1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Generic arguments used by the extension mechanisms of several Coq ASTs. *)
(** The route of a generic argument, from parsing to evaluation.
In the following diagram, "object" can be tactic_expr, constr, tactic_arg, etc.
{% \begin{%}verbatim{% }%}
parsing in_raw out_raw
char stream ---> raw_object ---> raw_object generic_argument -------+
encapsulation decaps|
|
V
raw_object
|
globalization |
V
glob_object
|
encaps |
in_glob |
V
glob_object generic_argument
|
out in out_glob |
object <--- object generic_argument <--- object <--- glob_object <---+
| decaps encaps interp decaps
|
V
effective use
{% \end{%}verbatim{% }%}
To distinguish between the uninterpreted, globalized and
interpreted worlds, we annotate the type [generic_argument] by a
phantom argument.
*)
(** {5 Generic types} *)
module ArgT :
sig
type ('a, 'b, 'c) tag
val eq : ('a1, 'b1, 'c1) tag -> ('a2, 'b2, 'c2) tag -> ('a1 * 'b1 * 'c1, 'a2 * 'b2 * 'c2) CSig.eq option
val repr : ('a, 'b, 'c) tag -> string
type any = Any : ('a, 'b, 'c) tag -> any
val name : string -> any option
end
(** Generic types. The first parameter is the OCaml lowest level, the second one
is the globalized level, and third one the internalized level. *)
type (_, _, _) genarg_type =
| ExtraArg : ('a, 'b, 'c) ArgT.tag -> ('a, 'b, 'c) genarg_type
| ListArg : ('a, 'b, 'c) genarg_type -> ('a list, 'b list, 'c list) genarg_type
| OptArg : ('a, 'b, 'c) genarg_type -> ('a option, 'b option, 'c option) genarg_type
| PairArg : ('a1, 'b1, 'c1) genarg_type * ('a2, 'b2, 'c2) genarg_type ->
('a1 * 'a2, 'b1 * 'b2, 'c1 * 'c2) genarg_type
type 'a uniform_genarg_type = ('a, 'a, 'a) genarg_type
(** Alias for concision when the three types agree. *)
val make0 : string -> ('raw, 'glob, 'top) genarg_type
(** Create a new generic type of argument: force to associate
unique ML types at each of the three levels. *)
val create_arg : string -> ('raw, 'glob, 'top) genarg_type
(** Alias for [make0]. *)
(** {5 Specialized types} *)
(** All of [rlevel], [glevel] and [tlevel] must be non convertible
to ensure the injectivity of the GADT type inference. *)
type rlevel = [ `rlevel ]
type glevel = [ `glevel ]
type tlevel = [ `tlevel ]
(** Generic types at a fixed level. The first parameter embeds the OCaml type
and the second one the level. *)
type (_, _) abstract_argument_type =
| Rawwit : ('a, 'b, 'c) genarg_type -> ('a, rlevel) abstract_argument_type
| Glbwit : ('a, 'b, 'c) genarg_type -> ('b, glevel) abstract_argument_type
| Topwit : ('a, 'b, 'c) genarg_type -> ('c, tlevel) abstract_argument_type
type 'a raw_abstract_argument_type = ('a, rlevel) abstract_argument_type
(** Specialized type at raw level. *)
type 'a glob_abstract_argument_type = ('a, glevel) abstract_argument_type
(** Specialized type at globalized level. *)
type 'a typed_abstract_argument_type = ('a, tlevel) abstract_argument_type
(** Specialized type at internalized level. *)
(** {6 Projections} *)
val rawwit : ('a, 'b, 'c) genarg_type -> ('a, rlevel) abstract_argument_type
(** Projection on the raw type constructor. *)
val glbwit : ('a, 'b, 'c) genarg_type -> ('b, glevel) abstract_argument_type
(** Projection on the globalized type constructor. *)
val topwit : ('a, 'b, 'c) genarg_type -> ('c, tlevel) abstract_argument_type
(** Projection on the internalized type constructor. *)
(** {5 Generic arguments} *)
type 'l generic_argument = GenArg : ('a, 'l) abstract_argument_type * 'a -> 'l generic_argument
(** A inhabitant of ['level generic_argument] is a inhabitant of some type at
level ['level], together with the representation of this type. *)
type raw_generic_argument = rlevel generic_argument
type glob_generic_argument = glevel generic_argument
type typed_generic_argument = tlevel generic_argument
(** {6 Constructors} *)
val in_gen : ('a, 'co) abstract_argument_type -> 'a -> 'co generic_argument
(** [in_gen t x] embeds an argument of type [t] into a generic argument. *)
val out_gen : ('a, 'co) abstract_argument_type -> 'co generic_argument -> 'a
(** [out_gen t x] recovers an argument of type [t] from a generic argument. It
fails if [x] has not the right dynamic type. *)
val has_type : 'co generic_argument -> ('a, 'co) abstract_argument_type -> bool
(** [has_type v t] tells whether [v] has type [t]. If true, it ensures that
[out_gen t v] will not raise a dynamic type exception. *)
(** {6 Type reification} *)
type argument_type = ArgumentType : ('a, 'b, 'c) genarg_type -> argument_type
(** {6 Equalities} *)
val argument_type_eq : argument_type -> argument_type -> bool
val genarg_type_eq :
('a1, 'b1, 'c1) genarg_type ->
('a2, 'b2, 'c2) genarg_type ->
('a1 * 'b1 * 'c1, 'a2 * 'b2 * 'c2) CSig.eq option
val abstract_argument_type_eq :
('a, 'l) abstract_argument_type -> ('b, 'l) abstract_argument_type ->
('a, 'b) CSig.eq option
val pr_argument_type : argument_type -> Pp.t
(** Print a human-readable representation for a given type. *)
val genarg_tag : 'a generic_argument -> argument_type
val unquote : ('a, 'co) abstract_argument_type -> argument_type
(** {6 Registering genarg-manipulating functions}
This is boilerplate code used here and there in the code of Coq. *)
module type GenObj =
sig
type ('raw, 'glb, 'top) obj
(** An object manipulating generic arguments. *)
val name : string
(** A name for such kind of manipulation, e.g. [interp]. *)
val default : ('raw, 'glb, 'top) genarg_type -> ('raw, 'glb, 'top) obj option
(** A generic object when there is no registered object for this type. *)
end
module Register (M : GenObj) :
sig
val register0 : ('raw, 'glb, 'top) genarg_type ->
('raw, 'glb, 'top) M.obj -> unit
(** Register a ground type manipulation function. *)
val obj : ('raw, 'glb, 'top) genarg_type -> ('raw, 'glb, 'top) M.obj
(** Recover a manipulation function at a given type. *)
end
(** {5 Compatibility layer}
The functions below are aliases for generic_type constructors.
*)
val wit_list : ('a, 'b, 'c) genarg_type -> ('a list, 'b list, 'c list) genarg_type
val wit_opt : ('a, 'b, 'c) genarg_type -> ('a option, 'b option, 'c option) genarg_type
val wit_pair : ('a1, 'b1, 'c1) genarg_type -> ('a2, 'b2, 'c2) genarg_type ->
('a1 * 'a2, 'b1 * 'b2, 'c1 * 'c2) genarg_type
|