'b list t

  (** [List.map f l] maps [f] on the elements of [l] in right to left
      order. *)
  val map_right : ('a -> 'b t) -> 'a list -> 'b list t

  (** Like the regular [List.fold_right]. The monadic effects are
      threaded right to left.

      Note: many monads behave poorly with right-to-left order. For
      instance a failure monad would still have to traverse the
      whole list in order to fail and failure needs to be propagated
      through the rest of the list in binds which are now
      spurious. It is also the worst case for substitution monads
      (aka free monads), exposing the quadratic behaviour.*)
  val fold_right : ('a -> 'b -> 'b t) -> 'a list -> 'b -> 'b t

  (** Like the regular [List.fold_left]. The monadic effects are
      threaded left to right. It is tail-recursive if the [(>>=)]
      operator calls its second argument in a tail position. *)
  val fold_left : ('a -> 'b -> 'a t) -> 'a -> 'b list -> 'a t

  (** Like the regular [List.iter]. The monadic effects are threaded
      left to right. It is tail-recurisve if the [>>] operator calls
      its second argument in a tail position. *)
  val iter : ('a -> unit t) -> 'a list -> unit t


  (** {6 Two-list iterators} *)

  (** [fold_left2 r f s l1 l2] behaves like {!fold_left} but acts
      simultaneously on two lists. Runs [r] (presumably an
      exception-raising computation) if both lists do not have the
      same length. *)
  val fold_left2 : 'a t ->
    ('a -> 'b -> 'c -> 'a t) -> 'a -> 'b list -> 'c list -> 'a t

end

module type S = sig

  include Def

  (** List combinators *)
  module List : ListS with type 'a t := 'a t

end


module Make (M:Def) : S with type +'a t = 'a M.t = struct

  include M

  module List = struct

    (* The combinators are loop-unrolled to spare a some monadic binds
       (it is a common optimisation to treat the last of a list of
       bind specially) and hopefully gain some efficiency using fewer
       jump. *)

    let rec map f = function
      | [] -> return []
      | [a] ->
          M.map (fun a' -> [a']) (f a)
      | a::b::l ->
          f a >>= fun a' ->
          f b >>= fun b' ->
          M.map (fun l' -> a'::b'::l') (map f l)

    let rec map_right f = function
      | [] -> return []
      | [a] ->
          M.map (fun a' -> [a']) (f a)
      | a::b::l ->
          map_right f l >>= fun l' ->
          f b >>= fun b' ->
          M.map (fun a' -> a'::b'::l') (f a)

    let rec fold_right f l x =
      match l with
      | [] -> return x
      | [a] -> f a x
      | a::b::l ->
          fold_right f l x >>= fun acc ->
          f b acc >>= fun acc ->
          f a acc

    let rec fold_left f x = function
      | [] -> return x
      | [a] -> f x a
      | a::b::l ->
          f x a >>= fun x' ->
          f x' b >>= fun x'' ->
          fold_left f x'' l

    let rec iter f = function
      | [] -> return ()
      | [a] -> f a
      | a::b::l -> f a >> f b >> iter f l



    let rec fold_left2 r f x l1 l2 =
      match l1,l2 with
      | [] , [] -> return x
      | [a] , [b] -> f x a b
      | a1::a2::l1 , b1::b2::l2 ->
          f x a1 b1 >>= fun x' ->
          f x' a2 b2 >>= fun x'' ->
          fold_left2 r f x'' l1 l2
      | _ , _ -> r

  end

end