1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
module type S =
sig
val length : 'a list -> int
val hd : 'a list -> 'a
val tl : 'a list -> 'a list
val nth : 'a list -> int -> 'a
val rev : 'a list -> 'a list
val append : 'a list -> 'a list -> 'a list
val rev_append : 'a list -> 'a list -> 'a list
val concat : 'a list list -> 'a list
val flatten : 'a list list -> 'a list
val iter : ('a -> unit) -> 'a list -> unit
val map : ('a -> 'b) -> 'a list -> 'b list
val rev_map : ('a -> 'b) -> 'a list -> 'b list
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
val iter2 : ('a -> 'b -> unit) -> 'a list -> 'b list -> unit
val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
val rev_map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
val fold_left2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a
val fold_right2 : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c
val for_all : ('a -> bool) -> 'a list -> bool
val exists : ('a -> bool) -> 'a list -> bool
val for_all2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
val exists2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
val mem : 'a -> 'a list -> bool
val memq : 'a -> 'a list -> bool
val find : ('a -> bool) -> 'a list -> 'a
val filter : ('a -> bool) -> 'a list -> 'a list
val find_all : ('a -> bool) -> 'a list -> 'a list
val partition : ('a -> bool) -> 'a list -> 'a list * 'a list
val assoc : 'a -> ('a * 'b) list -> 'b
val assq : 'a -> ('a * 'b) list -> 'b
val mem_assoc : 'a -> ('a * 'b) list -> bool
val mem_assq : 'a -> ('a * 'b) list -> bool
val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list
val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list
val split : ('a * 'b) list -> 'a list * 'b list
val combine : 'a list -> 'b list -> ('a * 'b) list
val sort : ('a -> 'a -> int) -> 'a list -> 'a list
val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list
val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list
val merge : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list
end
module type ExtS =
sig
include S
val compare : ('a -> 'a -> int) -> 'a list -> 'a list -> int
val equal : ('a -> 'a -> bool) -> 'a list -> 'a list -> bool
val add_set : 'a -> 'a list -> 'a list
val eq_set : 'a list -> 'a list -> bool
val intersect : 'a list -> 'a list -> 'a list
val union : 'a list -> 'a list -> 'a list
val unionq : 'a list -> 'a list -> 'a list
val subtract : 'a list -> 'a list -> 'a list
val subtractq : 'a list -> 'a list -> 'a list
(** [tabulate f n] builds [[f 0; ...; f (n-1)]] *)
val tabulate : (int -> 'a) -> int -> 'a list
val make : int -> 'a -> 'a list
val assign : 'a list -> int -> 'a -> 'a list
val distinct : 'a list -> bool
val duplicates : 'a list -> 'a list
val filter2 : ('a -> 'b -> bool) -> 'a list * 'b list -> 'a list * 'b list
val map_filter : ('a -> 'b option) -> 'a list -> 'b list
val map_filter_i : (int -> 'a -> 'b option) -> 'a list -> 'b list
val filter_with : bool list -> 'a list -> 'a list
val filter_along : ('a -> bool) -> 'a list -> 'b list -> 'b list
(** [smartmap f [a1...an] = List.map f [a1...an]] but if for all i
[ f ai == ai], then [smartmap f l==l] *)
val smartmap : ('a -> 'a) -> 'a list -> 'a list
