1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
type t = int
external equal : int -> int -> bool = "%eq"
external compare : int -> int -> int = "caml_int_compare"
let hash i = i land 0x3FFFFFFF
module Self =
struct
type t = int
let compare = compare
end
module Set = Set.Make(Self)
module Map =
struct
include CMap.Make(Self)
type 'a map = 'a CMap.Make(Self).t
type 'a _map =
| MEmpty
| MNode of 'a map * int * 'a * 'a map * int
let map_prj : 'a map -> 'a _map = Obj.magic
let rec find i s = match map_prj s with
| MEmpty -> raise Not_found
| MNode (l, k, v, r, h) ->
if i < k then find i l
else if i = k then v
else find i r
end
module List = struct
let mem = List.memq
let assoc = List.assq
let mem_assoc = List.mem_assq
let remove_assoc = List.remove_assq
end
let min (i : int) j = if i < j then i else j
(** Utility function *)
let rec next from upto =
if from < upto then next (2 * from + 1) upto
else from
module PArray =
struct
type 'a t = 'a data ref
and 'a data =
| Root of 'a option array
| DSet of int * 'a option * 'a t
let empty n = ref (Root (Array.make n None))
let rec rerootk t k = match !t with
| Root _ -> k ()
| DSet (i, v, t') ->
let next () = match !t' with
| Root a as n ->
let v' = Array.unsafe_get a i in
let () = Array.unsafe_set a i v in
let () = t := n in
let () = t' := DSet (i, v', t) in
k ()
| DSet _ -> assert false
in
rerootk t' next
let reroot t = rerootk t (fun () -> ())
let get t i =
let () = assert (0 <= i) in
match !t with
| Root a ->
if Array.length a <= i then None
else Array.unsafe_get a i
| DSet _ ->
let () = reroot t in
match !t with
| Root a ->
if Array.length a <= i then None
else Array.unsafe_get a i
| DSet _ -> assert false
let set t i v =
let () = assert (0 <= i) in
let () = reroot t in
match !t with
| DSet _ -> assert false
| Root a as n ->
let len = Array.length a in
if i < len then
let old = Array.unsafe_get a i in
if old == v then t
else
let () = Array.unsafe_set a i v in
let res = ref n in
let () = t := DSet (i, old, res) in
res
else match v with
| None -> t (** Nothing to do! *)
| Some _ -> (** we must resize *)
let nlen = next len (succ i) in
let nlen = min nlen Sys.max_array_length in
let () = assert (i < nlen) in
let a' = Array.make nlen None in
let () = Array.blit a 0 a' 0 len in
let () = Array.unsafe_set a' i v in
let res = ref (Root a') in
let () = t := DSet (i, None, res) in
res
end
module PMap =
struct
type key = int
(** Invariants:
1. an empty map is always [Empty].
2. the set of the [Map] constructor remembers the present keys.
*)
type 'a t = Empty | Map of Set.t * 'a PArray.t
let empty = Empty
let is_empty = function
| Empty -> true
| Map _ -> false
let singleton k x =
let len = next 19 (k + 1) in
let len = min Sys.max_array_length len in
let v = PArray.empty len in
let v = PArray.set v k (Some x) in
let s = Set.singleton k in
Map (s, v)
let add k x = function
| Empty -> singleton k x
| Map (s, v) ->
let s = match PArray.get v k with
| None -> Set.add k s
| Some _ -> s
in
let v = PArray.set v k (Some x) in
Map (s, v)
let remove k = function
| Empty -> Empty
| Map (s, v) ->
let s = Set.remove k s in
if Set.is_empty s then Empty
else
let v = PArray.set v k None in
Map (s, v)
let mem k = function
| Empty -> false
| Map (_, v) ->
match PArray.get v k with
| None -> false
| Some _ -> true
let find k = function
| Empty -> raise Not_found
| Map (_, v) ->
match PArray.get v k with
| None -> raise Not_found
| Some x -> x
let iter f = function
| Empty -> ()
| Map (s, v) ->
let iter k = match PArray.get v k with
| None -> ()
| Some x -> f k x
in
Set.iter iter s
let fold f m accu = match m with
| Empty -> accu
| Map (s, v) ->
let fold k accu = match PArray.get v k with
| None -> accu
| Some x -> f k x accu
in
Set.fold fold s accu
let exists f m = match m with
| Empty -> false
| Map (s, v) ->
let exists k = match PArray.get v k with
| None -> false
| Some x -> f k x
in
Set.exists exists s
let for_all f m = match m with
| Empty -> true
| Map (s, v) ->
let for_all k = match PArray.get v k with
| None -> true
| Some x -> f k x
in
Set.for_all for_all s
let cast = function
| Empty -> Map.empty
| Map (s, v) ->
let bind k = match PArray.get v k with
| None -> assert false
| Some x -> x
in
Map.bind bind s
let domain = function
| Empty -> Set.empty
| Map (s, _) -> s
end
|