1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey *)
open Pp
open Errors
open Util
(* Universes are stratified by a partial ordering $\le$.
Let $\~{}$ be the associated equivalence. We also have a strict ordering
$<$ between equivalence classes, and we maintain that $<$ is acyclic,
and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.
At every moment, we have a finite number of universes, and we
maintain the ordering in the presence of assertions $U<V$ and $U\le V$.
The equivalence $\~{}$ is represented by a tree structure, as in the
union-find algorithm. The assertions $<$ and $\le$ are represented by
adjacency lists *)
module UniverseLevel = struct
type t =
| Set
| Level of int * Names.dir_path
(* A specialized comparison function: we compare the [int] part first.
This way, most of the time, the [dir_path] part is not considered.
Normally, placing the [int] first in the pair above in enough in Ocaml,
but to be sure, we write below our own comparison function.
Note: this property is used by the [check_sorted] function below. *)
let compare u v =
if u == v then 0
else
(match u,v with
| Set, Set -> 0
| Set, _ -> -1
| _, Set -> 1
| Level (i1, dp1), Level (i2, dp2) ->
if i1 < i2 then -1
else if i1 > i2 then 1
else Names.dir_path_ord dp1 dp2)
let equal u v = match u,v with
| Set, Set -> true
| Level (i1, dp1), Level (i2, dp2) ->
Int.equal i1 i2 && Int.equal (Names.dir_path_ord dp1 dp2) 0
| _ -> false
let make m n = Level (n, m)
let to_string = function
| Set -> "Set"
| Level (n,d) -> Names.string_of_dirpath d^"."^string_of_int n
end
module UniverseLMap = Map.Make (UniverseLevel)
module UniverseLSet = Set.Make (UniverseLevel)
type universe_level = UniverseLevel.t
let compare_levels = UniverseLevel.compare
(* An algebraic universe [universe] is either a universe variable
[UniverseLevel.t] or a formal universe known to be greater than some
universe variables and strictly greater than some (other) universe
variables
Universes variables denote universes initially present in the term
to type-check and non variable algebraic universes denote the
universes inferred while type-checking: it is either the successor
of a universe present in the initial term to type-check or the
maximum of two algebraic universes
*)
module Universe =
struct
type t =
| Atom of UniverseLevel.t
| Max of UniverseLevel.t list * UniverseLevel.t list
let compare u1 u2 =
if u1 == u2 then 0 else
match u1, u2 with
| Atom l1, Atom l2 -> UniverseLevel.compare l1 l2
| Max (lt1, le1), Max (lt2, le2) ->
let c = List.compare UniverseLevel.compare lt1 lt2 in
if Int.equal c 0 then
List.compare UniverseLevel.compare le1 le2
else c
| Atom _, Max _ -> -1
| Max _, Atom _ -> 1
let equal u1 u2 = Int.equal (compare u1 u2) 0
let make l = Atom l
end
open Universe
type universe = Universe.t
let universe_level = function
| Atom l -> Some l
| Max _ -> None
let pr_uni_level u = str (UniverseLevel.to_string u)
let pr_uni = function
| Atom u ->
pr_uni_level u
| Max ([],[u]) ->
str "(" ++ pr_uni_level u ++ str ")+1"
| Max (gel,gtl) ->
let opt_sep = match gel, gtl with
| [], _ | _, [] -> mt ()
| _ -> pr_comma ()
in
str "max(" ++ hov 0
(prlist_with_sep pr_comma pr_uni_level gel ++ opt_sep ++
prlist_with_sep pr_comma
(fun x -> str "(" ++ pr_uni_level x ++ str ")+1") gtl) ++
str ")"
(* Returns the formal universe that lies juste above the universe variable u.
Used to type the sort u. *)
let super = function
| Atom u ->
Max ([],[u])
| Max _ ->
anomaly ("Cannot take the successor of a non variable universe:\n"^
"(maybe a bugged tactic)")
(* Returns the formal universe that is greater than the universes u and v.
