1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey *)
open Pp
open Errors
open Util
(* Universes are stratified by a partial ordering $\le$.
Let $\~{}$ be the associated equivalence. We also have a strict ordering
$<$ between equivalence classes, and we maintain that $<$ is acyclic,
and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.
At every moment, we have a finite number of universes, and we
maintain the ordering in the presence of assertions $U<V$ and $U\le V$.
The equivalence $\~{}$ is represented by a tree structure, as in the
union-find algorithm. The assertions $<$ and $\le$ are represented by
adjacency lists *)
module Level = struct
open Names
type t =
| Prop
| Set
| Level of int * Names.DirPath.t
type _t = t
(* Hash-consing *)
module Hunivlevel =
Hashcons.Make(
struct
type t = _t
type u = Names.DirPath.t -> Names.DirPath.t
let hashcons hdir = function
| Prop as x -> x
| Set as x -> x
| Level (n,d) as x ->
let d' = hdir d in
if d' == d then x else Level (n,d')
let equal l1 l2 =
l1 == l2 ||
match l1,l2 with
| Prop, Prop -> true
| Set, Set -> true
| Level (n,d), Level (n',d') ->
n == n' && d == d'
| _ -> false
let hash = Hashtbl.hash
end)
let hcons = Hashcons.simple_hcons Hunivlevel.generate Names.DirPath.hcons
let hash = Hashtbl.hash
let make m n = hcons (Level (n, m))
let set = hcons Set
let prop = hcons Prop
let is_small = function
| Level _ -> false
| _ -> true
let is_prop = function
| Prop -> true
| _ -> false
let is_set = function
| Set -> true
| _ -> false
(* A specialized comparison function: we compare the [int] part first.
This way, most of the time, the [DirPath.t] part is not considered.
Normally, placing the [int] first in the pair above in enough in Ocaml,
but to be sure, we write below our own comparison function.
Note: this property is used by the [check_sorted] function below. *)
let compare u v =
if u == v then 0
else
(match u,v with
| Prop,Prop -> 0
| Prop, _ -> -1
| _, Prop -> 1
| Set, Set -> 0
| Set, _ -> -1
| _, Set -> 1
| Level (i1, dp1), Level (i2, dp2) ->
if i1 < i2 then -1
else if i1 > i2 then 1
else DirPath.compare dp1 dp2)
let equal u v = match u,v with
| Set, Set -> true
| Level (i1, dp1), Level (i2, dp2) ->
Int.equal i1 i2 && DirPath.equal dp1 dp2
| _ -> false
let equal u v = u == v
let leq u v = compare u v <= 0
let to_string = function
| Prop -> "Prop"
| Set -> "Set"
| Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n
let pr u = str (to_string u)
let apart u v =
match u, v with
| Prop, Set | Set, Prop -> true
| _ -> false
end
let pr_universe_level_list l =
prlist_with_sep spc Level.pr l
module LSet = struct
module M = Set.Make (Level)
include M
let pr s =
str"{" ++ pr_universe_level_list (elements s) ++ str"}"
let of_list l =
List.fold_left (fun acc x -> add x acc) empty l
let of_array l =
Array.fold_left (fun acc x -> add x acc) empty l
end
module LMap = struct
module M = Map.Make (Level)
include M
let union l r =
merge (fun k l r ->
match l, r with
| Some _, _ -> l
| _, _ -> r) l r
let subst_union l r =
merge (fun k l r ->
match l, r with
| Some (Some _), _ -> l
| Some None, None -> l
| _, _ -> r) l r
let diff ext orig =
fold (fun u v acc ->
if mem u orig then acc
else add u v acc)
ext empty
let elements = bindings
let of_set s d =
LSet.fold (fun u -> add u d) s
empty
let of_list l =
List.fold_left (fun m (u, v) -> add u v m) empty l
let universes m =
fold (fun u _ acc -> LSet.add u acc) m LSet.empty
let pr f m =
h 0 (prlist_with_sep fnl (fun (u, v) ->
Level.pr u ++ f v) (elements m))
let find_opt t m =
try Some (find t m)
with Not_found -> None
end
type universe_level = Level.t
module LList = struct
type t = Level.t list
type _t = t
module Huniverse_level_list =
Hashcons.Make(
struct
type t = _t
type u = universe_level -> universe_level
let hashcons huc s =
List.fold_right (fun x a -> huc x :: a) s []
let equal s s' = List.for_all2eq (==) s s'
let hash = Hashtbl.hash
end)
let hcons =
Hashcons.simple_hcons Huniverse_level_list.generate Level.hcons
let empty = hcons []
let equal l l' = l == l' ||
(try List.for_all2 Level.equal l l'
with Invalid_argument _ -> false)
let levels =
List.fold_left (fun s x -> LSet.add x s) LSet.empty
end
type universe_level_list = universe_level list
type universe_level_subst_fn = universe_level -> universe_level
type universe_set = LSet.t
type 'a universe_map = 'a LMap.t
module Hashconsing = struct
module Uid = struct
type t = int
let make_maker () =
let _id = ref ~-1 in
((fun () -> incr _id;!_id),
(fun () -> !_id),
(fun i -> _id := i))
let dummy = -1
external to_int : t -> int = "%identity"
external of_int : int -> t= "%identity"
end
module Hcons = struct
module type SA =
sig
type data
type t
val make : data -> t
val node : t -> data
val hash : t -> int
val uid : t -> Uid.t
val equal : t -> t -> bool
val stats : unit -> unit
val init : unit -> unit
end
module type S =
sig
type data
type t = private { id : Uid.t;
key : int;
node : data }
val make : data -> t
val node : t -> data
val hash : t -> int
val uid : t -> Uid.t
val equal : t -> t -> bool
val stats : unit -> unit
val init : unit -> unit
end
module Make (H : Hashtbl.HashedType) : S with type data = H.t =
struct
let uid_make,uid_current,uid_set = Uid.make_maker()
type data = H.t
type t = { id : Uid.t;
key : int;
node : data }
let node t = t.node
let uid t = t.id
let hash t = t.key
let equal t1 t2 = t1 == t2
module WH = Weak.Make( struct
type _t = t
type t = _t
let hash = hash
let equal a b = a == b || H.equal a.node b.node
end)
let pool = WH.create 491
exception Found of Uid.t
let total_count = ref 0
let miss_count = ref 0
let init () =
total_count := 0;
miss_count := 0
let make x =
incr total_count;
let cell = { id = Uid.dummy; key = H.hash x; node = x } in
try
WH.find pool cell
with
| Not_found ->
let cell = { cell with id = uid_make(); } in
incr miss_count;
WH.add pool cell;
cell
exception Found of t
let stats () = ()
end
end
module HList = struct
module type S = sig
type elt
type 'a node = Nil | Cons of elt * 'a
module rec Node :
sig
include Hcons.S with type data = Data.t
end
and Data : sig
include Hashtbl.HashedType with type t = Node.t node
end
type data = Data.t
type t = Node.t
val hash : t -> int
val uid : t -> Uid.t
val make : data -> t
val equal : t -> t -> bool
val nil : t
val is_nil : t -> bool
val tip : elt -> t
val node : t -> t node
val cons : (* ?sorted:bool -> *) elt -> t -> t
val hd : t -> elt
val tl : t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val map : (elt -> elt) -> t -> t
val iter : (elt -> 'a) -> t -> unit
val exists : (elt -> bool) -> t -> bool
val for_all : (elt -> bool) -> t -> bool
val rev : t -> t
val rev_map : (elt -> elt) -> t -> t
val length : t -> int
val mem : elt -> t -> bool
val remove : elt -> t -> t
val stats : unit -> unit
val init : unit -> unit
val to_list : t -> elt list
val compare : (elt -> elt -> int) -> t -> t -> int
end
module Make (H : Hcons.SA) : S with type elt = H.t =
struct
type elt = H.t
type 'a node = Nil | Cons of elt * 'a
module rec Node : Hcons.S with type data = Data.t = Hcons.Make (Data)
and Data : Hashtbl.HashedType with type t = Node.t node =
struct
type t = Node.t node
let equal x y =
match x,y with
| _,_ when x==y -> true
| Cons (a,aa), Cons(b,bb) -> (aa==bb) && (H.equal a b)