val map_left : ('a -> 'b) -> 'a list -> 'b list
val map_i : (int -> 'a -> 'b) -> int -> 'a list -> 'b list
val map2_i :
(int -> 'a -> 'b -> 'c) -> int -> 'a list -> 'b list -> 'c list
val map3 :
('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
val map4 :
('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
val map_to_array : ('a -> 'b) -> 'a list -> 'b array
val filter_i :
(int -> 'a -> bool) -> 'a list -> 'a list
(** [smartfilter f [a1...an] = List.filter f [a1...an]] but if for all i
[f ai = true], then [smartfilter f l==l] *)
val smartfilter : ('a -> bool) -> 'a list -> 'a list
(** [index] returns the 1st index of an element in a list (counting from 1) *)
val index : 'a -> 'a list -> int
val index_f : ('a -> 'a -> bool) -> 'a -> 'a list -> int
(** [unique_index x l] returns [Not_found] if [x] doesn't occur exactly once *)
val unique_index : 'a -> 'a list -> int
(** [index0] behaves as [index] except that it starts counting at 0 *)
val index0 : 'a -> 'a list -> int
val index0_f : ('a -> 'a -> bool) -> 'a -> 'a list -> int
val iter3 : ('a -> 'b -> 'c -> unit) -> 'a list -> 'b list -> 'c list -> unit
val iter_i : (int -> 'a -> unit) -> 'a list -> unit
val fold_right_i : (int -> 'a -> 'b -> 'b) -> int -> 'a list -> 'b -> 'b
val fold_left_i : (int -> 'a -> 'b -> 'a) -> int -> 'a -> 'b list -> 'a
val fold_right_and_left :
('a -> 'b -> 'b list -> 'a) -> 'b list -> 'a -> 'a
val fold_left3 : ('a -> 'b -> 'c -> 'd -> 'a) -> 'a -> 'b list -> 'c list -> 'd list -> 'a
val for_all_i : (int -> 'a -> bool) -> int -> 'a list -> bool
val except : 'a -> 'a list -> 'a list
val remove : 'a -> 'a list -> 'a list
val remove_first : 'a -> 'a list -> 'a list
val remove_assoc_in_triple : 'a -> ('a * 'b * 'c) list -> ('a * 'b * 'c) list
val assoc_snd_in_triple : 'a -> ('a * 'b * 'c) list -> 'b
val for_all2eq : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
val sep_last : 'a list -> 'a * 'a list
val try_find_i : (int -> 'a -> 'b) -> int -> 'a list -> 'b
val try_find : ('a -> 'b) -> 'a list -> 'b
val uniquize : 'a list -> 'a list
(** merges two sorted lists and preserves the uniqueness property: *)
val merge_uniq : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list
val subset : 'a list -> 'a list -> bool
val chop : int -> 'a list -> 'a list * 'a list
(* former [split_at] was a duplicate of [chop] *)
val split_when : ('a -> bool) -> 'a list -> 'a list * 'a list
val split_by : ('a -> bool) -> 'a list -> 'a list * 'a list
val split3 : ('a * 'b * 'c) list -> 'a list * 'b list * 'c list
val partition_by : ('a -> 'a -> bool) -> 'a list -> 'a list list
val firstn : int -> 'a list -> 'a list
val last : 'a list -> 'a
val lastn : int -> 'a list -> 'a list
val skipn : int -> 'a list -> 'a list
val skipn_at_least : int -> 'a list -> 'a list
val addn : int -> 'a -> 'a list -> 'a list
val prefix_of : 'a list -> 'a list -> bool
(** [drop_prefix p l] returns [t] if [l=p++t] else return [l] *)
val drop_prefix : 'a list -> 'a list -> 'a list
val drop_last : 'a list -> 'a list
(** [map_append f [x1; ...; xn]] returns [(f x1)@(f x2)@...@(f xn)] *)
val map_append : ('a -> 'b list) -> 'a list -> 'b list
val join_map : ('a -> 'b list) -> 'a list -> 'b list