Used to type the products. *)
let sup u v =
match u,v with
| Atom u, Atom v ->
if UniverseLevel.equal u v then Atom u else Max ([u;v],[])
| u, Max ([],[]) -> u
| Max ([],[]), v -> v
| Atom u, Max (gel,gtl) -> Max (List.add_set u gel,gtl)
| Max (gel,gtl), Atom v -> Max (List.add_set v gel,gtl)
| Max (gel,gtl), Max (gel',gtl') ->
let gel'' = List.union gel gel' in
let gtl'' = List.union gtl gtl' in
Max (List.subtract gel'' gtl'',gtl'')
(* Comparison on this type is pointer equality *)
type canonical_arc =
{ univ: UniverseLevel.t;
lt: UniverseLevel.t list;
le: UniverseLevel.t list;
rank: int }
let terminal u = {univ=u; lt=[]; le=[]; rank=0}
(* A UniverseLevel.t is either an alias for another one, or a canonical one,
for which we know the universes that are above *)
type univ_entry =
Canonical of canonical_arc
| Equiv of UniverseLevel.t
type universes = univ_entry UniverseLMap.t
let enter_equiv_arc u v g =
UniverseLMap.add u (Equiv v) g
let enter_arc ca g =
UniverseLMap.add ca.univ (Canonical ca) g
(* The lower predicative level of the hierarchy that contains (impredicative)
Prop and singleton inductive types *)
let type0m_univ = Max ([],[])
let is_type0m_univ = function
| Max ([],[]) -> true
| _ -> false
(* The level of predicative Set *)
let type0_univ = Atom UniverseLevel.Set
let is_type0_univ = function
| Atom UniverseLevel.Set -> true
| Max ([UniverseLevel.Set], []) -> msg_warning (str "Non canonical Set"); true
| u -> false
let is_univ_variable = function
| Atom UniverseLevel.Set -> false
| Atom _ -> true
| _ -> false
(* When typing [Prop] and [Set], there is no constraint on the level,
hence the definition of [type1_univ], the type of [Prop] *)
let type1_univ = Max ([], [UniverseLevel.Set])
let initial_universes = UniverseLMap.empty
let is_initial_universes = UniverseLMap.is_empty
(* Every UniverseLevel.t has a unique canonical arc representative *)
(* repr : universes -> UniverseLevel.t -> canonical_arc *)
(* canonical representative : we follow the Equiv links *)
let repr g u =
let rec repr_rec u =
let a =
try UniverseLMap.find u g
with Not_found -> anomalylabstrm "Univ.repr"
(str"Universe " ++ pr_uni_level u ++ str" undefined")
in
match a with
| Equiv v -> repr_rec v
| Canonical arc -> arc
in
repr_rec u
let can g = List.map (repr g)
(* [safe_repr] also search for the canonical representative, but
if the graph doesn't contain the searched universe, we add it. *)
let safe_repr g u =
let rec safe_repr_rec u =
match UniverseLMap.find u g with
| Equiv v -> safe_repr_rec v
| Canonical arc -> arc
in
try g, safe_repr_rec u
with Not_found ->
let can = terminal u in
enter_arc can g, can
(* reprleq : canonical_arc -> canonical_arc list *)
(* All canonical arcv such that arcu<=arcv with arcv#arcu *)
let reprleq g arcu =
let rec searchrec w = function
| [] -> w
| v :: vl ->
let arcv = repr g v in
if List.memq arcv w || arcu==arcv then
searchrec w vl
else
searchrec (arcv :: w) vl
in
searchrec [] arcu.le
(* between : UniverseLevel.t -> canonical_arc -> canonical_arc list *)
(* between u v = {w|u<=w<=v, w canonical} *)
(* between is the most costly operation *)
let between g arcu arcv =
(* good are all w | u <= w <= v *)
(* bad are all w | u <= w ~<= v *)
(* find good and bad nodes in {w | u <= w} *)
(* explore b u = (b or "u is good") *)
let rec explore ((good, bad, b) as input) arcu =
if List.memq arcu good then
(good, bad, true) (* b or true *)
else if List.memq arcu bad then
input (* (good, bad, b or false) *)
else
let leq = reprleq g arcu in
(* is some universe >= u good ? *)
let good, bad, b_leq =
List.fold_left explore (good, bad, false) leq
in
if b_leq then
arcu::good, bad, true (* b or true *)
else
good, arcu::bad, b (* b or false *)
in
let good,_,_ = explore ([arcv],[],false) arcu in
good
(* We assume compare(u,v) = LE with v canonical (see compare below).
