1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
type 'a cmp = 'a -> 'a -> int
type 'a eq = 'a -> 'a -> bool
module type S = module type of List
module type ExtS =
sig
include S
val compare : 'a cmp -> 'a list cmp
val equal : 'a eq -> 'a list eq
val is_empty : 'a list -> bool
val init : int -> (int -> 'a) -> 'a list
val mem_f : 'a eq -> 'a -> 'a list -> bool
val add_set : 'a eq -> 'a -> 'a list -> 'a list
val eq_set : 'a eq -> 'a list -> 'a list -> bool
val intersect : 'a eq -> 'a list -> 'a list -> 'a list
val union : 'a eq -> 'a list -> 'a list -> 'a list
val unionq : 'a list -> 'a list -> 'a list
val subtract : 'a eq -> 'a list -> 'a list -> 'a list
val subtractq : 'a list -> 'a list -> 'a list
val interval : int -> int -> int list
val make : int -> 'a -> 'a list
val assign : 'a list -> int -> 'a -> 'a list
val distinct : 'a list -> bool
val distinct_f : 'a cmp -> 'a list -> bool
val duplicates : 'a eq -> 'a list -> 'a list
val filter2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> 'a list * 'b list
val map_filter : ('a -> 'b option) -> 'a list -> 'b list
val map_filter_i : (int -> 'a -> 'b option) -> 'a list -> 'b list
val filter_with : bool list -> 'a list -> 'a list
val smartmap : ('a -> 'a) -> 'a list -> 'a list
val map_left : ('a -> 'b) -> 'a list -> 'b list
val map_i : (int -> 'a -> 'b) -> int -> 'a list -> 'b list
val map2_i :
(int -> 'a -> 'b -> 'c) -> int -> 'a list -> 'b list -> 'c list
val map3 :
('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
val map4 :
('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
val filteri :
(int -> 'a -> bool) -> 'a list -> 'a list
val smartfilter : ('a -> bool) -> 'a list -> 'a list
val index : 'a eq -> 'a -> 'a list -> int
val index0 : 'a eq -> 'a -> 'a list -> int
val iteri : (int -> 'a -> unit) -> 'a list -> unit
val fold_left_until : ('c -> 'a -> 'c CSig.until) -> 'c -> 'a list -> 'c
val fold_right_i : (int -> 'a -> 'b -> 'b) -> int -> 'a list -> 'b -> 'b
val fold_left_i : (int -> 'a -> 'b -> 'a) -> int -> 'a -> 'b list -> 'a
val fold_right_and_left :
('a -> 'b -> 'b list -> 'a) -> 'b list -> 'a -> 'a
val fold_left3 : ('a -> 'b -> 'c -> 'd -> 'a) -> 'a -> 'b list -> 'c list -> 'd list -> 'a
val for_all_i : (int -> 'a -> bool) -> int -> 'a list -> bool
val except : 'a eq -> 'a -> 'a list -> 'a list
val remove : 'a eq -> 'a -> 'a list -> 'a list
val remove_first : ('a -> bool) -> 'a list -> 'a list
val for_all2eq : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
val sep_last : 'a list -> 'a * 'a list
val find_map : ('a -> 'b option) -> 'a list -> 'b
val uniquize : 'a list -> 'a list
val sort_uniquize : 'a cmp -> 'a list -> 'a list
val merge_uniq : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list
val subset : 'a list -> 'a list -> bool
val chop : int -> 'a list -> 'a list * 'a list
val split_when : ('a -> bool) -> 'a list -> 'a list * 'a list
val split3 : ('a * 'b * 'c) list -> 'a list * 'b list * 'c list
val firstn : int -> 'a list -> 'a list
val last : 'a list -> 'a
val lastn : int -> 'a list -> 'a list