(** raises [Invalid_argument] if the two lists don't have the same length *)
val map_append2 : ('a -> 'b -> 'c list) -> 'a list -> 'b list -> 'c list
val share_tails : 'a list -> 'a list -> 'a list * 'a list * 'a list
(** [fold_map f e_0 [l_1...l_n] = e_n,[k_1...k_n]]
where [(e_i,k_i)=f e_{i-1} l_i] *)
val fold_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list
val fold_map' : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a
val map_assoc : ('a -> 'b) -> ('c * 'a) list -> ('c * 'b) list
val assoc_f : ('a -> 'a -> bool) -> 'a -> ('a * 'b) list -> 'b
(** A generic cartesian product: for any operator (**),
[cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]],
and so on if there are more elements in the lists. *)
val cartesian : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
(** [cartesians] is an n-ary cartesian product: it iterates
[cartesian] over a list of lists. *)
val cartesians : ('a -> 'b -> 'b) -> 'b -> 'a list list -> 'b list
(** combinations [[a;b];[c;d]] returns [[a;c];[a;d];[b;c];[b;d]] *)
val combinations : 'a list list -> 'a list list
val combine3 : 'a list -> 'b list -> 'c list -> ('a * 'b * 'c) list
(** Keep only those products that do not return None *)
val cartesian_filter :
('a -> 'b -> 'c option) -> 'a list -> 'b list -> 'c list
val cartesians_filter :
('a -> 'b -> 'b option) -> 'b -> 'a list list -> 'b list
val union_map : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
val factorize_left : ('a * 'b) list -> ('a * 'b list) list
end
include List
(** Tail-rec implementation of usual functions. This is a well-known trick used
in, for instance, ExtLib and Batteries. *)
type 'a cell = {
head : 'a;
mutable tail : 'a list;
}
external cast : 'a cell -> 'a list = "%identity"
let map f = function
| [] -> []
| x :: l ->
let rec loop p = function
| [] -> ()
| x :: l ->
let c = { head = f x; tail = [] } in
p.tail <- cast c;
loop c l
in
let c = { head = f x; tail = [] } in
loop c l;
cast c
let map2 f l1 l2 = match l1, l2 with
| [], [] -> []
| x :: l1, y :: l2 ->
let rec loop p l1 l2 = match l1, l2 with
| [], [] -> ()
| x :: l1, y :: l2 ->
let c = { head = f x y; tail = [] } in
p.tail <- cast c;
loop c l1 l2
| _ -> invalid_arg "List.map2"
in
let c = { head = f x y; tail = [] } in
loop c l1 l2;
cast c
| _ -> invalid_arg "List.map2"
let append l1 l2 = match l1 with
| [] -> l2
| x :: l ->
let rec loop p = function
| [] -> p.tail <- l2
| x :: l ->
let c = { head = x; tail = [] } in
p.tail <- cast c;
loop c l
in
let c = { head = x; tail = [] } in
loop c l;
cast c
let concat l =
let rec copy p = function
| [] -> p
| x :: l ->
let c = { head = x; tail = [] } in
p.tail <- cast c;
copy c l
in
let rec loop p = function
| [] -> ()
| x :: l -> loop (copy p x) l
in
let dummy = { head = Obj.magic 0; tail = [] } in
loop dummy l;
dummy.tail
let flatten = concat
let split = function
| [] -> [], []
| (x, y) :: l ->
let rec loop p q = function
| [] -> ()
| (x, y) :: l ->
let cl = { head = x; tail = [] } in
let cr = { head = y; tail = [] } in
p.tail <- cast cl;
q.tail <- cast cr;
loop cl cr l
in
let cl = { head = x; tail = [] } in
let cr = { head = y; tail = [] } in
loop cl cr l;