In this case List.hd(between g u v) = repr u
Otherwise, between g u v = []
*)
type constraint_type = Lt | Le | Eq
type explanation = (constraint_type * universe) list
let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1
(* Assuming the current universe has been reached by [p] and [l]
correspond to the universes in (direct) relation [rel] with it,
make a list of canonical universe, updating the relation with
the starting point (path stored in reverse order). *)
let canp g (p:explanation) rel l : (canonical_arc * explanation) list =
List.map (fun u -> (repr g u, (rel,Atom u)::p)) l
type order = EQ | LT of explanation | LE of explanation | NLE
(** [compare_neq] : is [arcv] in the transitive upward closure of [arcu] ?
In [strict] mode, we fully distinguish between LE and LT, while in
non-strict mode, we simply answer LE for both situations.
If [arcv] is encountered in a LT part, we could directly answer
without visiting unneeded parts of this transitive closure.
In [strict] mode, if [arcv] is encountered in a LE part, we could only
change the default answer (1st arg [c]) from NLE to LE, since a strict
constraint may appear later. During the recursive traversal,
[lt_done] and [le_done] are universes we have already visited,
they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)],
two lists of universes not yet considered, known to be above [arcu],
strictly or not.
We use depth-first search, but the presence of [arcv] in [new_lt]
is checked as soon as possible : this seems to be slightly faster
on a test.
*)
let compare_neq strict g arcu arcv =
(* [c] characterizes whether (and how) arcv has already been related
to arcu among the lt_done,le_done universe *)
let rec cmp c lt_done le_done = function
| [],[] -> c
| (arc,p)::lt_todo, le_todo ->
if List.memq arc lt_done then
cmp c lt_done le_done (lt_todo,le_todo)
else
let lt_new = canp g p Lt arc.lt@ canp g p Le arc.le in
(try
let p = List.assq arcv lt_new in
if strict then LT p else LE p
with Not_found ->
cmp c (arc::lt_done) le_done (lt_new@lt_todo,le_todo))
| [], (arc,p)::le_todo ->
if arc == arcv then
(* No need to continue inspecting universes above arc:
if arcv is strictly above arc, then we would have a cycle.
But we cannot answer LE yet, a stronger constraint may
come later from [le_todo]. *)
if strict then cmp (LE p) lt_done le_done ([],le_todo) else LE p
else
if (List.memq arc lt_done) || (List.memq arc le_done) then
cmp c lt_done le_done ([],le_todo)
else
let lt_new = canp g p Lt arc.lt in
(try
let p = List.assq arcv lt_new in
if strict then LT p else LE p
with Not_found ->
let le_new = canp g p Le arc.le in
cmp c lt_done (arc::le_done) (lt_new, le_new@le_todo))
in
cmp NLE [] [] ([],[arcu,[]])
let compare g arcu arcv =
if arcu == arcv then EQ else compare_neq true g arcu arcv
let is_leq g arcu arcv =
arcu == arcv ||
(match compare_neq false g arcu arcv with
NLE -> false
| (EQ|LE _|LT _) -> true)
let is_lt g arcu arcv =
match compare g arcu arcv with
LT _ -> true
| (EQ|LE _|NLE) -> false
(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
compare(u,v) = LT or LE => compare(v,u) = NLE
compare(u,v) = NLE => compare(v,u) = NLE or LE or LT
Adding u>=v is consistent iff compare(v,u) # LT
and then it is redundant iff compare(u,v) # NLE
Adding u>v is consistent iff compare(v,u) = NLE
and then it is redundant iff compare(u,v) = LT *)
(** * Universe checks [check_eq] and [check_leq], used in coqchk *)