| _ -> false
let hash = function
| Nil -> 0
| Cons(a,aa) -> 17 + 65599 * (Uid.to_int (H.uid a)) + 491 * (Uid.to_int aa.Node.id)
end
type data = Data.t
type t = Node.t
let make = Node.make
let node x = x.Node.node
let hash x = x.Node.key
let equal = Node.equal
let uid x= x.Node.id
let nil = Node.make Nil
let stats = Node.stats
let init = Node.init
let is_nil =
function { Node.node = Nil } -> true | _ -> false
(* doing sorted insertion allows to make
better use of hash consing *)
let rec sorted_cons e l =
match l.Node.node with
| Nil -> Node.make (Cons(e, l))
| Cons (x, ll) ->
if H.uid e < H.uid x
then Node.make (Cons(e, l))
else Node.make (Cons(x, sorted_cons e ll))
let cons e l =
Node.make(Cons(e, l))
let tip e = Node.make (Cons(e, nil))
(* let cons ?(sorted=true) e l = *)
(* if sorted then sorted_cons e l else cons e l *)
let hd = function { Node.node = Cons(a,_) } -> a | _ -> failwith "hd"
let tl = function { Node.node = Cons(_,a) } -> a | _ -> failwith "tl"
let fold f l acc =
let rec loop acc l = match l.Node.node with
| Nil -> acc
| Cons (a, aa) -> loop (f a acc) aa
in
loop acc l
let map f l =
let rec loop l = match l.Node.node with
| Nil -> nil
| Cons(a, aa) -> cons (f a) (loop aa)
in
loop l
let iter f l =
let rec loop l = match l.Node.node with
| Nil -> ()
| Cons(a,aa) -> (f a);(loop aa)
in
loop l
let exists f l =
let rec loop l = match l.Node.node with
| Nil -> false
| Cons(a,aa) -> f a || loop aa
in
loop l
let for_all f l =
let rec loop l = match l.Node.node with
| Nil -> true
| Cons(a,aa) -> f a && loop aa
in
loop l
let to_list l =
let rec loop l = match l.Node.node with
| Nil -> []
| Cons(a,aa) -> a :: loop aa
in
loop l
let remove x l =
let rec loop l = match l.Node.node with
| Nil -> l
| Cons(a,aa) ->
if H.equal a x then aa
else cons a (loop aa)
in
loop l
let rev l = fold cons l nil
let rev_map f l = fold (fun x acc -> cons (f x) acc) l nil
let length l = fold (fun _ c -> c+1) l 0
let rec mem e l =
match l.Node.node with
| Nil -> false
| Cons (x, ll) -> x == e || mem e ll
let rec compare cmp l1 l2 =
if l1 == l2 then 0 else
match node l1, node l2 with
| Nil, Nil -> 0
| _, Nil -> 1
| Nil, _ -> -1
| Cons (x1,l1), Cons(x2,l2) ->
(match cmp x1 x2 with
| 0 -> compare cmp l1 l2
| c -> c)
end
end
end
(* An algebraic universe [universe] is either a universe variable
[Level.t] or a formal universe known to be greater than some
universe variables and strictly greater than some (other) universe
variables
Universes variables denote universes initially present in the term
to type-check and non variable algebraic universes denote the
universes inferred while type-checking: it is either the successor
of a universe present in the initial term to type-check or the
maximum of two algebraic universes
*)
module Universe =
struct
(* Invariants: non empty, sorted and without duplicates *)
module Expr =
struct
type t = Level.t * int
type _t = t
(* Hashing of expressions *)
module ExprHash =
struct
type t = _t
type u = Level.t -> Level.t
let hashcons hdir (b,n as x) =
let b' = hdir b in
if b' == b then x else (b',n)
let equal l1 l2 =
l1 == l2 ||
match l1,l2 with
| (b,n), (b',n') -> b == b' && n == n'
let hash = Hashtbl.hash
end
module HExpr =
struct
include Hashcons.Make(ExprHash)
type data = t
type node = t
let make =
Hashcons.simple_hcons generate Level.hcons
external node : node -> data = "%identity"
let hash = ExprHash.hash
let uid = hash
let equal x y = x == y
let stats _ = ()
let init _ = ()
end
let hcons = HExpr.make
let make l = hcons (l, 0)
let compare u v =
if u == v then 0
else
let (x, n) = u and (x', n') = v in
if Int.equal n n' then Level.compare x x'
else n - n'
let prop = make Level.prop
let set = make Level.set
let type1 = hcons (Level.set, 1)
let is_prop = function
| (l,0) -> Level.is_prop l
| _ -> false
let is_set = function
| (l,0) -> Level.is_set l
| _ -> false
let is_type1 = function
| (l,1) -> Level.is_set l
| _ -> false
let is_small = function
| (l, 0) -> Level.is_small l
| _ -> false
(* let equal (u,n) (v,n') = *)
(* Int.equal n n' && Level.equal u v *)
let equal x y = x == y
let leq (u,n) (v,n') =
let cmp = Level.compare u v in
if Int.equal cmp 0 then n <= n'
else if n <= n' then
(Level.is_prop u && Level.is_small v)
else false
let successor (u,n) =
if Level.is_prop u then type1
else hcons (u, n + 1)
let addn k (u,n as x) =
if k = 0 then x
else if Level.is_prop u then
hcons (Level.set,n+k)
else hcons (u,n+k)
let super (u,n as x) (v,n' as y) =
let cmp = Level.compare u v in
if Int.equal cmp 0 then
if n < n' then Inl true
else Inl false
else if is_prop x then Inl true
else if is_prop y then Inl false
else Inr cmp
let to_string (v, n) =
if Int.equal n 0 then Level.to_string v
else Level.to_string v ^ "+" ^ string_of_int n
let pr x = str(to_string x)
let level = function
| (v,0) -> Some v
| _ -> None
let get_level (v,n) = v
let map f (v, n as x) =
let v' = f v in
if v' == v then x
else if Level.is_prop v' && n != 0 then
hcons (Level.set, n)
else hcons (v', n)
end
module Hunivelt = struct
let node x = x
let make x = x
end
(* module Hunivelt = Hashconsing.Hcons.Make( *)
(* struct *)
(* type t = Expr.t *)
(* let equal l1 l2 = *)
(* l1 == l2 || *)
(* match l1,l2 with *)
(* | (b,n), (b',n') -> b == b' && n == n' *)
(* let hash = Hashtbl.hash *)
(* end) *)
let compare_expr n m = Expr.compare (Hunivelt.node n) (Hunivelt.node m)
let pr_expr n = Expr.pr (Hunivelt.node n)
module Huniv = Hashconsing.HList.Make(Expr.HExpr)
type t = Huniv.t
open Huniv
let equal x y = x == y (* Huniv.equal *)
let compare u1 u2 =
if equal u1 u2 then 0 else
Huniv.compare compare_expr u1 u2
let hcons_unique = Huniv.make
let hcons x = hcons_unique x
let make l = Huniv.tip (Hunivelt.make (Expr.make l))
let tip x = Huniv.tip (Hunivelt.make x)
let equal_universes x y =
x == y
(* then true *)
(* else *)
(* (\* Consider lists as sets, i.e. up to reordering, *)
(* they are already without duplicates thanks to normalization. *\) *)
(* CList.eq_set x' y' *)
let pr l = match node l with
| Cons (u, n) when is_nil n -> Expr.pr (Hunivelt.node u)
| _ ->
str "max(" ++ hov 0
(prlist_with_sep pr_comma Expr.pr (List.map Hunivelt.node (to_list l))) ++
str ")"
let atom l = match node l with
| Cons (l, n) when is_nil n -> Some l
| _ -> None
let level l = match node l with
| Cons (l, n) when is_nil n -> Expr.level (Hunivelt.node l)
| _ -> None
let levels l =
fold (fun x acc -> LSet.add (Expr.get_level (Hunivelt.node x)) acc) l LSet.empty
let is_small u =
match level u with
| Some l -> Level.is_small l
| _ -> false
(* The lower predicative level of the hierarchy that contains (impredicative)
Prop and singleton inductive types *)
let type0m = tip Expr.prop
(* The level of sets *)
let type0 = tip Expr.set
(* When typing [Prop] and [Set], there is no constraint on the level,
hence the definition of [type1_univ], the type of [Prop] *)
let type1 = tip (Expr.successor Expr.set)
let is_type0m u =
match level u with
| Some l -> Level.is_prop l
| _ -> false
let is_type0 u =
match level u with
| Some l -> Level.is_set l
| _ -> false
let is_type1 u =
match node u with
| Cons (l, n) when is_nil n -> Expr.is_type1 (Hunivelt.node l)
| _ -> false
(* Returns the formal universe that lies juste above the universe variable u.