val skipn : int -> 'a list -> 'a list
val skipn_at_least : int -> 'a list -> 'a list
val addn : int -> 'a -> 'a list -> 'a list
val prefix_of : 'a eq -> 'a list -> 'a list -> bool
val drop_prefix : 'a eq -> 'a list -> 'a list -> 'a list
val drop_last : 'a list -> 'a list
val map_append : ('a -> 'b list) -> 'a list -> 'b list
val map_append2 : ('a -> 'b -> 'c list) -> 'a list -> 'b list -> 'c list
val share_tails : 'a list -> 'a list -> 'a list * 'a list * 'a list
val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list
val fold_map' : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a
val map_assoc : ('a -> 'b) -> ('c * 'a) list -> ('c * 'b) list
val assoc_f : 'a eq -> 'a -> ('a * 'b) list -> 'b
val remove_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> ('a * 'b) list
val mem_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> bool
val cartesian : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
val cartesians : ('a -> 'b -> 'b) -> 'b -> 'a list list -> 'b list
val combinations : 'a list list -> 'a list list
val combine3 : 'a list -> 'b list -> 'c list -> ('a * 'b * 'c) list
val cartesians_filter :
('a -> 'b -> 'b option) -> 'b -> 'a list list -> 'b list
val factorize_left : 'a eq -> ('a * 'b) list -> ('a * 'b list) list
module type MonoS = sig
type elt
val equal : elt list -> elt list -> bool
val mem : elt -> elt list -> bool
val assoc : elt -> (elt * 'a) list -> 'a
val mem_assoc : elt -> (elt * 'a) list -> bool
val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list
val mem_assoc_sym : elt -> ('a * elt) list -> bool
end
end
include List
(** Tail-rec implementation of usual functions. This is a well-known trick used
in, for instance, ExtLib and Batteries. *)
type 'a cell = {
head : 'a;
mutable tail : 'a list;
}
external cast : 'a cell -> 'a list = "%identity"
let rec map_loop f p = function
| [] -> ()
| x :: l ->
let c = { head = f x; tail = [] } in
p.tail <- cast c;
map_loop f c l
let map f = function
| [] -> []
| x :: l ->
let c = { head = f x; tail = [] } in
map_loop f c l;
cast c
let rec map2_loop f p l1 l2 = match l1, l2 with
| [], [] -> ()
| x :: l1, y :: l2 ->
let c = { head = f x y; tail = [] } in
p.tail <- cast c;
map2_loop f c l1 l2
| _ -> invalid_arg "List.map2"
let map2 f l1 l2 = match l1, l2 with
| [], [] -> []
| x :: l1, y :: l2 ->
let c = { head = f x y; tail = [] } in
map2_loop f c l1 l2;
cast c
| _ -> invalid_arg "List.map2"
let rec append_loop p tl = function
| [] -> p.tail <- tl
| x :: l ->
let c = { head = x; tail = [] } in
p.tail <- cast c;
append_loop c tl l
let append l1 l2 = match l1 with
| [] -> l2
| x :: l ->
let c = { head = x; tail = [] } in
append_loop c l2 l;
cast c
let rec copy p = function
| [] -> p
| x :: l ->
let c = { head = x; tail = [] } in
p.tail <- cast c;
copy c l
let rec init_loop len f p i =
if Int.equal i len then ()
else
let c = { head = f i; tail = [] } in
p.tail <- cast c;
init_loop len f c (succ i)
let init len f =
if len < 0 then invalid_arg "List.init"
else if Int.equal len 0 then []
else
let c = { head = f 0; tail = [] } in