(** First, checks on universe levels *)
let check_equal g u v =
let g, arcu = safe_repr g u in
let _, arcv = safe_repr g v in
arcu == arcv
let check_smaller g strict u v =
let g, arcu = safe_repr g u in
let g, arcv = safe_repr g v in
if strict then
is_lt g arcu arcv
else
arcu == snd (safe_repr g UniverseLevel.Set) || is_leq g arcu arcv
(** Then, checks on universes *)
type check_function = universes -> universe -> universe -> bool
let incl_list cmp l1 l2 =
List.for_all (fun x1 -> List.exists (fun x2 -> cmp x1 x2) l2) l1
let compare_list cmp l1 l2 =
(l1 == l2)
|| (incl_list cmp l1 l2 && incl_list cmp l2 l1)
let check_eq g u v =
match u,v with
| Atom ul, Atom vl -> check_equal g ul vl
| Max(ule,ult), Max(vle,vlt) ->
(* TODO: remove elements of lt in le! *)
compare_list (check_equal g) ule vle &&
compare_list (check_equal g) ult vlt
| _ -> anomaly "check_eq" (* not complete! (Atom(u) = Max([u],[]) *)
let check_leq g u v =
match u,v with
| Atom ul, Atom vl -> check_smaller g false ul vl
| Max(le,lt), Atom vl ->
List.for_all (fun ul -> check_smaller g false ul vl) le &&
List.for_all (fun ul -> check_smaller g true ul vl) lt
| _ -> anomaly "check_leq"
(** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *)
(* setlt : UniverseLevel.t -> UniverseLevel.t -> reason -> unit *)
(* forces u > v *)
(* this is normally an update of u in g rather than a creation. *)
let setlt g arcu arcv =
let arcu' = {arcu with lt=arcv.univ::arcu.lt} in
enter_arc arcu' g, arcu'
(* checks that non-redundant *)
let setlt_if (g,arcu) v =
let arcv = repr g v in
if is_lt g arcu arcv then g, arcu
else setlt g arcu arcv
(* setleq : UniverseLevel.t -> UniverseLevel.t -> unit *)
(* forces u >= v *)
(* this is normally an update of u in g rather than a creation. *)
let setleq g arcu arcv =
let arcu' = {arcu with le=arcv.univ::arcu.le} in
enter_arc arcu' g, arcu'
(* checks that non-redundant *)
let setleq_if (g,arcu) v =
let arcv = repr g v in
if is_leq g arcu arcv then g, arcu
else setleq g arcu arcv
(* merge : UniverseLevel.t -> UniverseLevel.t -> unit *)
(* we assume compare(u,v) = LE *)
(* merge u v forces u ~ v with repr u as canonical repr *)
let merge g arcu arcv =
(* we find the arc with the biggest rank, and we redirect all others to it *)
let arcu, g, v =
let best_ranked (max_rank, old_max_rank, best_arc, rest) arc =
if arc.rank >= max_rank
then (arc.rank, max_rank, arc, best_arc::rest)
else (max_rank, old_max_rank, best_arc, arc::rest)
in
match between g arcu arcv with
| [] -> anomaly "Univ.between"
| arc::rest ->
let (max_rank, old_max_rank, best_arc, rest) =
List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in
if max_rank > old_max_rank then best_arc, g, rest
else begin
(* one redirected node also has max_rank *)
let arcu = {best_arc with rank = max_rank + 1} in
arcu, enter_arc arcu g, rest
end
in
let redirect (g,w,w') arcv =
let g' = enter_equiv_arc arcv.univ arcu.univ g in
(g',List.unionq arcv.lt w,arcv.le@w')
in
let (g',w,w') = List.fold_left redirect (g,[],[]) v in
let g_arcu = (g',arcu) in
let g_arcu = List.fold_left setlt_if g_arcu w in
let g_arcu = List.fold_left setleq_if g_arcu w' in
fst g_arcu
(* merge_disc : UniverseLevel.t -> UniverseLevel.t -> unit *)
(* we assume compare(u,v) = compare(v,u) = NLE *)
(* merge_disc u v forces u ~ v with repr u as canonical repr *)
let merge_disc g arc1 arc2 =
let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in
let arcu, g =