Used to type the sort u. *)
let super l =
Huniv.map (fun x -> Hunivelt.make (Expr.successor (Hunivelt.node x))) l
let addn n l =
Huniv.map (fun x -> Hunivelt.make (Expr.addn n (Hunivelt.node x))) l
let rec merge_univs l1 l2 =
match node l1, node l2 with
| Nil, _ -> l2
| _, Nil -> l1
| Cons (h1, t1), Cons (h2, t2) ->
(match Expr.super (Hunivelt.node h1) (Hunivelt.node h2) with
| Inl true (* h1 < h2 *) -> merge_univs t1 l2
| Inl false -> merge_univs l1 t2
| Inr c ->
if c <= 0 (* h1 < h2 is name order *)
then cons h1 (merge_univs t1 l2)
else cons h2 (merge_univs l1 t2))
let sort u =
let rec aux a l =
match node l with
| Cons (b, l') ->
(match Expr.super (Hunivelt.node a) (Hunivelt.node b) with
| Inl false -> aux a l'
| Inl true -> l
| Inr c ->
if c <= 0 then cons a l
else cons b (aux a l'))
| Nil -> cons a l
in
fold (fun a acc -> aux a acc) u nil
(* Returns the formal universe that is greater than the universes u and v.
Used to type the products. *)
let sup x y = merge_univs x y
let of_list l =
List.fold_right
(fun x acc -> cons (Hunivelt.make x) acc)
l nil
let empty = nil
let is_empty n = is_nil n
let exists f l =
Huniv.exists (fun x -> f (Hunivelt.node x)) l
let for_all f l =
Huniv.for_all (fun x -> f (Hunivelt.node x)) l
let smartmap f l =
Huniv.map (fun x ->
let n = Hunivelt.node x in
let x' = f n in
if x' == n then x else Hunivelt.make x')
l
end
type universe = Universe.t
open Universe
(* type universe_list = UList.t *)
(* let pr_universe_list = UList.pr *)
let pr_uni = Universe.pr
let is_small_univ = Universe.is_small
let universe_level = Universe.level
(* Comparison on this type is pointer equality *)
type canonical_arc =
{ univ: Level.t;
lt: Level.t list;
le: Level.t list;
rank : int}
let terminal u = {univ=u; lt=[]; le=[]; rank=0}
(* A Level.t is either an alias for another one, or a canonical one,
for which we know the universes that are above *)
type univ_entry =
Canonical of canonical_arc
| Equiv of Level.t
type universes = univ_entry LMap.t
let enter_equiv_arc u v g =
LMap.add u (Equiv v) g
let enter_arc ca g =
LMap.add ca.univ (Canonical ca) g
let is_type0m_univ = Universe.is_type0m
(* The level of predicative Set *)
let type0m_univ = Universe.type0m
let type0_univ = Universe.type0
let type1_univ = Universe.type1
let sup = Universe.sup
let super = Universe.super
let is_type0_univ = Universe.is_type0
let is_univ_variable l = Universe.level l != None
(* Every Level.t has a unique canonical arc representative *)
(* repr : universes -> Level.t -> canonical_arc *)
(* canonical representative : we follow the Equiv links *)
let repr g u =
let rec repr_rec u =
let a =
try LMap.find u g
with Not_found -> anomaly ~label:"Univ.repr"
(str"Universe " ++ Level.pr u ++ str" undefined")
in
match a with
| Equiv v -> repr_rec v
| Canonical arc -> arc
in
repr_rec u
let can g = List.map (repr g)
(* [safe_repr] also search for the canonical representative, but
if the graph doesn't contain the searched universe, we add it. *)
let safe_repr g u =
let rec safe_repr_rec u =
match LMap.find u g with
| Equiv v -> safe_repr_rec v
| Canonical arc -> arc
in
try g, safe_repr_rec u
with Not_found ->
let can = terminal u in
enter_arc can g, can
(* reprleq : canonical_arc -> canonical_arc list *)
(* All canonical arcv such that arcu<=arcv with arcv#arcu *)
let reprleq g arcu =
let rec searchrec w = function
| [] -> w
| v :: vl ->
let arcv = repr g v in
if List.memq arcv w || arcu==arcv then
searchrec w vl
else
searchrec (arcv :: w) vl
in
searchrec [] arcu.le
(* between : Level.t -> canonical_arc -> canonical_arc list *)
(* between u v = { w | u<=w<=v, w canonical } *)
(* between is the most costly operation *)
let between g arcu arcv =
(* good are all w | u <= w <= v *)
(* bad are all w | u <= w ~<= v *)
(* find good and bad nodes in {w | u <= w} *)
(* explore b u = (b or "u is good") *)
let rec explore ((good, bad, b) as input) arcu =
if List.memq arcu good then
(good, bad, true) (* b or true *)
else if List.memq arcu bad then
input (* (good, bad, b or false) *)
else
let leq = reprleq g arcu in
(* is some universe >= u good ? *)
let good, bad, b_leq =
List.fold_left explore (good, bad, false) leq
in
if b_leq then
arcu::good, bad, true (* b or true *)
else
good, arcu::bad, b (* b or false *)
in
let good,_,_ = explore ([arcv],[],false) arcu in
good
(* We assume compare(u,v) = LE with v canonical (see compare below).
In this case List.hd(between g u v) = repr u
Otherwise, between g u v = []
*)
type constraint_type = Lt | Le | Eq
type explanation = (constraint_type * universe) list
let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1
(* Assuming the current universe has been reached by [p] and [l]
correspond to the universes in (direct) relation [rel] with it,
make a list of canonical universe, updating the relation with
the starting point (path stored in reverse order). *)
let canp g (p:explanation Lazy.t) rel l : (canonical_arc * explanation Lazy.t) list =
List.map (fun u -> (repr g u, lazy ((rel,Universe.make u):: Lazy.force p))) l
type order = EQ | LT of explanation Lazy.t | LE of explanation Lazy.t | NLE
(** [compare_neq] : is [arcv] in the transitive upward closure of [arcu] ?
In [strict] mode, we fully distinguish between LE and LT, while in
non-strict mode, we simply answer LE for both situations.
If [arcv] is encountered in a LT part, we could directly answer
without visiting unneeded parts of this transitive closure.
In [strict] mode, if [arcv] is encountered in a LE part, we could only
change the default answer (1st arg [c]) from NLE to LE, since a strict
constraint may appear later. During the recursive traversal,
[lt_done] and [le_done] are universes we have already visited,
they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)],
two lists of universes not yet considered, known to be above [arcu],
strictly or not.
We use depth-first search, but the presence of [arcv] in [new_lt]
is checked as soon as possible : this seems to be slightly faster
on a test.
*)
let compare_neq strict g arcu arcv =
(* [c] characterizes whether (and how) arcv has already been related
to arcu among the lt_done,le_done universe *)
let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with
| [],[] -> c
| (arc,p)::lt_todo, le_todo ->
if List.memq arc lt_done then
cmp c lt_done le_done lt_todo le_todo
else
let rec find lt_todo lt le = match le with
| [] ->
begin match lt with
| [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo
| u :: lt ->
let arc = repr g u in
let p = lazy ((Lt, make u) :: Lazy.force p) in
if arc == arcv then
if strict then LT p else LE p
else find ((arc, p) :: lt_todo) lt le
end
| u :: le ->
let arc = repr g u in
let p = lazy ((Le, make u) :: Lazy.force p) in
if arc == arcv then
if strict then LT p else LE p
else find ((arc, p) :: lt_todo) lt le
in
find lt_todo arc.lt arc.le
| [], (arc,p)::le_todo ->
if arc == arcv then
(* No need to continue inspecting universes above arc:
if arcv is strictly above arc, then we would have a cycle.