init_loop len f c 1;
cast c
let rec concat_loop p = function
| [] -> ()
| x :: l -> concat_loop (copy p x) l
let concat l =
let dummy = { head = Obj.magic 0; tail = [] } in
concat_loop dummy l;
dummy.tail
let flatten = concat
let rec split_loop p q = function
| [] -> ()
| (x, y) :: l ->
let cl = { head = x; tail = [] } in
let cr = { head = y; tail = [] } in
p.tail <- cast cl;
q.tail <- cast cr;
split_loop cl cr l
let split = function
| [] -> [], []
| (x, y) :: l ->
let cl = { head = x; tail = [] } in
let cr = { head = y; tail = [] } in
split_loop cl cr l;
(cast cl, cast cr)
let rec combine_loop p l1 l2 = match l1, l2 with
| [], [] -> ()
| x :: l1, y :: l2 ->
let c = { head = (x, y); tail = [] } in
p.tail <- cast c;
combine_loop c l1 l2
| _ -> invalid_arg "List.combine"
let combine l1 l2 = match l1, l2 with
| [], [] -> []
| x :: l1, y :: l2 ->
let c = { head = (x, y); tail = [] } in
combine_loop c l1 l2;
cast c
| _ -> invalid_arg "List.combine"
let rec filter_loop f p = function
| [] -> ()
| x :: l ->
if f x then
let c = { head = x; tail = [] } in
let () = p.tail <- cast c in
filter_loop f c l
else
filter_loop f p l
let filter f l =
let c = { head = Obj.magic 0; tail = [] } in
filter_loop f c l;
c.tail
(** FIXME: Already present in OCaml 4.00 *)
let rec map_i_loop f i p = function
| [] -> ()
| x :: l ->
let c = { head = f i x; tail = [] } in
p.tail <- cast c;
map_i_loop f (succ i) c l
let map_i f i = function
| [] -> []
| x :: l ->
let c = { head = f i x; tail = [] } in
map_i_loop f (succ i) c l;
cast c
(** Extensions of OCaml Stdlib *)
let rec compare cmp l1 l2 =
if l1 == l2 then 0 else
match l1,l2 with
[], [] -> 0
| _::_, [] -> 1
| [], _::_ -> -1
| x1::l1, x2::l2 ->
(match cmp x1 x2 with
| 0 -> compare cmp l1 l2
| c -> c)
let rec equal cmp l1 l2 =
l1 == l2 ||
match l1, l2 with
| [], [] -> true
| x1 :: l1, x2 :: l2 ->
cmp x1 x2 && equal cmp l1 l2
| _ -> false
let is_empty = function
| [] -> true
| _ -> false
let mem_f cmp x l = List.exists (cmp x) l
let intersect cmp l1 l2 =
filter (fun x -> mem_f cmp x l2) l1
let union cmp l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if mem_f cmp a l2 then urec l else a::urec l
in
urec l1
let subtract cmp l1 l2 =
if is_empty l2 then l1
else List.filter (fun x -> not (mem_f cmp x l2)) l1
let unionq l1 l2 = union (==) l1 l2
let subtractq l1 l2 = subtract (==) l1 l2
let interval n m =
let rec interval_n (l,m) =
if n > m then l else interval_n (m::l, pred m)
in
interval_n ([], m)
let addn n v =
let rec aux n l =
if Int.equal n 0 then l
else aux (pred n) (v :: l)
in
if n < 0 then invalid_arg "List.addn"
else aux n
let make n v = addn n v []
let assign l n e =
let rec assrec stk l i = match l, i with
| ((h::t), 0) -> List.rev_append stk (e :: t)
| ((h::t), n) -> assrec (h :: stk) t (pred n)
| ([], _) -> failwith "List.assign"
in
assrec [] l n
let rec smartmap f l = match l with
[] -> l
| h::tl ->
let h' = f h and tl' = smartmap f tl in
if h'==h && tl'==tl then l
else h'::tl'
let map_left = map
let map2_i f i l1 l2 =
let rec map_i i = function
| ([], []) -> []