(cast cl, cast cr)
let combine l1 l2 = match l1, l2 with
| [], [] -> []
| x :: l1, y :: l2 ->
let rec loop p l1 l2 = match l1, l2 with
| [], [] -> ()
| x :: l1, y :: l2 ->
let c = { head = (x, y); tail = [] } in
p.tail <- cast c;
loop c l1 l2
| _ -> invalid_arg "List.combine"
in
let c = { head = (x, y); tail = [] } in
loop c l1 l2;
cast c
| _ -> invalid_arg "List.combine"
let filter f l =
let rec loop p = function
| [] -> ()
| x :: l ->
if f x then
let c = { head = x; tail = [] } in
let () = p.tail <- cast c in
loop c l
else
loop p l
in
let c = { head = Obj.magic 0; tail = [] } in
loop c l;
c.tail
(** FIXME: Already present in OCaml 4.00 *)
let map_i f i = function
| [] -> []
| x :: l ->
let rec loop i p = function
| [] -> ()
| x :: l ->
let c = { head = f i x; tail = [] } in
p.tail <- cast c;
loop (succ i) c l
in
let c = { head = f i x; tail = [] } in
loop (succ i) c l;
cast c
(** Extensions of OCaml Stdlib *)
let rec compare cmp l1 l2 =
if l1 == l2 then 0 else
match l1,l2 with
[], [] -> 0
| _::_, [] -> 1
| [], _::_ -> -1
| x1::l1, x2::l2 ->
(match cmp x1 x2 with
| 0 -> compare cmp l1 l2
| c -> c)
let rec equal cmp l1 l2 =
l1 == l2 ||
match l1, l2 with
| [], [] -> true
| x1 :: l1, x2 :: l2 ->
cmp x1 x2 && equal cmp l1 l2
| _ -> false
let intersect l1 l2 =
List.filter (fun x -> List.mem x l2) l1
let union l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.mem a l2 then urec l else a::urec l
in
urec l1
let unionq l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.memq a l2 then urec l else a::urec l
in
urec l1
let subtract l1 l2 =
if l2 = [] then l1 else List.filter (fun x -> not (List.mem x l2)) l1
let subtractq l1 l2 =
if l2 = [] then l1 else List.filter (fun x -> not (List.memq x l2)) l1
let tabulate f len =
let rec tabrec n =
if n = len then [] else (f n)::(tabrec (n+1))
in
tabrec 0
let addn n v =
let rec aux n l =
if n = 0 then l
else aux (pred n) (v::l)
in
if n < 0 then invalid_arg "List.addn"
else aux n
let make n v = addn n v []
let assign l n e =
let rec assrec stk = function
| ((h::t), 0) -> List.rev_append stk (e::t)
| ((h::t), n) -> assrec (h::stk) (t, n-1)
| ([], _) -> failwith "List.assign"
in
assrec [] (l,n)
let rec smartmap f l = match l with
[] -> l
| h::tl ->
let h' = f h and tl' = smartmap f tl in
if h'==h && tl'==tl then l
else h'::tl'
let map_left f = (* ensures the order in case of side-effects *)
let rec map_rec = function
| [] -> []
| x::l -> let v = f x in v :: map_rec l
in
map_rec
let map2_i f i l1 l2 =
let rec map_i i = function
| ([], []) -> []
| ((h1::t1), (h2::t2)) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2)
| (_, _) -> invalid_arg "map2_i"
in
map_i i (l1,l2)
let map3 f l1 l2 l3 =
let rec map = function
| ([], [], []) -> []
| ((h1::t1), (h2::t2), (h3::t3)) -> let v = f h1 h2 h3 in v::map (t1,t2,t3)
| (_, _, _) -> invalid_arg "map3"
in
map (l1,l2,l3)
let map4 f l1 l2 l3 l4 =
let rec map = function
| ([], [], [], []) -> []
| ((h1::t1), (h2::t2), (h3::t3), (h4::t4)) -> let v = f h1 h2 h3 h4 in v::map (t1,t2,t3,t4)
| (_, _, _, _) -> invalid_arg "map4"
in
map (l1,l2,l3,l4)
let map_to_array f l =
Array.of_list (List.map f l)
let rec smartfilter f l = match l with