But we cannot answer LE yet, a stronger constraint may
come later from [le_todo]. *)
if strict then cmp (LE p) lt_done le_done [] le_todo else LE p
else
if (List.memq arc lt_done) || (List.memq arc le_done) then
cmp c lt_done le_done [] le_todo
else
let rec find lt_todo lt = match lt with
| [] ->
let fold accu u =
let p = lazy ((Le, make u) :: Lazy.force p) in
let node = (repr g u, p) in
node :: accu
in
let le_new = List.fold_left fold le_todo arc.le in
cmp c lt_done (arc :: le_done) lt_todo le_new
| u :: lt ->
let arc = repr g u in
let p = lazy ((Lt, make u) :: Lazy.force p) in
if arc == arcv then
if strict then LT p else LE p
else find ((arc, p) :: lt_todo) lt
in
find [] arc.lt
in
cmp NLE [] [] [] [arcu, Lazy.lazy_from_val []]
type fast_order = FastEQ | FastLT | FastLE | FastNLE
let fast_compare_neq strict g arcu arcv =
(* [c] characterizes whether arcv has already been related
to arcu among the lt_done,le_done universe *)
let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with
| [],[] -> c
| arc::lt_todo, le_todo ->
if List.memq arc lt_done then
cmp c lt_done le_done lt_todo le_todo
else
let rec find lt_todo lt le = match le with
| [] ->
begin match lt with
| [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo
| u :: lt ->
let arc = repr g u in
if arc == arcv then
if strict then FastLT else FastLE
else find (arc :: lt_todo) lt le
end
| u :: le ->
let arc = repr g u in
if arc == arcv then
if strict then FastLT else FastLE
else find (arc :: lt_todo) lt le
in
find lt_todo arc.lt arc.le
| [], arc::le_todo ->
if arc == arcv then
(* No need to continue inspecting universes above arc:
if arcv is strictly above arc, then we would have a cycle.
But we cannot answer LE yet, a stronger constraint may
come later from [le_todo]. *)
if strict then cmp FastLE lt_done le_done [] le_todo else FastLE
else
if (List.memq arc lt_done) || (List.memq arc le_done) then
cmp c lt_done le_done [] le_todo
else
let rec find lt_todo lt = match lt with
| [] ->
let fold accu u =
let node = repr g u in
node :: accu
in
let le_new = List.fold_left fold le_todo arc.le in
cmp c lt_done (arc :: le_done) lt_todo le_new
| u :: lt ->
let arc = repr g u in
if arc == arcv then
if strict then FastLT else FastLE
else find (arc :: lt_todo) lt
in
find [] arc.lt
in
cmp FastNLE [] [] [] [arcu]
let compare g arcu arcv =
if arcu == arcv then EQ else compare_neq true g arcu arcv
let is_leq g arcu arcv =
arcu == arcv ||
(match fast_compare_neq false g arcu arcv with
FastNLE -> false
| (FastEQ|FastLE|FastLT) -> true)
let is_lt g arcu arcv =
if arcu == arcv then false
else
match fast_compare_neq true g arcu arcv with
FastLT -> true
| (FastEQ|FastLE|FastNLE) -> false
(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
compare(u,v) = LT or LE => compare(v,u) = NLE
compare(u,v) = NLE => compare(v,u) = NLE or LE or LT
Adding u>=v is consistent iff compare(v,u) # LT
and then it is redundant iff compare(u,v) # NLE
Adding u>v is consistent iff compare(v,u) = NLE
and then it is redundant iff compare(u,v) = LT *)
(** * Universe checks [check_eq] and [check_leq], used in coqchk *)
(** First, checks on universe levels *)
let check_equal g u v =
let g, arcu = safe_repr g u in
let _, arcv = safe_repr g v in
arcu == arcv
let check_smaller g strict u v =
let g, arcu = safe_repr g u in
let g, arcv = safe_repr g v in
if strict then
is_lt g arcu arcv
else
arcu == snd (safe_repr g Level.prop) || is_leq g arcu arcv
(** Then, checks on universes *)
type 'a check_function = universes -> 'a -> 'a -> bool
(* let equiv_list cmp l1 l2 = *)
(* let rec aux l1 l2 = *)
(* match l1 with *)
(* | [] -> l2 = [] *)
(* | hd :: tl1 -> *)
(* let rec aux' acc = function *)
(* | hd' :: tl2 -> *)
(* if cmp hd hd' then aux tl1 (acc @ tl2) *)
(* else aux' (hd' :: acc) tl2 *)
(* | [] -> false *)
(* in aux' [] l2 *)
(* in aux l1 l2 *)
let incl_list cmp l1 l2 =
Huniv.for_all (fun x1 -> Huniv.exists (fun x2 -> cmp x1 x2) l2) l1
let compare_list cmp l1 l2 =
(l1 == l2) || (* (equiv_list cmp l1 l2) *)
(incl_list cmp l1 l2 && incl_list cmp l2 l1)
let check_equal_expr g x y =
x == y || (let (u, n) = Hunivelt.node x and (v, m) = Hunivelt.node y in
n = m && check_equal g u v)
(** [check_eq] is also used in [Evd.set_eq_sort],
hence [Evarconv] and [Unification]. In this case,
it seems that the Atom/Max case may occur,
hence a relaxed version. *)
(* let gen_check_eq strict g u v = *)
(* match u,v with *)
(* | Atom ul, Atom vl -> check_equal g ul vl *)
(* | Max(ule,ult), Max(vle,vlt) -> *)
(* (\* TODO: remove elements of lt in le! *\) *)
(* compare_list (check_equal g) ule vle && *)
(* compare_list (check_equal g) ult vlt *)
(* | _ -> *)
(* (\* not complete! (Atom(u) = Max([u],[]) *\) *)
(* if strict then anomaly (str "check_eq") *)
(* else false (\* in non-strict mode, under-approximation *\) *)
(* let check_eq = gen_check_eq true *)
(* let lax_check_eq = gen_check_eq false *)
let check_eq g u v =
compare_list (check_equal_expr g) u v
let check_eq_level g u v = u == v || check_equal g u v
let lax_check_eq = check_eq
let check_smaller_expr g (u,n) (v,m) =
if n <= m then
check_smaller g false u v
else if n - m = 1 then
check_smaller g true u v
else false
let exists_bigger g ul l =
Huniv.exists (fun ul' ->
check_smaller_expr g (Hunivelt.node ul) (Hunivelt.node ul')) l
let check_leq g u v =
u == v ||
match Universe.level u with
| Some l when Level.is_prop l -> true
| _ -> Huniv.for_all (fun ul -> exists_bigger g ul v) u
(** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *)
(* setlt : Level.t -> Level.t -> reason -> unit *)
(* forces u > v *)
(* this is normally an update of u in g rather than a creation. *)
let setlt g arcu arcv =
let arcu' = {arcu with lt=arcv.univ::arcu.lt} in
enter_arc arcu' g, arcu'
(* checks that non-redundant *)
let setlt_if (g,arcu) v =
let arcv = repr g v in
if is_lt g arcu arcv then g, arcu
else setlt g arcu arcv
(* setleq : Level.t -> Level.t -> unit *)
(* forces u >= v *)
(* this is normally an update of u in g rather than a creation. *)
let setleq g arcu arcv =
let arcu' = {arcu with le=arcv.univ::arcu.le} in
enter_arc arcu' g, arcu'
(* checks that non-redundant *)
let setleq_if (g,arcu) v =
let arcv = repr g v in
if is_leq g arcu arcv then g, arcu
else setleq g arcu arcv
(* merge : Level.t -> Level.t -> unit *)
(* we assume compare(u,v) = LE *)
(* merge u v forces u ~ v with repr u as canonical repr *)
let merge g arcu arcv =
(* we find the arc with the biggest rank, and we redirect all others to it *)
let arcu, g, v =
let best_ranked (max_rank, old_max_rank, best_arc, rest) arc =
if arc.rank >= max_rank
then (arc.rank, max_rank, arc, best_arc::rest)
else (max_rank, old_max_rank, best_arc, arc::rest)
in
match between g arcu arcv with
| [] -> anomaly (str "Univ.between")
| arc::rest ->
let (max_rank, old_max_rank, best_arc, rest) =
List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in
if max_rank > old_max_rank then best_arc, g, rest
else begin
(* one redirected node also has max_rank *)
let arcu = {best_arc with rank = max_rank + 1} in
arcu, enter_arc arcu g, rest
end
in
let redirect (g,w,w') arcv =
let g' = enter_equiv_arc arcv.univ arcu.univ g in
(g',List.unionq arcv.lt w,arcv.le@w')
in
let (g',w,w') = List.fold_left redirect (g,[],[]) v in
let g_arcu = (g',arcu) in
let g_arcu = List.fold_left setlt_if g_arcu w in
let g_arcu = List.fold_left setleq_if g_arcu w' in
fst g_arcu
(* merge_disc : Level.t -> Level.t -> unit *)
(* we assume compare(u,v) = compare(v,u) = NLE *)
(* merge_disc u v forces u ~ v with repr u as canonical repr *)
let merge_disc g arc1 arc2 =
let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in
let arcu, g =
if not (Int.equal arc1.rank arc2.rank) then arcu, g
else
let arcu = {arcu with rank = succ arcu.rank} in
arcu, enter_arc arcu g
in
let g' = enter_equiv_arc arcv.univ arcu.univ g in
let g_arcu = (g',arcu) in
let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in
let g_arcu = List.fold_left setleq_if g_arcu arcv.le in
fst g_arcu
(* Universe inconsistency: error raised when trying to enforce a relation
that would create a cycle in the graph of universes. *)
type univ_inconsistency = constraint_type * universe * universe * explanation
exception UniverseInconsistency of univ_inconsistency
let error_inconsistency o u v (p:explanation) =
raise (UniverseInconsistency (o,make u,make v,p))
(* enforce_univ_leq : Level.t -> Level.t -> unit *)
(* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *)
let enforce_univ_leq u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
if is_leq g arcu arcv then g
else match compare g arcv arcu with