| ((h1::t1), (h2::t2)) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2)
| (_, _) -> invalid_arg "map2_i"
in
map_i i (l1,l2)
let map3 f l1 l2 l3 =
let rec map = function
| ([], [], []) -> []
| ((h1::t1), (h2::t2), (h3::t3)) -> let v = f h1 h2 h3 in v::map (t1,t2,t3)
| (_, _, _) -> invalid_arg "map3"
in
map (l1,l2,l3)
let map4 f l1 l2 l3 l4 =
let rec map = function
| ([], [], [], []) -> []
| ((h1::t1), (h2::t2), (h3::t3), (h4::t4)) -> let v = f h1 h2 h3 h4 in v::map (t1,t2,t3,t4)
| (_, _, _, _) -> invalid_arg "map4"
in
map (l1,l2,l3,l4)
let rec smartfilter f l = match l with
[] -> l
| h::tl ->
let tl' = smartfilter f tl in
if f h then
if tl' == tl then l
else h :: tl'
else tl'
let rec index_f f x l n = match l with
| [] -> raise Not_found
| y :: l -> if f x y then n else index_f f x l (succ n)
let index f x l = index_f f x l 1
let index0 f x l = index_f f x l 0
let fold_left_until f accu s =
let rec aux accu = function
| [] -> accu
| x :: xs -> match f accu x with CSig.Stop x -> x | CSig.Cont i -> aux i xs in
aux accu s
let fold_right_i f i l =
let rec it_f i l a = match l with
| [] -> a
| b::l -> f (i-1) b (it_f (i-1) l a)
in
it_f (List.length l + i) l
let fold_left_i f =
let rec it_list_f i a = function
| [] -> a
| b::l -> it_list_f (i+1) (f i a b) l
in
it_list_f
let rec fold_left3 f accu l1 l2 l3 =
match (l1, l2, l3) with
([], [], []) -> accu
| (a1::l1, a2::l2, a3::l3) -> fold_left3 f (f accu a1 a2 a3) l1 l2 l3
| (_, _, _) -> invalid_arg "List.fold_left3"
(* [fold_right_and_left f [a1;...;an] hd =
f (f (... (f (f hd
an
[an-1;...;a1])
an-1
[an-2;...;a1])
...)
a2
[a1])
a1
[]] *)
let fold_right_and_left f l hd =
let rec aux tl = function
| [] -> hd
| a::l -> let hd = aux (a::tl) l in f hd a tl
in aux [] l
let iteri f l = fold_left_i (fun i _ x -> f i x) 0 () l
let for_all_i p =
let rec for_all_p i = function
| [] -> true
| a::l -> p i a && for_all_p (i+1) l
in
for_all_p
let except cmp x l = List.filter (fun y -> not (cmp x y)) l
let remove = except (* Alias *)
let rec remove_first p = function
| b::l when p b -> l
| b::l -> b::remove_first p l
| [] -> raise Not_found
let add_set cmp x l = if mem_f cmp x l then l else x :: l
(** List equality up to permutation (but considering multiple occurrences) *)
let eq_set cmp l1 l2 =
let rec aux l1 = function
| [] -> is_empty l1
| a::l2 -> aux (remove_first (cmp a) l1) l2 in
try aux l1 l2 with Not_found -> false
let for_all2eq f l1 l2 =
try List.for_all2 f l1 l2 with Invalid_argument _ -> false
let filteri p =
let rec filter_i_rec i = function
| [] -> []
| x::l -> let l' = filter_i_rec (succ i) l in if p i x then x::l' else l'
in
filter_i_rec 0
let rec sep_last = function
| [] -> failwith "sep_last"
| hd::[] -> (hd,[])
| hd::tl -> let (l,tl) = sep_last tl in (l,hd::tl)
let rec find_map f = function
| [] -> raise Not_found
| x :: l ->
match f x with
| None -> find_map f l
| Some y -> y
(* FIXME: we should avoid relying on the generic hash function,
just as we'd better avoid Pervasives.compare *)
let uniquize l =
let visited = Hashtbl.create 23 in
