1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Esubst
open Context.Rel.Declaration
(*********************)
(* Occurring *)
(*********************)
exception LocalOccur
(* (closedn n M) raises FreeVar if a variable of height greater than n
occurs in M, returns () otherwise *)
let closedn n c =
let rec closed_rec n c = match Constr.kind c with
| Constr.Rel m -> if m>n then raise LocalOccur
| _ -> Constr.iter_with_binders succ closed_rec n c
in
try closed_rec n c; true with LocalOccur -> false
(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
let closed0 c = closedn 0 c
(* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *)
let noccurn n term =
let rec occur_rec n c = match Constr.kind c with
| Constr.Rel m -> if Int.equal m n then raise LocalOccur
| _ -> Constr.iter_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
(* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M
for n <= p < n+m *)
let noccur_between n m term =
let rec occur_rec n c = match Constr.kind c with
| Constr.Rel p -> if n<=p && p<n+m then raise LocalOccur
| _ -> Constr.iter_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
(* Checking function for terms containing existential variables.
The function [noccur_with_meta] considers the fact that
each existential variable (as well as each isevar)
in the term appears applied to its local context,
which may contain the CoFix variables. These occurrences of CoFix variables
are not considered *)
let isMeta c = match Constr.kind c with
| Constr.Meta _ -> true
| _ -> false
let noccur_with_meta n m term =
let rec occur_rec n c = match Constr.kind c with
| Constr.Rel p -> if n<=p && p<n+m then raise LocalOccur
| Constr.App(f,cl) ->
(match Constr.kind f with
| Constr.Cast (c,_,_) when isMeta c -> ()
| Constr.Meta _ -> ()
| _ -> Constr.iter_with_binders succ occur_rec n c)
| Constr.Evar (_, _) -> ()
| _ -> Constr.iter_with_binders succ occur_rec n c
in
try (occur_rec n term; true) with LocalOccur -> false
(*********************)
(* Lifting *)
(*********************)
(* The generic lifting function *)
let rec exliftn el c = match Constr.kind c with
| Constr.Rel i -> Constr.mkRel(reloc_rel i el)
| _ -> Constr.map_with_binders el_lift exliftn el c
(* Lifting the binding depth across k bindings *)
let liftn n k c =
match el_liftn (pred k) (el_shft n el_id) with
| ELID -> c
| el -> exliftn el c
let lift n = liftn n 1
(*********************)
(* Substituting *)
(*********************)
(* (subst1 M c) substitutes M for Rel(1) in c
we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel
M1,...,Mn for respectively Rel(1),...,Rel(n) in c *)
(* 1st : general case *)
type info = Closed | Open | Unknown
type 'a substituend = { mutable sinfo: info; sit: 'a }
let lift_substituend depth s =
match s.sinfo with
| Closed -> s.sit
| Open -> lift depth s.sit
| Unknown ->
let sit = s.sit in
if closed0 sit then
let () = s.sinfo <- Closed in
sit
else
let () = s.sinfo <- Open in
lift depth sit
let make_substituend c = { sinfo=Unknown; sit=c }
let substn_many lamv n c =
let lv = Array.length lamv in
if Int.equal lv 0 then c
else
let rec substrec depth c = match Constr.kind c with
| Constr.Rel k ->
if k<=depth then c
else if k-depth <= lv then lift_substituend depth (Array.unsafe_get lamv (k-depth-1))
else Constr.mkRel (k-lv)
| _ -> Constr.map_with_binders succ substrec depth c in
substrec n c
(*
let substkey = Profile.declare_profile "substn_many";;
let substn_many lamv n c = Profile.profile3 substkey substn_many lamv n c;;
*)
let make_subst = function
| [] -> [||]
| hd :: tl ->
let len = List.length tl in
let subst = Array.make (1 + len) (make_substituend hd) in
let s = ref tl in
for i = 1 to len do
match !s with
| [] -> assert false
| x :: tl ->
Array.unsafe_set subst i (make_substituend x);
s := tl
done;
subst
(* The type of substitutions, with term substituting most recent
binder at the head *)
type substl = Constr.t list
let substnl laml n c = substn_many (make_subst laml) n c
let substl laml c = substn_many (make_subst laml) 0 c
let subst1 lam c = substn_many [|make_substituend lam|] 0 c
let substnl_decl laml k r = map_constr (fun c -> substnl laml k c) r
let substl_decl laml r = map_constr (fun c -> substnl laml 0 c) r
let subst1_decl lam r = map_constr (fun c -> subst1 lam c) r
(* Build a substitution from an instance, inserting missing let-ins *)
let subst_of_rel_context_instance sign l =
let rec aux subst sign l =
match sign, l with
| LocalAssum _ :: sign', a::args' -> aux (a::subst) sign' args'