| LT p -> error_inconsistency Le u v (List.rev (Lazy.force p))
| LE _ -> merge g arcv arcu
| NLE -> fst (setleq g arcu arcv)
| EQ -> anomaly (Pp.str "Univ.compare")
(* enforc_univ_eq : Level.t -> Level.t -> unit *)
(* enforc_univ_eq u v will force u=v if possible, will fail otherwise *)
let enforce_univ_eq u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
match compare g arcu arcv with
| EQ -> g
| LT p -> error_inconsistency Eq v u (List.rev (Lazy.force p))
| LE _ -> merge g arcu arcv
| NLE ->
(match compare g arcv arcu with
| LT p -> error_inconsistency Eq u v (List.rev (Lazy.force p))
| LE _ -> merge g arcv arcu
| NLE -> merge_disc g arcu arcv
| EQ -> anomaly (Pp.str "Univ.compare"))
(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
let enforce_univ_lt u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
match compare g arcu arcv with
| LT _ -> g
| LE _ -> fst (setlt g arcu arcv)
| EQ -> error_inconsistency Lt u v [(Eq,make v)]
| NLE ->
(match compare_neq false g arcv arcu with
NLE -> fst (setlt g arcu arcv)
| EQ -> anomaly (Pp.str "Univ.compare")
| (LE p|LT p) -> error_inconsistency Lt u v (List.rev (Lazy.force p)))
let empty_universes = LMap.empty
let initial_universes = enforce_univ_lt Level.prop Level.set LMap.empty
let is_initial_universes g = LMap.equal (==) g initial_universes
(* Constraints and sets of constraints. *)
type univ_constraint = Level.t * constraint_type * Level.t
let enforce_constraint cst g =
match cst with
| (u,Lt,v) -> enforce_univ_lt u v g
| (u,Le,v) -> enforce_univ_leq u v g
| (u,Eq,v) -> enforce_univ_eq u v g
let pr_constraint_type op =
let op_str = match op with
| Lt -> " < "
| Le -> " <= "
| Eq -> " = "
in str op_str
module UConstraintOrd =
struct
type t = univ_constraint
let compare (u,c,v) (u',c',v') =
let i = constraint_type_ord c c' in
if not (Int.equal i 0) then i
else
let i' = Level.compare u u' in
if not (Int.equal i' 0) then i'
else Level.compare v v'
end
module Constraint =
struct
module S = Set.Make(UConstraintOrd)
include S
let pr c =
fold (fun (u1,op,u2) pp_std ->
pp_std ++ Level.pr u1 ++ pr_constraint_type op ++
Level.pr u2 ++ fnl () ) c (str "")
end
let empty_constraint = Constraint.empty
let is_empty_constraint = Constraint.is_empty
let union_constraint = Constraint.union
let eq_constraint = Constraint.equal
type constraints = Constraint.t
module Hconstraint =
Hashcons.Make(
struct
type t = univ_constraint
type u = universe_level -> universe_level
let hashcons hul (l1,k,l2) = (hul l1, k, hul l2)
let equal (l1,k,l2) (l1',k',l2') =
l1 == l1' && k == k' && l2 == l2'
let hash = Hashtbl.hash
end)
module Hconstraints =
Hashcons.Make(
struct
type t = constraints
type u = univ_constraint -> univ_constraint
let hashcons huc s =
Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty
let equal s s' =
List.for_all2eq (==)
(Constraint.elements s)
(Constraint.elements s')
let hash = Hashtbl.hash
end)
let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Level.hcons
let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate hcons_constraint
type universe_constraint_type = ULe | UEq | ULub
type universe_constraint = universe * universe_constraint_type * universe
module UniverseConstraints = struct
module S = Set.Make(
struct
type t = universe_constraint
let compare_type c c' =
match c, c' with
| ULe, ULe -> 0
| ULe, _ -> -1
| _, ULe -> 1
| UEq, UEq -> 0
| UEq, _ -> -1
| ULub, ULub -> 0
| ULub, _ -> 1
let compare (u,c,v) (u',c',v') =
let i = compare_type c c' in
if Int.equal i 0 then
let i' = Universe.compare u u' in
if Int.equal i' 0 then Universe.compare v v'
else
if c != ULe && Universe.compare u v' = 0 && Universe.compare v u' = 0 then 0
else i'
else i
end)
include S
let add (l,d,r as cst) s =
if Universe.equal l r then s
else add cst s
let tr_dir = function
| ULe -> Le
| UEq -> Eq
| ULub -> Eq
let op_str = function ULe -> " <= " | UEq -> " = " | ULub -> " /\\ "
let pr c =
fold (fun (u1,op,u2) pp_std ->
pp_std ++ Universe.pr u1 ++ str (op_str op) ++
Universe.pr u2 ++ fnl ()) c (str "")
let equal x y =
x == y || equal x y
end
type universe_constraints = UniverseConstraints.t
type 'a universe_constrained = 'a * universe_constraints
(** A value with universe constraints. *)
type 'a constrained = 'a * constraints
(** A universe level substitution, note that no algebraic universes are
involved *)
type universe_level_subst = universe_level universe_map
(** A full substitution might involve algebraic universes *)
type universe_subst = universe universe_map
let level_subst_of f =
fun l ->
try let u = f l in
match Universe.level u with
| None -> l
| Some l -> l
with Not_found -> l
module Instance : sig
type t
val empty : t
val is_empty : t -> bool
val of_array : Level.t array -> t
val to_array : t -> Level.t array
val of_list : Level.t list -> t
val to_list : t -> Level.t list
val append : t -> t -> t
val equal : t -> t -> bool
val hcons : t -> t
val hash : t -> int
val share : t -> t * int
val eqeq : t -> t -> bool
val subst_fn : universe_level_subst_fn -> t -> t
val subst : universe_level_subst -> t -> t
val pr : t -> Pp.std_ppcmds
val levels : t -> LSet.t
val check_eq : t check_function
end =
struct
type t = Level.t array
let empty : t = [||]
module HInstancestruct =
struct
type _t = t
type t = _t
type u = Level.t -> Level.t
let hashcons huniv a =
let len = Array.length a in
if Int.equal len 0 then empty
else begin
for i = 0 to len - 1 do
let x = Array.unsafe_get a i in
let x' = huniv x in
if x == x' then ()
else Array.unsafe_set a i x'
done;
a
end
let equal t1 t2 =
t1 == t2 ||
(Int.equal (Array.length t1) (Array.length t2) &&
let rec aux i =
(Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1))
in aux 0)
let hash a =
let accu = ref 0 in
for i = 0 to Array.length a - 1 do
let l = Array.unsafe_get a i in
let h = Level.hash l in
accu := Hashset.Combine.combine !accu h;
done;
(* [h] must be positive. *)
let h = !accu land 0x3FFFFFFF in
h
end
module HInstance = Hashcons.Make(HInstancestruct)
let hcons = Hashcons.simple_hcons HInstance.generate Level.hcons
let hash = HInstancestruct.hash
let share a =
let len = Array.length a in
if Int.equal len 0 then (empty, 0)
else begin
let accu = ref 0 in
for i = 0 to len - 1 do
let l = Array.unsafe_get a i in
let l', h = Level.hcons l, Level.hash l in
accu := Hashset.Combine.combine !accu h;
if l' == l then ()
else Array.unsafe_set a i l'
done;
(* [h] must be positive. *)
let h = !accu land 0x3FFFFFFF in
(a, h)
end
let empty = hcons [||]
let is_empty x = Int.equal (Array.length x) 0
let append x y =
if Array.length x = 0 then y
else if Array.length y = 0 then x
else hcons (Array.append x y)
let of_array a = hcons a
let to_array a = a
let of_list a = of_array (Array.of_list a)
let to_list = Array.to_list
let eqeq = HInstancestruct.equal
let subst_fn fn t =
let t' = CArray.smartmap fn t in
if t' == t then t else hcons t'
let subst s t =
let t' =
CArray.smartmap (fun x -> try LMap.find x s with Not_found -> x) t
in if t' == t then t else hcons t'
let levels x = LSet.of_array x
let pr =
prvect_with_sep spc Level.pr
let equal t u =
t == u ||
(Array.is_empty t && Array.is_empty u) ||
(CArray.for_all2 Level.equal t u
(* Necessary as universe instances might come from different modules and
unmarshalling doesn't preserve sharing *))
(* if b then *)
(* (prerr_endline ("Not physically equal but equal:" ^(Pp.string_of_ppcmds (pr t)) *)
(* ^ " and " ^ (Pp.string_of_ppcmds (pr u))); b) *)
(* else b) *)
let check_eq g t1 t2 =
t1 == t2 ||
(Int.equal (Array.length t1) (Array.length t2) &&
let rec aux i =
(Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
in aux 0)
end
type universe_instance = Instance.t
type 'a puniverses = 'a * Instance.t
let out_punivs (x, y) = x
let in_punivs x = (x, Instance.empty)
(** A context of universe levels with universe constraints,
representiong local universe variables and constraints *)
module UContext =
struct
type t = Instance.t constrained
let make x = x
(** Universe contexts (variables as a list) *)
let empty = (Instance.empty, Constraint.empty)
let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst
let pr (univs, cst as ctx) =
if is_empty ctx then mt() else
Instance.pr univs ++ str " |= " ++ v 1 (Constraint.pr cst)
let hcons (univs, cst) =
(Instance.hcons univs, hcons_constraints cst)
let instance (univs, cst) = univs
let constraints (univs, cst) = cst
let union (univs, cst) (univs', cst') =
Instance.append univs univs', Constraint.union cst cst'
end
type universe_context = UContext.t
let hcons_universe_context = UContext.hcons
(** A set of universes with universe constraints.