[] -> l
| h::tl ->
let tl' = smartfilter f tl in
if f h then
if tl' == tl then l
else h :: tl'
else tl'
let index_f f x =
let rec index_x n = function
| y::l -> if f x y then n else index_x (succ n) l
| [] -> raise Not_found
in
index_x 1
let index0_f f x l = index_f f x l - 1
let index x =
let rec index_x n = function
| y::l -> if x = y then n else index_x (succ n) l
| [] -> raise Not_found
in
index_x 1
let index0 x l = index x l - 1
let unique_index x =
let rec index_x n = function
| y::l ->
if x = y then
if List.mem x l then raise Not_found
else n
else index_x (succ n) l
| [] -> raise Not_found
in index_x 1
let fold_right_i f i l =
let rec it_f i l a = match l with
| [] -> a
| b::l -> f (i-1) b (it_f (i-1) l a)
in
it_f (List.length l + i) l
let fold_left_i f =
let rec it_list_f i a = function
| [] -> a
| b::l -> it_list_f (i+1) (f i a b) l
in
it_list_f
let rec fold_left3 f accu l1 l2 l3 =
match (l1, l2, l3) with
([], [], []) -> accu
| (a1::l1, a2::l2, a3::l3) -> fold_left3 f (f accu a1 a2 a3) l1 l2 l3
| (_, _, _) -> invalid_arg "List.fold_left3"
(* [fold_right_and_left f [a1;...;an] hd =
f (f (... (f (f hd
an
[an-1;...;a1])
an-1
[an-2;...;a1])
...)
a2
[a1])
a1
[]] *)
let fold_right_and_left f l hd =
let rec aux tl = function
| [] -> hd
| a::l -> let hd = aux (a::tl) l in f hd a tl
in aux [] l
let iter3 f l1 l2 l3 =
let rec iter = function
| ([], [], []) -> ()
| ((h1::t1), (h2::t2), (h3::t3)) -> f h1 h2 h3; iter (t1,t2,t3)
| (_, _, _) -> invalid_arg "map3"
in
iter (l1,l2,l3)
let iter_i f l = fold_left_i (fun i _ x -> f i x) 0 () l
let for_all_i p =
let rec for_all_p i = function
| [] -> true
| a::l -> p i a && for_all_p (i+1) l
in
for_all_p
let except x l = List.filter (fun y -> not (x = y)) l
let remove = except (* Alias *)
let rec remove_first a = function
| b::l when a = b -> l
| b::l -> b::remove_first a l
| [] -> raise Not_found
let rec remove_assoc_in_triple x = function
| [] -> []
| (y,_,_ as z)::l -> if x = y then l else z::remove_assoc_in_triple x l
let rec assoc_snd_in_triple x = function
[] -> raise Not_found
| (a,b,_)::l -> if Pervasives.compare a x = 0 then b else assoc_snd_in_triple x l
let add_set x l = if List.mem x l then l else x::l
let eq_set l1 l2 =
let rec aux l1 = function
| [] -> l1 = []
| a::l2 -> aux (remove_first a l1) l2 in
try aux l1 l2 with Not_found -> false
let for_all2eq f l1 l2 =
try List.for_all2 f l1 l2 with Invalid_argument _ -> false
let filter_i p =
let rec filter_i_rec i = function
| [] -> []
| x::l -> let l' = filter_i_rec (succ i) l in if p i x then x::l' else l'
in
filter_i_rec 0
let rec sep_last = function
| [] -> failwith "sep_last"
| hd::[] -> (hd,[])
| hd::tl -> let (l,tl) = sep_last tl in (l,hd::tl)
let try_find_i f =
let rec try_find_f n = function
| [] -> failwith "try_find_i"
| h::t -> try f n h with Failure _ -> try_find_f (n+1) t
in
try_find_f
let try_find f =
let rec try_find_f = function
| [] -> failwith "try_find"
| h::t -> try f h with Failure _ -> try_find_f t
in
try_find_f
let uniquize l =
let visited = Hashtbl.create 23 in
let rec aux acc = function
| h::t -> if Hashtbl.mem visited h then aux acc t else
begin
Hashtbl.add visited h h;
aux (h::acc) t
end