| LocalDef (_,c,_)::sign', args' ->
aux (substl subst c :: subst) sign' args'
| [], [] -> subst
| _ -> Errors.anomaly (Pp.str "Instance and signature do not match")
in aux [] (List.rev sign) l
let adjust_subst_to_rel_context sign l =
List.rev (subst_of_rel_context_instance sign l)
(* (thin_val sigma) removes identity substitutions from sigma *)
let rec thin_val = function
| [] -> []
| (id, c) :: tl ->
match Constr.kind c with
| Constr.Var v ->
if Id.equal id v then thin_val tl
else (id, make_substituend c) :: (thin_val tl)
| _ -> (id, make_substituend c) :: (thin_val tl)
let rec find_var id = function
| [] -> raise Not_found
| (idc, c) :: subst ->
if Id.equal id idc then c
else find_var id subst
(* (replace_vars sigma M) applies substitution sigma to term M *)
let replace_vars var_alist x =
let var_alist = thin_val var_alist in
match var_alist with
| [] -> x
| _ ->
let rec substrec n c = match Constr.kind c with
| Constr.Var x ->
(try lift_substituend n (find_var x var_alist)
with Not_found -> c)
| _ -> Constr.map_with_binders succ substrec n c
in
substrec 0 x
(* (subst_var str t) substitute (Var str) by (Rel 1) in t *)
let subst_var str t = replace_vars [(str, Constr.mkRel 1)] t
(* (subst_vars [id1;...;idn] t) substitute (Var idj) by (Rel j) in t *)
let substn_vars p vars c =
let _,subst =
List.fold_left (fun (n,l) var -> ((n+1),(var,Constr.mkRel n)::l)) (p,[]) vars
in replace_vars (List.rev subst) c
let subst_vars subst c = substn_vars 1 subst c
(** Universe substitutions *)
open Constr
let subst_univs_fn_puniverses fn =
let f = Univ.Instance.subst_fn fn in
fun ((c, u) as x) -> let u' = f u in if u' == u then x else (c, u')
let subst_univs_fn_constr f c =
let changed = ref false in
let fu = Univ.subst_univs_universe f in
let fi = Univ.Instance.subst_fn (Univ.level_subst_of f) in
let rec aux t =
match kind t with
| Sort (Sorts.Type u) ->
let u' = fu u in
if u' == u then t else
(changed := true; mkSort (Sorts.sort_of_univ u'))
| Const (c, u) ->
let u' = fi u in
if u' == u then t
else (changed := true; mkConstU (c, u'))
| Ind (i, u) ->
let u' = fi u in
if u' == u then t
else (changed := true; mkIndU (i, u'))
| Construct (c, u) ->
let u' = fi u in
if u' == u then t
else (changed := true; mkConstructU (c, u'))
| _ -> map aux t
in
let c' = aux c in
if !changed then c' else c
let subst_univs_constr subst c =
if Univ.is_empty_subst subst then c
else
let f = Univ.make_subst subst in
subst_univs_fn_constr f c
let subst_univs_constr =
if Flags.profile then
let subst_univs_constr_key = Profile.declare_profile "subst_univs_constr" in
Profile.profile2 subst_univs_constr_key subst_univs_constr
else subst_univs_constr
let subst_univs_level_constr subst c =
if Univ.is_empty_level_subst subst then c
else
let f = Univ.Instance.subst_fn (Univ.subst_univs_level_level subst) in
let changed = ref false in
let rec aux t =
match kind t with
| Const (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkConstU (c, u'))
| Ind (i, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkIndU (i, u'))
| Construct (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkConstructU (c, u'))
| Sort (Sorts.Type u) ->
let u' = Univ.subst_univs_level_universe subst u in
if u' == u then t else
(changed := true; mkSort (Sorts.sort_of_univ u'))
| _ -> Constr.map aux t
in
let c' = aux c in
if !changed then c' else c
let subst_univs_level_context s =
Context.Rel.map (subst_univs_level_constr s)
let subst_instance_constr subst c =
if Univ.Instance.is_empty subst then c
else
let f u = Univ.subst_instance_instance subst u in
let changed = ref false in
let rec aux t =
match kind t with
| Const (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkConstU (c, u'))
| Ind (i, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkIndU (i, u'))
| Construct (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkConstructU (c, u'))
| Sort (Sorts.Type u) ->
let u' = Univ.subst_instance_universe subst u in
if u' == u then t else
(changed := true; mkSort (Sorts.sort_of_univ u'))
| _ -> Constr.map aux t
in
let c' = aux c in
if !changed then c' else c
(* let substkey = Profile.declare_profile "subst_instance_constr";; *)
(* let subst_instance_constr inst c = Profile.profile2 substkey subst_instance_constr inst c;; *)
let subst_instance_context s ctx =
if Univ.Instance.is_empty s then ctx
else Context.Rel.map (fun x -> subst_instance_constr s x) ctx
type id_key = constant tableKey
let eq_id_key x y = Names.eq_table_key Constant.equal x y
|