We linearize the set to a list after typechecking.
Beware, representation could change.
*)
module ContextSet =
struct
type t = universe_set constrained
let empty = (LSet.empty, Constraint.empty)
let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst
let of_context (ctx,cst) =
(Instance.levels ctx, cst)
let of_set s = (s, Constraint.empty)
let singleton l = of_set (LSet.singleton l)
let of_instance i = of_set (Instance.levels i)
let union (univs, cst) (univs', cst') =
LSet.union univs univs', Constraint.union cst cst'
let diff (univs, cst) (univs', cst') =
LSet.diff univs univs', Constraint.diff cst cst'
let add_constraints (univs, cst) cst' =
univs, Constraint.union cst cst'
let add_universes univs ctx =
union (of_instance univs) ctx
let to_context (ctx, cst) =
(Instance.of_array (Array.of_list (LSet.elements ctx)), cst)
let of_context (ctx, cst) =
(Instance.levels ctx, cst)
let pr (univs, cst as ctx) =
if is_empty ctx then mt() else
LSet.pr univs ++ str " |= " ++ v 1 (Constraint.pr cst)
let constraints (univs, cst) = cst
let levels (univs, cst) = univs
end
type universe_context_set = ContextSet.t
(** A value in a universe context (resp. context set). *)
type 'a in_universe_context = 'a * universe_context
type 'a in_universe_context_set = 'a * universe_context_set
(** Pretty-printing *)
let pr_constraints = Constraint.pr
let pr_universe_context = UContext.pr
let pr_universe_context_set = ContextSet.pr
let pr_universe_subst =
LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ())
let pr_universe_level_subst =
LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ())
let constraints_of (_, cst) = cst
let constraint_depend (l,d,r) u =
Level.equal l u || Level.equal l r
let constraint_depend_list (l,d,r) us =
List.mem l us || List.mem r us
let constraints_depend cstr us =
Constraint.exists (fun c -> constraint_depend_list c us) cstr
let remove_dangling_constraints dangling cst =
Constraint.fold (fun (l,d,r as cstr) cst' ->
if List.mem l dangling || List.mem r dangling then cst'
else
(** Unnecessary constraints Prop <= u *)
if Level.equal l Level.prop && d == Le then cst'
else Constraint.add cstr cst') cst Constraint.empty
let check_context_subset (univs, cst) (univs', cst') =
let newunivs, dangling = List.partition (fun u -> LSet.mem u univs) (Instance.to_list univs') in
(* Some universe variables that don't appear in the term
are still mentionned in the constraints. This is the
case for "fake" universe variables that correspond to +1s. *)
(* if not (CList.is_empty dangling) then *)
(* todo ("A non-empty set of inferred universes do not appear in the term or type"); *)
(* (not (constraints_depend cst' dangling));*)
(* TODO: check implication *)
(** Remove local universes that do not appear in any constraint, they
are really entirely parametric. *)
(* let newunivs, dangling' = List.partition (fun u -> constraints_depend cst [u]) newunivs in *)
let cst' = remove_dangling_constraints dangling cst in
Instance.of_list newunivs, cst'
(** Substitutions. *)
let make_universe_subst inst (ctx, csts) =
try Array.fold_left2 (fun acc c i -> LMap.add c (Universe.make i) acc)
LMap.empty (Instance.to_array ctx) (Instance.to_array inst)
with Invalid_argument _ ->
anomaly (Pp.str "Mismatched instance and context when building universe substitution")
let empty_subst = LMap.empty
let is_empty_subst = LMap.is_empty
let empty_level_subst = LMap.empty
let is_empty_level_subst = LMap.is_empty
(** Substitution functions *)
(** With level to level substitutions. *)
let subst_univs_level_level subst l =
try LMap.find l subst
with Not_found -> l
let rec normalize_univs_level_level subst l =
try
let l' = LMap.find l subst in
normalize_univs_level_level subst l'
with Not_found -> l
let subst_univs_level_fail subst l =
try match Universe.level (subst l) with
| Some l' -> l'
| None -> l
with Not_found -> l
let rec subst_univs_level_universe subst u =
let u' = Universe.smartmap (Universe.Expr.map (subst_univs_level_level subst)) u in
if u == u' then u
else Universe.sort u'
let subst_univs_level_constraint subst (u,d,v) =
let u' = subst_univs_level_level subst u
and v' = subst_univs_level_level subst v in
if d != Lt && Level.equal u' v' then None
else Some (u',d,v')
let subst_univs_level_constraints subst csts =
Constraint.fold
(fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c))
csts Constraint.empty
(* let subst_univs_level_constraint_key = Profile.declare_profile "subst_univs_level_constraint";; *)
(* let subst_univs_level_constraint = *)
(* Profile.profile2 subst_univs_level_constraint_key subst_univs_level_constraint *)
(** With level to universe substitutions. *)
type universe_subst_fn = universe_level -> universe
let make_subst subst = fun l -> LMap.find l subst
let subst_univs_level fn l =
try fn l
with Not_found -> make l
let subst_univs_expr_opt fn (l,n) =
try Some (Universe.addn n (fn l))
with Not_found -> None
let subst_univs_universe fn ul =
let subst, nosubst =
Universe.Huniv.fold (fun u (subst,nosubst) ->
match subst_univs_expr_opt fn (Hunivelt.node u) with
| Some a' -> (a' :: subst, nosubst)
| None -> (subst, u :: nosubst))
ul ([], [])
in
if CList.is_empty subst then ul
else
let substs =
List.fold_left Universe.merge_univs Universe.empty subst
in
List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.Huniv.tip u))
substs nosubst
let subst_univs_constraint fn (u,d,v) =
let u' = subst_univs_level fn u and v' = subst_univs_level fn v in
if d != Lt && Universe.equal u' v' then None
else Some (u',d,v')
let subst_univs_universe_constraint fn (u,d,v) =
let u' = subst_univs_universe fn u and v' = subst_univs_universe fn v in
if Universe.equal u' v' then None
else Some (u',d,v')
(** Constraint functions. *)
type 'a constraint_function = 'a -> 'a -> constraints -> constraints
let constraint_add_leq v u c =
(* We just discard trivial constraints like u<=u *)
if Expr.equal v u then c
else
match v, u with
| (x,n), (y,m) ->
let j = m - n in
if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then
Constraint.add (x,Lt,y) c
else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then
if Level.equal x y then (* u+(k+1) <= u *)
raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u, []))
else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints")
else if j = 0 then
Constraint.add (x,Le,y) c
else (* j >= 1 *) (* m = n + k, u <= v+k *)
if Level.equal x y then c (* u <= u+k, trivial *)
else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *)
else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints")
let check_univ_eq u v = Universe.equal u v
let check_univ_leq_one u v = Universe.exists (Expr.leq u) v
let check_univ_leq u v =
Universe.for_all (fun u -> check_univ_leq_one u v) u
let enforce_leq u v c =
match Huniv.node v with
| Universe.Huniv.Cons (v, n) when Universe.is_empty n ->
Universe.Huniv.fold (fun u -> constraint_add_leq (Hunivelt.node u) (Hunivelt.node v)) u c
| _ -> anomaly (Pp.str"A universe bound can only be a variable")
let enforce_leq u v c =
if check_univ_leq u v then c
else enforce_leq u v c
let enforce_eq_level u v c =
(* We discard trivial constraints like u=u *)
if Level.equal u v then c