let rec aux acc changed = function
| h::t -> if Hashtbl.mem visited h then aux acc true t else
begin
Hashtbl.add visited h h;
aux (h::acc) changed t
end
| [] -> if changed then List.rev acc else l
in aux [] false l
(** [sort_uniquize] might be an alternative to the hashtbl-based
[uniquize], when the order of the elements is irrelevant *)
let rec uniquize_sorted cmp = function
| a::b::l when Int.equal (cmp a b) 0 -> uniquize_sorted cmp (a::l)
| a::l -> a::uniquize_sorted cmp l
| [] -> []
let sort_uniquize cmp l = uniquize_sorted cmp (List.sort cmp l)
(* FIXME: again, generic hash function *)
let distinct l =
let visited = Hashtbl.create 23 in
let rec loop = function
| h::t ->
if Hashtbl.mem visited h then false
else
begin
Hashtbl.add visited h h;
loop t
end
| [] -> true
in loop l
let distinct_f cmp l =
let rec loop = function
| a::b::_ when Int.equal (cmp a b) 0 -> false
| a::l -> loop l
| [] -> true
in loop (List.sort cmp l)
let rec merge_uniq cmp l1 l2 =
match l1, l2 with
| [], l2 -> l2
| l1, [] -> l1
| h1 :: t1, h2 :: t2 ->
let c = cmp h1 h2 in
if Int.equal c 0
then h1 :: merge_uniq cmp t1 t2
else if c <= 0
then h1 :: merge_uniq cmp t1 l2
else h2 :: merge_uniq cmp l1 t2
let rec duplicates cmp = function
| [] -> []
| x::l ->
let l' = duplicates cmp l in
if mem_f cmp x l then add_set cmp x l' else l'
let rec filter2_loop f p q l1 l2 = match l1, l2 with
| [], [] -> ()
| x :: l1, y :: l2 ->
if f x y then
let c1 = { head = x; tail = [] } in
let c2 = { head = y; tail = [] } in
let () = p.tail <- cast c1 in
let () = q.tail <- cast c2 in
filter2_loop f c1 c2 l1 l2
else
filter2_loop f p q l1 l2
| _ -> invalid_arg "List.filter2"
let filter2 f l1 l2 =
let c1 = { head = Obj.magic 0; tail = [] } in
let c2 = { head = Obj.magic 0; tail = [] } in
filter2_loop f c1 c2 l1 l2;
(c1.tail, c2.tail)
let rec map_filter f = function
| [] -> []
| x::l ->
let l' = map_filter f l in
match f x with None -> l' | Some y -> y::l'
let map_filter_i f =
let rec aux i = function
| [] -> []
| x::l ->
let l' = aux (succ i) l in
match f i x with None -> l' | Some y -> y::l'
in aux 0
let rec filter_with filter l = match filter, l with
| [], [] -> []
| true :: filter, x :: l -> x :: filter_with filter l
| false :: filter, _ :: l -> filter_with filter l
| _ -> invalid_arg "List.filter_with"
(* FIXME: again, generic hash function *)
let subset l1 l2 =
let t2 = Hashtbl.create 151 in
List.iter (fun x -> Hashtbl.add t2 x ()) l2;
let rec look = function
| [] -> true
| x::ll -> try Hashtbl.find t2 x; look ll with Not_found -> false
in
look l1
(* [chop i l] splits [l] into two lists [(l1,l2)] such that
[l1++l2=l] and [l1] has length [i].
It raises [Failure] when [i] is negative or greater than the length of [l] *)
let chop n l =
let rec chop_aux i acc = function
| tl when Int.equal i 0 -> (List.rev acc, tl)
| h::t -> chop_aux (pred i) (h::acc) t
| [] -> failwith "List.chop"
in
chop_aux n [] l
(* [split_when p l] splits [l] into two lists [(l1,a::l2)] such that
[l1++(a::l2)=l], [p a=true] and [p b = false] for every element [b] of [l1].
