aboutsummaryrefslogtreecommitdiffhomepage
path: root/lib/dyn.ml
blob: 65d1442ac67d9173b008449e77ffe69aedb08f76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

module type TParam =
sig
  type 'a t
end

module type PreS =
sig
type 'a tag
type t = Dyn : 'a tag * 'a -> t

val create : string -> 'a tag
val eq : 'a tag -> 'b tag -> ('a, 'b) CSig.eq option
val repr : 'a tag -> string

type any = Any : 'a tag -> any

val name : string -> any option

module Map(M : TParam) :
sig
  type t
  val empty : t
  val add : 'a tag -> 'a M.t -> t -> t
  val remove : 'a tag -> t -> t
  val find : 'a tag -> t -> 'a M.t
  val mem : 'a tag -> t -> bool

  type any = Any : 'a tag * 'a M.t -> any

  type map = { map : 'a. 'a tag -> 'a M.t -> 'a M.t }
  val map : map -> t -> t

  val iter : (any -> unit) -> t -> unit
  val fold : (any -> 'r -> 'r) -> t -> 'r -> 'r

end

val dump : unit -> (int * string) list

end

module type S =
sig
  include PreS

  module Easy : sig
    val make_dyn : string -> ('a -> t) * (t -> 'a)
    val inj : 'a -> 'a tag -> t
    val prj : t -> 'a tag -> 'a option
  end

end

module Make(M : CSig.EmptyS) = struct
module Self : PreS = struct
(* Dynamics, programmed with DANGER !!! *)

type 'a tag = int

type t = Dyn : 'a tag * 'a -> t

type any = Any : 'a tag -> any

let dyntab = ref (Int.Map.empty : string Int.Map.t)
(** Instead of working with tags as strings, which are costly, we use their
    hash. We ensure unicity of the hash in the [create] function. If ever a
    collision occurs, which is unlikely, it is sufficient to tweak the offending
    dynamic tag. *)

let create (s : string) =
  let hash = Hashtbl.hash s in
  let () =
    if Int.Map.mem hash !dyntab then
      let old = Int.Map.find hash !dyntab in
      let () = Printf.eprintf "Dynamic tag collision: %s vs. %s\n%!" s old in
      assert false
  in
  let () = dyntab := Int.Map.add hash s !dyntab in
  hash

let eq : 'a 'b. 'a tag -> 'b tag -> ('a, 'b) CSig.eq option =
  fun h1 h2 -> if Int.equal h1 h2 then Some (Obj.magic CSig.Refl) else None

let repr s =
  try Int.Map.find s !dyntab
  with Not_found ->
    let () = Printf.eprintf "Unknown dynamic tag %i\n%!" s in
    assert false

let name s =
  let hash = Hashtbl.hash s in
  if Int.Map.mem hash !dyntab then Some (Any hash) else None

let dump () = Int.Map.bindings !dyntab

module Map(M : TParam) =
struct
type t = Obj.t M.t Int.Map.t
let cast : 'a M.t -> 'b M.t = Obj.magic
let empty = Int.Map.empty
let add tag v m = Int.Map.add tag (cast v) m
let remove tag m = Int.Map.remove tag m
let find tag m = cast (Int.Map.find tag m)
let mem = Int.Map.mem

type any = Any : 'a tag * 'a M.t -> any

type map = { map : 'a. 'a tag -> 'a M.t -> 'a M.t }
let map f m = Int.Map.mapi f.map m

let iter f m = Int.Map.iter (fun k v -> f (Any (k, v))) m
let fold f m accu = Int.Map.fold (fun k v accu -> f (Any (k, v)) accu) m accu
end

end
include Self

module Easy = struct
(* now tags are opaque, we can do the trick *)
let make_dyn (s : string) =
 (fun (type a) (tag : a tag) ->
  let infun : (a -> t) = fun x -> Dyn (tag, x) in
  let outfun : (t -> a) = fun (Dyn (t, x)) ->
    match eq tag t with
    | None -> assert false
    | Some CSig.Refl -> x
  in
  (infun, outfun))
 (create s)

let inj x tag = Dyn(tag,x)
let prj : type a. t -> a tag -> a option =
    fun (Dyn(tag',x)) tag ->
    match eq tag tag' with
    | None -> None
    | Some CSig.Refl -> Some x
end

end