else if Level.apart u v then
error_inconsistency Eq u v []
else Constraint.add (u,Eq,v) c
let enforce_eq u v c =
match Universe.level u, Universe.level v with
| Some u, Some v -> enforce_eq_level u v c
| _ -> anomaly (Pp.str "A universe comparison can only happen between variables")
let enforce_eq u v c =
if check_univ_eq u v then c
else enforce_eq u v c
let enforce_leq_level u v c =
if Level.equal u v then c else Constraint.add (u,Le,v) c
let enforce_eq_instances x y =
let ax = Instance.to_array x and ay = Instance.to_array y in
if Array.length ax != Array.length ay then
anomaly (Pp.str "Invalid argument: enforce_eq_instances called with instances of different lengths");
CArray.fold_right2 enforce_eq_level ax ay
type 'a universe_constraint_function = 'a -> 'a -> universe_constraints -> universe_constraints
let enforce_eq_instances_univs strict x y c =
let d = if strict then ULub else UEq in
let ax = Instance.to_array x and ay = Instance.to_array y in
if Array.length ax != Array.length ay then
anomaly (Pp.str "Invalid argument: enforce_eq_instances_univs called with instances of different lengths");
CArray.fold_right2
(fun x y -> UniverseConstraints.add (Universe.make x, d, Universe.make y))
ax ay c
let merge_constraints c g =
Constraint.fold enforce_constraint c g
(* let merge_constraints_key = Profile.declare_profile "merge_constraints";; *)
(* let merge_constraints = Profile.profile2 merge_constraints_key merge_constraints *)
let check_constraint g (l,d,r) =
match d with
| Eq -> check_equal g l r
| Le -> check_smaller g false l r
| Lt -> check_smaller g true l r
let check_constraints c g =
Constraint.for_all (check_constraint g) c
(* let check_constraints_key = Profile.declare_profile "check_constraints";; *)
(* let check_constraints = *)
(* Profile.profile2 check_constraints_key check_constraints *)
let enforce_univ_constraint (u,d,v) =
match d with
| Eq -> enforce_eq u v
| Le -> enforce_leq u v
| Lt -> enforce_leq (super u) v
let subst_univs_constraints subst csts =
Constraint.fold
(fun c -> Option.fold_right enforce_univ_constraint (subst_univs_constraint subst c))
csts Constraint.empty
(* let subst_univs_constraints_key = Profile.declare_profile "subst_univs_constraints";; *)
(* let subst_univs_constraints = *)
(* Profile.profile2 subst_univs_constraints_key subst_univs_constraints *)
let subst_univs_universe_constraints subst csts =
UniverseConstraints.fold
(fun c -> Option.fold_right UniverseConstraints.add (subst_univs_universe_constraint subst c))
csts UniverseConstraints.empty
(* let subst_univs_universe_constraints_key = Profile.declare_profile "subst_univs_universe_constraints";; *)
(* let subst_univs_universe_constraints = *)
(* Profile.profile2 subst_univs_universe_constraints_key subst_univs_universe_constraints *)
(** Substitute instance inst for ctx in csts *)
let instantiate_univ_context subst (_, csts) =
subst_univs_constraints (make_subst subst) csts
let check_consistent_constraints (ctx,cstrs) cstrs' =
(* TODO *) ()
let to_constraints g s =
let rec tr (x,d,y) acc =
let add l d l' acc = Constraint.add (l,UniverseConstraints.tr_dir d,l') acc in
match Universe.level x, d, Universe.level y with
| Some l, (ULe | UEq | ULub), Some l' -> add l d l' acc
| _, ULe, Some l' -> enforce_leq x y acc
| _, ULub, _ -> acc
| _, d, _ ->
let f = if d == ULe then check_leq else check_eq in
if f g x y then acc else
raise (Invalid_argument
"to_constraints: non-trivial algebraic constraint between universes")
in UniverseConstraints.fold tr s Constraint.empty
(* Normalization *)
let lookup_level u g =
try Some (LMap.find u g) with Not_found -> None
(** [normalize_universes g] returns a graph where all edges point
directly to the canonical representent of their target. The output
graph should be equivalent to the input graph from a logical point
of view, but optimized. We maintain the invariant that the key of
a [Canonical] element is its own name, by keeping [Equiv] edges
(see the assertion)... I (Stéphane Glondu) am not sure if this
plays a role in the rest of the module. *)
let normalize_universes g =
let rec visit u arc cache = match lookup_level u cache with
| Some x -> x, cache
| None -> match Lazy.force arc with
| None ->
u, LMap.add u u cache
| Some (Canonical {univ=v; lt=_; le=_}) ->
v, LMap.add u v cache
| Some (Equiv v) ->
let v, cache = visit v (lazy (lookup_level v g)) cache in
v, LMap.add u v cache
in
let cache = LMap.fold
(fun u arc cache -> snd (visit u (Lazy.lazy_from_val (Some arc)) cache))
g LMap.empty
in
let repr x = LMap.find x cache in
let lrepr us = List.fold_left
(fun e x -> LSet.add (repr x) e) LSet.empty us
in
let canonicalize u = function
| Equiv _ -> Equiv (repr u)
| Canonical {univ=v; lt=lt; le=le; rank=rank} ->
assert (u == v);
(* avoid duplicates and self-loops *)
let lt = lrepr lt and le = lrepr le in
let le = LSet.filter
(fun x -> x != u && not (LSet.mem x lt)) le
in
LSet.iter (fun x -> assert (x != u)) lt;
Canonical {
univ = v;
lt = LSet.elements lt;
le = LSet.elements le;
rank = rank
}
in
LMap.mapi canonicalize g
(** [check_sorted g sorted]: [g] being a universe graph, [sorted]
being a map to levels, checks that all constraints in [g] are
satisfied in [sorted]. *)
let check_sorted g sorted =
let get u = try LMap.find u sorted with
| Not_found -> assert false
in
let iter u arc =
let lu = get u in match arc with
| Equiv v -> assert (Int.equal lu (get v))
| Canonical {univ = u'; lt = lt; le = le} ->
assert (u == u');
List.iter (fun v -> assert (lu <= get v)) le;
List.iter (fun v -> assert (lu < get v)) lt
in
LMap.iter iter g
(**
Bellman-Ford algorithm with a few customizations:
- [weight(eq|le) = 0], [weight(lt) = -1]
- a [le] edge is initially added from [bottom] to all other
vertices, and [bottom] is used as the source vertex
*)
let bellman_ford bottom g =
let () = match lookup_level bottom g with
| None -> ()
| Some _ -> assert false
in
let ( <? ) a b = match a, b with
| _, None -> true
| None, _ -> false
| Some x, Some y -> (x : int) < y
and ( ++ ) a y = match a with
| None -> None
| Some x -> Some (x-y)
and push u x m = match x with
| None -> m
| Some y -> LMap.add u y m
in
let relax u v uv distances =
let x = lookup_level u distances ++ uv in
if x <? lookup_level v distances then push v x distances
else distances
in
let init = LMap.add bottom 0 LMap.empty in
let vertices = LMap.fold (fun u arc res ->
let res = LSet.add u res in
match arc with
| Equiv e -> LSet.add e res
| Canonical {univ=univ; lt=lt; le=le} ->
assert (u == univ);
let add res v = LSet.add v res in
let res = List.fold_left add res le in
let res = List.fold_left add res lt in
res) g LSet.empty
in
let g =
let node = Canonical {
univ = bottom;
lt = [];
le = LSet.elements vertices;
rank = 0
} in LMap.add bottom node g
in
let rec iter count accu =
if count <= 0 then
accu
else
let accu = LMap.fold (fun u arc res -> match arc with
| Equiv e -> relax e u 0 (relax u e 0 res)
| Canonical {univ=univ; lt=lt; le=le} ->
assert (u == univ);
let res = List.fold_left (fun res v -> relax u v 0 res) res le in
let res = List.fold_left (fun res v -> relax u v 1 res) res lt in
res) g accu
in iter (count-1) accu
in
let distances = iter (LSet.cardinal vertices) init in