| [] -> List.rev acc
in aux [] l
let distinct l =
let visited = Hashtbl.create 23 in
let rec loop = function
| h::t ->
if Hashtbl.mem visited h then false
else
begin
Hashtbl.add visited h h;
loop t
end
| [] -> true
in loop l
let rec merge_uniq cmp l1 l2 =
match l1, l2 with
| [], l2 -> l2
| l1, [] -> l1
| h1 :: t1, h2 :: t2 ->
let c = cmp h1 h2 in
if c = 0
then h1 :: merge_uniq cmp t1 t2
else if c <= 0
then h1 :: merge_uniq cmp t1 l2
else h2 :: merge_uniq cmp l1 t2
let rec duplicates = function
| [] -> []
| x::l ->
let l' = duplicates l in
if List.mem x l then add_set x l' else l'
let rec filter2 f = function
| [], [] as p -> p
| d::dp, l::lp ->
let (dp',lp' as p) = filter2 f (dp,lp) in
if f d l then d::dp', l::lp' else p
| _ -> invalid_arg "List.filter2"
let rec map_filter f = function
| [] -> []
| x::l ->
let l' = map_filter f l in
match f x with None -> l' | Some y -> y::l'
let map_filter_i f =
let rec aux i = function
| [] -> []
| x::l ->
let l' = aux (succ i) l in
match f i x with None -> l' | Some y -> y::l'
in aux 0
let filter_along f filter l =
snd (filter2 (fun b c -> f b) (filter,l))
let filter_with filter l =
filter_along (fun x -> x) filter l
let subset l1 l2 =
let t2 = Hashtbl.create 151 in
List.iter (fun x -> Hashtbl.add t2 x ()) l2;
let rec look = function
| [] -> true
| x::ll -> try Hashtbl.find t2 x; look ll with Not_found -> false
in
look l1
(* [chop i l] splits [l] into two lists [(l1,l2)] such that
[l1++l2=l] and [l1] has length [i].
It raises [Failure] when [i] is negative or greater than the length of [l] *)
let chop n l =
let rec chop_aux i acc = function
| tl when i=0 -> (List.rev acc, tl)
| h::t -> chop_aux (pred i) (h::acc) t
| [] -> failwith "List.chop"
in
chop_aux n [] l
(* [split_when p l] splits [l] into two lists [(l1,a::l2)] such that
[l1++(a::l2)=l], [p a=true] and [p b = false] for every element [b] of [l1].
If there is no such [a], then it returns [(l,[])] instead *)
let split_when p =
let rec split_when_loop x y =
match y with
| [] -> (List.rev x,[])
| (a::l) -> if (p a) then (List.rev x,y) else split_when_loop (a::x) l
in
split_when_loop []
(* [split_by p l] splits [l] into two lists [(l1,l2)] such that elements of
[l1] satisfy [p] and elements of [l2] do not; order is preserved *)
let split_by p =
let rec split_by_loop = function
| [] -> ([],[])
| a::l ->
let (l1,l2) = split_by_loop l in if p a then (a::l1,l2) else (l1,a::l2)
in
split_by_loop
let rec split3 = function
| [] -> ([], [], [])
| (x,y,z)::l ->
let (rx, ry, rz) = split3 l in (x::rx, y::ry, z::rz)
let rec insert_in_class f a = function
| [] -> [[a]]
| (b::_ as l)::classes when f a b -> (a::l)::classes
| l::classes -> l :: insert_in_class f a classes
let partition_by f l =
List.fold_right (insert_in_class f) l []
let firstn n l =
let rec aux acc = function
| (0, l) -> List.rev acc
| (n, (h::t)) -> aux (h::acc) (pred n, t)
| _ -> failwith "firstn"
in
aux [] (n,l)
let rec last = function
| [] -> failwith "List.last"
| [x] -> x
| _ :: l -> last l
let lastn n l =
let len = List.length l in
let rec aux m l =
if m = n then l else aux (m - 1) (List.tl l)
in
if len < n then failwith "lastn" else aux len l
let rec skipn n l = match n,l with
