aboutsummaryrefslogtreecommitdiffhomepage
path: root/lib/gset.ml
blob: d39cb23f259e23c36bb7a1eb59bd8bf15a2f2d6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id$ *)

(* Sets using the generic comparison function of ocaml. Code borrowed from
   the ocaml standard library. *)

    type 'a t = Empty | Node of 'a t * 'a * 'a t * int

    (* Sets are represented by balanced binary trees (the heights of the
       children differ by at most 2 *)

    let height = function
        Empty -> 0
      | Node(_, _, _, h) -> h

    (* Creates a new node with left son l, value x and right son r.
       l and r must be balanced and | height l - height r | <= 2.
       Inline expansion of height for better speed. *)

    let create l x r =
      let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
      let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
      Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))

    (* Same as create, but performs one step of rebalancing if necessary.
       Assumes l and r balanced.
       Inline expansion of create for better speed in the most frequent case
       where no rebalancing is required. *)

    let bal l x r =
      let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
      let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
      if hl > hr + 2 then begin
        match l with
          Empty -> invalid_arg "Set.bal"
        | Node(ll, lv, lr, _) ->
            if height ll >= height lr then
              create ll lv (create lr x r)
            else begin
              match lr with
                Empty -> invalid_arg "Set.bal"
              | Node(lrl, lrv, lrr, _)->
                  create (create ll lv lrl) lrv (create lrr x r)
            end
      end else if hr > hl + 2 then begin
        match r with
          Empty -> invalid_arg "Set.bal"
        | Node(rl, rv, rr, _) ->
            if height rr >= height rl then
              create (create l x rl) rv rr
            else begin
              match rl with
                Empty -> invalid_arg "Set.bal"
              | Node(rll, rlv, rlr, _) ->
                  create (create l x rll) rlv (create rlr rv rr)
            end
      end else
        Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))

    (* Same as bal, but repeat rebalancing until the final result
       is balanced. *)

    let rec join l x r =
      match bal l x r with
        Empty -> invalid_arg "Set.join"
      | Node(l', x', r', _) as t' ->
          let d = height l' - height r' in
          if d < -2 or d > 2 then join l' x' r' else t'

    (* Merge two trees l and r into one.
       All elements of l must precede the elements of r.
       Assumes | height l - height r | <= 2. *)

    let rec merge t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
          bal l1 v1 (bal (merge r1 l2) v2 r2)

    (* Same as merge, but does not assume anything about l and r. *)

    let rec concat t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
          join l1 v1 (join (concat r1 l2) v2 r2)

    (* Splitting *)

    let rec split x = function
        Empty ->
          (Empty, None, Empty)
      | Node(l, v, r, _) ->
          let c = Pervasives.compare x v in
          if c = 0 then (l, Some v, r)
          else if c < 0 then
            let (ll, vl, rl) = split x l in (ll, vl, join rl v r)
          else
            let (lr, vr, rr) = split x r in (join l v lr, vr, rr)

    (* Implementation of the set operations *)

    let empty = Empty

    let is_empty = function Empty -> true | _ -> false

    let rec mem x = function
        Empty -> false
      | Node(l, v, r, _) ->
          let c = Pervasives.compare x v in
          c = 0 || mem x (if c < 0 then l else r)

    let rec add x = function
        Empty -> Node(Empty, x, Empty, 1)
      | Node(l, v, r, _) as t ->
          let c = Pervasives.compare x v in
          if c = 0 then t else
          if c < 0 then bal (add x l) v r else bal l v (add x r)

    let singleton x = Node(Empty, x, Empty, 1)

    let rec remove x = function
        Empty -> Empty
      | Node(l, v, r, _) ->
          let c = Pervasives.compare x v in
          if c = 0 then merge l r else
          if c < 0 then bal (remove x l) v r else bal l v (remove x r)

    let rec union s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> t2
      | (t1, Empty) -> t1
      | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
          if h1 >= h2 then
            if h2 = 1 then add v2 s1 else begin
              let (l2, _, r2) = split v1 s2 in
              join (union l1 l2) v1 (union r1 r2)
            end
          else
            if h1 = 1 then add v1 s2 else begin
              let (l1, _, r1) = split v2 s1 in
              join (union l1 l2) v2 (union r1 r2)
            end

    let rec inter s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> Empty
      | (t1, Empty) -> Empty
      | (Node(l1, v1, r1, _), t2) ->
          match split v1 t2 with
            (l2, None, r2) ->
              concat (inter l1 l2) (inter r1 r2)
          | (l2, Some _, r2) ->
              join (inter l1 l2) v1 (inter r1 r2)

    let rec diff s1 s2 =
      match (s1, s2) with
        (Empty, t2) -> Empty
      | (t1, Empty) -> t1
      | (Node(l1, v1, r1, _), t2) ->
          match split v1 t2 with
            (l2, None, r2) ->
              join (diff l1 l2) v1 (diff r1 r2)
          | (l2, Some _, r2) ->
              concat (diff l1 l2) (diff r1 r2)

    let rec compare_aux l1 l2 =
        match (l1, l2) with
        ([], []) -> 0
      | ([], _)  -> -1
      | (_, []) -> 1
      | (Empty :: t1, Empty :: t2) ->
          compare_aux t1 t2
      | (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) ->
          let c = compare v1 v2 in
          if c <> 0 then c else compare_aux (r1::t1) (r2::t2)
      | (Node(l1, v1, r1, _) :: t1, t2) ->
          compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2
      | (t1, Node(l2, v2, r2, _) :: t2) ->
          compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)

    let compare s1 s2 =
      compare_aux [s1] [s2]

    let equal s1 s2 =
      compare s1 s2 = 0

    let rec subset s1 s2 =
      match (s1, s2) with
        Empty, _ ->
          true
      | _, Empty ->
          false
      | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
          let c = Pervasives.compare v1 v2 in
          if c = 0 then
            subset l1 l2 && subset r1 r2
          else if c < 0 then
            subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
          else
            subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2

    let rec iter f = function
        Empty -> ()
      | Node(l, v, r, _) -> iter f l; f v; iter f r

    let rec fold f s accu =
      match s with
        Empty -> accu
      | Node(l, v, r, _) -> fold f l (f v (fold f r accu))

    let rec cardinal = function
        Empty -> 0
      | Node(l, v, r, _) -> cardinal l + 1 + cardinal r

    let rec elements_aux accu = function
        Empty -> accu
      | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l

    let elements s =
      elements_aux [] s

    let rec min_elt = function
        Empty -> raise Not_found
      | Node(Empty, v, r, _) -> v
      | Node(l, v, r, _) -> min_elt l

    let rec max_elt = function
        Empty -> raise Not_found
      | Node(l, v, Empty, _) -> v
      | Node(l, v, r, _) -> max_elt r

    let choose = min_elt