if arc1.rank <> arc2.rank then arcu, g
else
let arcu = {arcu with rank = succ arcu.rank} in
arcu, enter_arc arcu g
in
let g' = enter_equiv_arc arcv.univ arcu.univ g in
let g_arcu = (g',arcu) in
let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in
let g_arcu = List.fold_left setleq_if g_arcu arcv.le in
fst g_arcu
(* Universe inconsistency: error raised when trying to enforce a relation
that would create a cycle in the graph of universes. *)
exception UniverseInconsistency of
constraint_type * universe * universe * explanation
let error_inconsistency o u v (p:explanation) =
raise (UniverseInconsistency (o,Atom u,Atom v,p))
(* enforce_univ_leq : UniverseLevel.t -> UniverseLevel.t -> unit *)
(* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *)
let enforce_univ_leq u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
if is_leq g arcu arcv then g
else match compare g arcv arcu with
| LT p -> error_inconsistency Le u v (List.rev p)
| LE _ -> merge g arcv arcu
| NLE -> fst (setleq g arcu arcv)
| EQ -> anomaly "Univ.compare"
(* enforc_univ_eq : UniverseLevel.t -> UniverseLevel.t -> unit *)
(* enforc_univ_eq u v will force u=v if possible, will fail otherwise *)
let enforce_univ_eq u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
match compare g arcu arcv with
| EQ -> g
| LT p -> error_inconsistency Eq u v (List.rev p)
| LE _ -> merge g arcu arcv
| NLE ->
(match compare g arcv arcu with
| LT p -> error_inconsistency Eq u v (List.rev p)
| LE _ -> merge g arcv arcu
| NLE -> merge_disc g arcu arcv
| EQ -> anomaly "Univ.compare")
(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
let enforce_univ_lt u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
match compare g arcu arcv with
| LT _ -> g
| LE _ -> fst (setlt g arcu arcv)
| EQ -> error_inconsistency Lt u v [(Eq,Atom v)]
| NLE ->
(match compare_neq false g arcv arcu with
NLE -> fst (setlt g arcu arcv)
| EQ -> anomaly "Univ.compare"
| (LE p|LT p) -> error_inconsistency Lt u v (List.rev p))
(* Constraints and sets of consrtaints. *)
type univ_constraint = UniverseLevel.t * constraint_type * UniverseLevel.t
let enforce_constraint cst g =
match cst with
| (u,Lt,v) -> enforce_univ_lt u v g
| (u,Le,v) -> enforce_univ_leq u v g
| (u,Eq,v) -> enforce_univ_eq u v g
module Constraint = Set.Make(
struct
type t = univ_constraint
let compare (u,c,v) (u',c',v') =
let i = constraint_type_ord c c' in
if not (Int.equal i 0) then i
else
let i' = UniverseLevel.compare u u' in
if not (Int.equal i' 0) then i'
else UniverseLevel.compare v v'
end)
type constraints = Constraint.t
let empty_constraint = Constraint.empty
let is_empty_constraint = Constraint.is_empty
let union_constraints = Constraint.union
type constraint_function =
universe -> universe -> constraints -> constraints
let constraint_add_leq v u c =
(* We just discard trivial constraints like Set<=u or u<=u *)
if UniverseLevel.equal v UniverseLevel.Set || UniverseLevel.equal v u then c
else Constraint.add (v,Le,u) c
let enforce_leq u v c =
match u, v with
| Atom u, Atom v -> constraint_add_leq u v c
| Max (gel,gtl), Atom v ->
let d = List.fold_right (fun u -> constraint_add_leq u v) gel c in
List.fold_right (fun u -> Constraint.add (u,Lt,v)) gtl d
| _ -> anomaly "A universe bound can only be a variable"
let enforce_eq u v c =
match (u,v) with
| Atom u, Atom v ->
(* We discard trivial constraints like u=u *)
if UniverseLevel.equal u v then c else Constraint.add (u,Eq,v) c