let () = LMap.iter (fun u arc ->
let lu = lookup_level u distances in match arc with
| Equiv v ->
let lv = lookup_level v distances in
assert (not (lu <? lv) && not (lv <? lu))
| Canonical {univ=univ; lt=lt; le=le} ->
assert (u == univ);
List.iter (fun v -> assert (not (lu ++ 0 <? lookup_level v distances))) le;
List.iter (fun v -> assert (not (lu ++ 1 <? lookup_level v distances))) lt) g
in distances
(** [sort_universes g] builds a map from universes in [g] to natural
numbers. It outputs a graph containing equivalence edges from each
level appearing in [g] to [Type.n], and [lt] edges between the
[Type.n]s. The output graph should imply the input graph (and the
implication will be strict most of the time), but is not
necessarily minimal. Note: the result is unspecified if the input
graph already contains [Type.n] nodes (calling a module Type is
probably a bad idea anyway). *)
let sort_universes orig =
let mp = Names.DirPath.make [Names.Id.of_string "Type"] in
let rec make_level accu g i =
let type0 = Level.make mp i in
let distances = bellman_ford type0 g in
let accu, continue = LMap.fold (fun u x (accu, continue) ->
let continue = continue || x < 0 in
let accu =
if Int.equal x 0 && u != type0 then LMap.add u i accu
else accu
in accu, continue) distances (accu, false)
in
let filter x = not (LMap.mem x accu) in
let push g u =
if LMap.mem u g then g else LMap.add u (Equiv u) g
in
let g = LMap.fold (fun u arc res -> match arc with
| Equiv v as x ->
begin match filter u, filter v with
| true, true -> LMap.add u x res
| true, false -> push res u
| false, true -> push res v
| false, false -> res
end
| Canonical {univ=v; lt=lt; le=le; rank=r} ->
assert (u == v);
if filter u then
let lt = List.filter filter lt in
let le = List.filter filter le in
LMap.add u (Canonical {univ=u; lt=lt; le=le; rank=r}) res
else
let res = List.fold_left (fun g u -> if filter u then push g u else g) res lt in
let res = List.fold_left (fun g u -> if filter u then push g u else g) res le in
res) g LMap.empty
in
if continue then make_level accu g (i+1) else i, accu
in
let max, levels = make_level LMap.empty orig 0 in
(* defensively check that the result makes sense *)
check_sorted orig levels;
let types = Array.init (max+1) (fun x -> Level.make mp x) in
let g = LMap.map (fun x -> Equiv types.(x)) levels in
let g =
let rec aux i g =
if i < max then
let u = types.(i) in
let g = LMap.add u (Canonical {
univ = u;
le = [];
lt = [types.(i+1)];
rank = 1
}) g in aux (i+1) g
else g
in aux 0 g
in g
(**********************************************************************)
(* Tools for sort-polymorphic inductive types *)
(* Miscellaneous functions to remove or test local univ assumed to
occur only in the le constraints *)
let remove_large_constraint u v min =
match Universe.level v with
| Some u' -> if Level.equal u u' then min else v
| None -> Huniv.remove (Hunivelt.make (Universe.Expr.make u)) v
(* [is_direct_constraint u v] if level [u] is a member of universe [v] *)
let is_direct_constraint u v =
match Universe.level v with
| Some u' -> Level.equal u u'
| None -> Huniv.mem (Hunivelt.make (Universe.Expr.make u)) v
(*
Solve a system of universe constraint of the form
u_s11, ..., u_s1p1, w1 <= u1
...
u_sn1, ..., u_snpn, wn <= un
where
- the ui (1 <= i <= n) are universe variables,
- the sjk select subsets of the ui for each equations,
- the wi are arbitrary complex universes that do not mention the ui.
*)
let is_direct_sort_constraint s v = match s with
| Some u -> is_direct_constraint u v
| None -> false
let solve_constraints_system levels level_bounds level_min =
let levels =
Array.map (Option.map (fun u -> match level u with Some u -> u | _ -> anomaly (Pp.str"expects Atom")))
levels in
let v = Array.copy level_bounds in
let nind = Array.length v in
for i=0 to nind-1 do
for j=0 to nind-1 do
if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then
(v.(i) <- Universe.sup v.(i) level_bounds.(j);
level_min.(i) <- Universe.sup level_min.(i) level_min.(j))
done;
for j=0 to nind-1 do
match levels.(j) with
| Some u -> v.(i) <- remove_large_constraint u v.(i) level_min.(i)
| None -> ()
done
done;
v
let subst_large_constraint u u' v =
match level u with
| Some u ->
if is_direct_constraint u v then
Universe.sup u' (remove_large_constraint u v type0m_univ)
else v
| _ ->
anomaly (Pp.str "expect a universe level")
let subst_large_constraints =
List.fold_right (fun (u,u') -> subst_large_constraint u u')
let no_upper_constraints u cst =
match level u with
| Some u ->
let test (u1, _, _) =
not (Int.equal (Level.compare u1 u) 0) in
Constraint.for_all test cst
| _ -> anomaly (Pp.str "no_upper_constraints")
(* Is u mentionned in v (or equals to v) ? *)
let univ_depends u v =
match atom u with
| Some u -> Huniv.mem u v
| _ -> anomaly (Pp.str"univ_depends given a non-atomic 1st arg")
let constraints_of_universes g =
let constraints_of u v acc =
match v with
| Canonical {univ=u; lt=lt; le=le} ->
let acc = List.fold_left (fun acc v -> Constraint.add (u,Lt,v) acc) acc lt in
let acc = List.fold_left (fun acc v -> Constraint.add (u,Le,v) acc) acc le in
acc
| Equiv v -> Constraint.add (u,Eq,v) acc
in
LMap.fold constraints_of g Constraint.empty
(* Pretty-printing *)
let pr_arc = function
| _, Canonical {univ=u; lt=[]; le=[]} ->
mt ()
| _, Canonical {univ=u; lt=lt; le=le} ->
let opt_sep = match lt, le with
| [], _ | _, [] -> mt ()
| _ -> spc ()
in
Level.pr u ++ str " " ++
v 0
(pr_sequence (fun v -> str "< " ++ Level.pr v) lt ++
opt_sep ++
pr_sequence (fun v -> str "<= " ++ Level.pr v) le) ++
fnl ()
| u, Equiv v ->
Level.pr u ++ str " = " ++ Level.pr v ++ fnl ()
let pr_universes g =
let graph = LMap.fold (fun u a l -> (u,a)::l) g [] in
prlist pr_arc graph
(* Dumping constraints to a file *)
let dump_universes output g =
let dump_arc u = function
| Canonical {univ=u; lt=lt; le=le} ->
let u_str = Level.to_string u in
List.iter (fun v -> output Lt u_str (Level.to_string v)) lt;
List.iter (fun v -> output Le u_str (Level.to_string v)) le
| Equiv v ->
output Eq (Level.to_string u) (Level.to_string v)
in
LMap.iter dump_arc g
module Huniverse_set =
Hashcons.Make(
struct
type t = universe_set
type u = universe_level -> universe_level
let hashcons huc s =
LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty
let equal s s' =
LSet.equal s s'
let hash = Hashtbl.hash
end)
let hcons_universe_set =
Hashcons.simple_hcons Huniverse_set.generate Level.hcons
let hcons_universe_context_set (v, c) =
(hcons_universe_set v, hcons_constraints c)
let hcons_univ x = x (* Universe.hcons (Huniv.node x) *)
let explain_universe_inconsistency (o,u,v,p) =
let pr_rel = function
| Eq -> str"=" | Lt -> str"<" | Le -> str"<="
in
let reason = match p with
[] -> mt()
| _::_ ->
str " because" ++ spc() ++ pr_uni v ++
prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ pr_uni v)
p ++
(if Universe.equal (snd (List.last p)) u then mt() else
(spc() ++ str "= " ++ pr_uni u))
in
str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++
pr_rel o ++ spc() ++ pr_uni v ++ reason ++ str")"
let compare_levels = Level.compare
let eq_levels = Level.equal
let equal_universes = Universe.equal_universes
|