| 0, _ -> l
| _, [] -> failwith "List.skipn"
| n, _::l -> skipn (pred n) l
let skipn_at_least n l =
try skipn n l with Failure _ -> []
let prefix_of prefl l =
let rec prefrec = function
| (h1::t1, h2::t2) -> h1 = h2 && prefrec (t1,t2)
| ([], _) -> true
| (_, _) -> false
in
prefrec (prefl,l)
let drop_prefix p l =
(* if l=p++t then return t else l *)
let rec drop_prefix_rec = function
| ([], tl) -> Some tl
| (_, []) -> None
| (h1::tp, h2::tl) ->
if h1 = h2 then drop_prefix_rec (tp,tl) else None
in
match drop_prefix_rec (p,l) with
| Some r -> r
| None -> l
let map_append f l = List.flatten (List.map f l)
let join_map = map_append (* Alias *)
let map_append2 f l1 l2 = List.flatten (List.map2 f l1 l2)
let share_tails l1 l2 =
let rec shr_rev acc = function
| ((x1::l1), (x2::l2)) when x1 == x2 -> shr_rev (x1::acc) (l1,l2)
| (l1,l2) -> (List.rev l1, List.rev l2, acc)
in
shr_rev [] (List.rev l1, List.rev l2)
let rec fold_map f e = function
| [] -> (e,[])
| h::t ->
let e',h' = f e h in
let e'',t' = fold_map f e' t in
e'',h'::t'
(* (* tail-recursive version of the above function *)
let fold_map f e l =
let g (e,b') h =
let (e',h') = f e h in
(e',h'::b')
in
let (e',lrev) = List.fold_left g (e,[]) l in
(e',List.rev lrev)
*)
(* The same, based on fold_right, with the effect accumulated on the right *)
let fold_map' f l e =
List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e)
let map_assoc f = List.map (fun (x,a) -> (x,f a))
let rec assoc_f f a = function
| (x, e) :: xs -> if f a x then e else assoc_f f a xs
| [] -> raise Not_found
(* Specification:
- =p= is set equality (double inclusion)
- f such that \forall l acc, (f l acc) =p= append (f l []) acc
- let g = fun x -> f x [] in
- union_map f l acc =p= append (flatten (map g l)) acc
*)
let union_map f l acc =
List.fold_left
(fun x y -> f y x)
acc
l
(* A generic cartesian product: for any operator (**),
[cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]],
and so on if there are more elements in the lists. *)
let cartesian op l1 l2 =
map_append (fun x -> List.map (op x) l2) l1
(* [cartesians] is an n-ary cartesian product: it iterates
[cartesian] over a list of lists. *)
let cartesians op init ll =
List.fold_right (cartesian op) ll [init]
(* combinations [[a;b];[c;d]] gives [[a;c];[a;d];[b;c];[b;d]] *)
let combinations l = cartesians (fun x l -> x::l) [] l
let rec combine3 x y z =
match x, y, z with
| [], [], [] -> []
| (x :: xs), (y :: ys), (z :: zs) ->
(x, y, z) :: combine3 xs ys zs
| _, _, _ -> raise (Invalid_argument "List.combine3")
(* Keep only those products that do not return None *)
let cartesian_filter op l1 l2 =
map_append (fun x -> map_filter (op x) l2) l1
(* Keep only those products that do not return None *)
let cartesians_filter op init ll =
List.fold_right (cartesian_filter op) ll [init]
(* Drop the last element of a list *)
let rec drop_last = function [] -> assert false | hd :: [] -> [] | hd :: tl -> hd :: drop_last tl
(* Factorize lists of pairs according to the left argument *)
let rec factorize_left = function
| (a,b)::l ->
let al,l' = split_by (fun (a',b) -> a=a') l in
(a,(b::List.map snd al)) :: factorize_left l'
| [] ->
[]
|