| _ -> anomaly "A universe comparison can only happen between variables"
let merge_constraints c g =
Constraint.fold enforce_constraint c g
(* Normalization *)
let lookup_level u g =
try Some (UniverseLMap.find u g) with Not_found -> None
(** [normalize_universes g] returns a graph where all edges point
directly to the canonical representent of their target. The output
graph should be equivalent to the input graph from a logical point
of view, but optimized. We maintain the invariant that the key of
a [Canonical] element is its own name, by keeping [Equiv] edges
(see the assertion)... I (Stéphane Glondu) am not sure if this
plays a role in the rest of the module. *)
let normalize_universes g =
let rec visit u arc cache = match lookup_level u cache with
| Some x -> x, cache
| None -> match Lazy.force arc with
| None ->
u, UniverseLMap.add u u cache
| Some (Canonical {univ=v; lt=_; le=_}) ->
v, UniverseLMap.add u v cache
| Some (Equiv v) ->
let v, cache = visit v (lazy (lookup_level v g)) cache in
v, UniverseLMap.add u v cache
in
let cache = UniverseLMap.fold
(fun u arc cache -> snd (visit u (Lazy.lazy_from_val (Some arc)) cache))
g UniverseLMap.empty
in
let repr x = UniverseLMap.find x cache in
let lrepr us = List.fold_left
(fun e x -> UniverseLSet.add (repr x) e) UniverseLSet.empty us
in
let canonicalize u = function
| Equiv _ -> Equiv (repr u)
| Canonical {univ=v; lt=lt; le=le; rank=rank} ->
assert (u == v);
(* avoid duplicates and self-loops *)
let lt = lrepr lt and le = lrepr le in
let le = UniverseLSet.filter
(fun x -> x != u && not (UniverseLSet.mem x lt)) le
in
UniverseLSet.iter (fun x -> assert (x != u)) lt;
Canonical {
univ = v;
lt = UniverseLSet.elements lt;
le = UniverseLSet.elements le;
rank = rank
}
in
UniverseLMap.mapi canonicalize g
(** [check_sorted g sorted]: [g] being a universe graph, [sorted]
being a map to levels, checks that all constraints in [g] are
satisfied in [sorted]. *)
let check_sorted g sorted =
let get u = try UniverseLMap.find u sorted with
| Not_found -> assert false
in
let iter u arc =
let lu = get u in match arc with
| Equiv v -> assert (Int.equal lu (get v))
| Canonical {univ = u'; lt = lt; le = le} ->
assert (u == u');
List.iter (fun v -> assert (lu <= get v)) le;
List.iter (fun v -> assert (lu < get v)) lt
in
UniverseLMap.iter iter g
(**
Bellman-Ford algorithm with a few customizations:
- [weight(eq|le) = 0], [weight(lt) = -1]
- a [le] edge is initially added from [bottom] to all other
vertices, and [bottom] is used as the source vertex
*)
let bellman_ford bottom g =
let () = match lookup_level bottom g with
| None -> ()
| Some _ -> assert false
in
let ( << ) a b = match a, b with
| _, None -> true
| None, _ -> false
| Some x, Some y -> x < y
and ( ++ ) a y = match a with
| None -> None
| Some x -> Some (x-y)
and push u x m = match x with
| None -> m
| Some y -> UniverseLMap.add u y m
in
let relax u v uv distances =
let x = lookup_level u distances ++ uv in
if x << lookup_level v distances then push v x distances
else distances
in
let init = UniverseLMap.add bottom 0 UniverseLMap.empty in
let vertices = UniverseLMap.fold (fun u arc res ->
let res = UniverseLSet.add u res in
match arc with
| Equiv e -> UniverseLSet.add e res
| Canonical {univ=univ; lt=lt; le=le} ->
assert (u == univ);
let add res v = UniverseLSet.add v res in
let res = List.fold_left add res le in
let res = List.fold_left add res lt in
res) g UniverseLSet.empty
in