If there is no such [a], then it returns [(l,[])] instead *)
let split_when p =
let rec split_when_loop x y =
match y with
| [] -> (List.rev x,[])
| (a::l) -> if (p a) then (List.rev x,y) else split_when_loop (a::x) l
in
split_when_loop []
let rec split3 = function
| [] -> ([], [], [])
| (x,y,z)::l ->
let (rx, ry, rz) = split3 l in (x::rx, y::ry, z::rz)
let firstn n l =
let rec aux acc = function
| (0, l) -> List.rev acc
| (n, (h::t)) -> aux (h::acc) (pred n, t)
| _ -> failwith "firstn"
in
aux [] (n,l)
let rec last = function
| [] -> failwith "List.last"
| [x] -> x
| _ :: l -> last l
let lastn n l =
let len = List.length l in
let rec aux m l =
if Int.equal m n then l else aux (m - 1) (List.tl l)
in
if len < n then failwith "lastn" else aux len l
let rec skipn n l = match n,l with
| 0, _ -> l
| _, [] -> failwith "List.skipn"
| n, _::l -> skipn (pred n) l
let skipn_at_least n l =
try skipn n l with Failure _ -> []
let prefix_of cmp prefl l =
let rec prefrec = function
| (h1::t1, h2::t2) -> cmp h1 h2 && prefrec (t1,t2)
| ([], _) -> true
| _ -> false
in
prefrec (prefl,l)
(** if [l=p++t] then [drop_prefix p l] is [t] else [l] *)
let drop_prefix cmp p l =
let rec drop_prefix_rec = function
| (h1::tp, h2::tl) when cmp h1 h2 -> drop_prefix_rec (tp,tl)
| ([], tl) -> tl
| _ -> l
in
drop_prefix_rec (p,l)
let map_append f l = List.flatten (List.map f l)
let map_append2 f l1 l2 = List.flatten (List.map2 f l1 l2)
let share_tails l1 l2 =
let rec shr_rev acc = function
| ((x1::l1), (x2::l2)) when x1 == x2 -> shr_rev (x1::acc) (l1,l2)
| (l1,l2) -> (List.rev l1, List.rev l2, acc)
in
shr_rev [] (List.rev l1, List.rev l2)
let rec fold_map f e = function
| [] -> (e,[])
| h::t ->
let e',h' = f e h in
let e'',t' = fold_map f e' t in
e'',h'::t'
(* (* tail-recursive version of the above function *)
let fold_map f e l =
let g (e,b') h =
let (e',h') = f e h in
(e',h'::b')
in
let (e',lrev) = List.fold_left g (e,[]) l in
(e',List.rev lrev)
*)
(* The same, based on fold_right, with the effect accumulated on the right *)
let fold_map' f l e =
List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e)
let map_assoc f = List.map (fun (x,a) -> (x,f a))
let rec assoc_f f a = function
| (x, e) :: xs -> if f a x then e else assoc_f f a xs
| [] -> raise Not_found
let remove_assoc_f f a l =
try remove_first (fun (x,_) -> f a x) l with Not_found -> l
let mem_assoc_f f a l = List.exists (fun (x,_) -> f a x) l
(* A generic cartesian product: for any operator (**),
[cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]],
and so on if there are more elements in the lists. *)
let cartesian op l1 l2 =
map_append (fun x -> List.map (op x) l2) l1
(* [cartesians] is an n-ary cartesian product: it iterates
[cartesian] over a list of lists. *)
let cartesians op init ll =
List.fold_right (cartesian op) ll [init]
(* combinations [[a;b];[c;d]] gives [[a;c];[a;d];[b;c];[b;d]] *)
let combinations l = cartesians (fun x l -> x::l) [] l
let rec combine3 x y z =
match x, y, z with
| [], [], [] -> []
| (x :: xs), (y :: ys), (z :: zs) ->
(x, y, z) :: combine3 xs ys zs
| _, _, _ -> invalid_arg "List.combine3"
(* Keep only those products that do not return None *)
let cartesian_filter op l1 l2 =
map_append (fun x -> map_filter (op x) l2) l1
(* Keep only those products that do not return None *)
let cartesians_filter op init ll =
List.fold_right (cartesian_filter op) ll [init]
(* Drop the last element of a list *)
let rec drop_last = function
| [] -> assert false
| hd :: [] -> []
| hd :: tl -> hd :: drop_last tl
(* Factorize lists of pairs according to the left argument *)
let rec factorize_left cmp = function
| (a,b)::l ->
let al,l' = partition (fun (a',_) -> cmp a a') l in
(a,(b::List.map snd al)) :: factorize_left cmp l'
| [] -> []
module type MonoS = sig
type elt
val equal : elt list -> elt list -> bool
val mem : elt -> elt list -> bool
val assoc : elt -> (elt * 'a) list -> 'a
val mem_assoc : elt -> (elt * 'a) list -> bool
val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list
val mem_assoc_sym : elt -> ('a * elt) list -> bool
end
|