let g =
let node = Canonical {
univ = bottom;
lt = [];
le = UniverseLSet.elements vertices;
rank = 0
} in UniverseLMap.add bottom node g
in
let rec iter count accu =
if count <= 0 then
accu
else
let accu = UniverseLMap.fold (fun u arc res -> match arc with
| Equiv e -> relax e u 0 (relax u e 0 res)
| Canonical {univ=univ; lt=lt; le=le} ->
assert (u == univ);
let res = List.fold_left (fun res v -> relax u v 0 res) res le in
let res = List.fold_left (fun res v -> relax u v 1 res) res lt in
res) g accu
in iter (count-1) accu
in
let distances = iter (UniverseLSet.cardinal vertices) init in
let () = UniverseLMap.iter (fun u arc ->
let lu = lookup_level u distances in match arc with
| Equiv v ->
let lv = lookup_level v distances in
assert (not (lu << lv) && not (lv << lu))
| Canonical {univ=univ; lt=lt; le=le} ->
assert (u == univ);
List.iter (fun v -> assert (not (lu ++ 0 << lookup_level v distances))) le;
List.iter (fun v -> assert (not (lu ++ 1 << lookup_level v distances))) lt) g
in distances
(** [sort_universes g] builds a map from universes in [g] to natural
numbers. It outputs a graph containing equivalence edges from each
level appearing in [g] to [Type.n], and [lt] edges between the
[Type.n]s. The output graph should imply the input graph (and the
implication will be strict most of the time), but is not
necessarily minimal. Note: the result is unspecified if the input
graph already contains [Type.n] nodes (calling a module Type is
probably a bad idea anyway). *)
let sort_universes orig =
let mp = Names.make_dirpath [Names.id_of_string "Type"] in
let rec make_level accu g i =
let type0 = UniverseLevel.Level (i, mp) in
let distances = bellman_ford type0 g in
let accu, continue = UniverseLMap.fold (fun u x (accu, continue) ->
let continue = continue || x < 0 in
let accu =
if Int.equal x 0 && u != type0 then UniverseLMap.add u i accu
else accu
in accu, continue) distances (accu, false)
in
let filter x = not (UniverseLMap.mem x accu) in
let push g u =
if UniverseLMap.mem u g then g else UniverseLMap.add u (Equiv u) g
in
let g = UniverseLMap.fold (fun u arc res -> match arc with
| Equiv v as x ->
begin match filter u, filter v with
| true, true -> UniverseLMap.add u x res
| true, false -> push res u
| false, true -> push res v
| false, false -> res
end
| Canonical {univ=v; lt=lt; le=le; rank=r} ->
assert (u == v);
if filter u then
let lt = List.filter filter lt in
let le = List.filter filter le in
UniverseLMap.add u (Canonical {univ=u; lt=lt; le=le; rank=r}) res
else
let res = List.fold_left (fun g u -> if filter u then push g u else g) res lt in
let res = List.fold_left (fun g u -> if filter u then push g u else g) res le in
res) g UniverseLMap.empty
in
if continue then make_level accu g (i+1) else i, accu
in
let max, levels = make_level UniverseLMap.empty orig 0 in
(* defensively check that the result makes sense *)
check_sorted orig levels;
let types = Array.init (max+1) (fun x -> UniverseLevel.Level (x, mp)) in
let g = UniverseLMap.map (fun x -> Equiv types.(x)) levels in
let g =
let rec aux i g =
if i < max then
let u = types.(i) in
let g = UniverseLMap.add u (Canonical {
univ = u;
le = [];
lt = [types.(i+1)];
rank = 1
}) g in aux (i+1) g
else g
in aux 0 g
in g
(**********************************************************************)
(* Tools for sort-polymorphic inductive types *)
(* Temporary inductive type levels *)
let fresh_level =
let n = ref 0 in fun () -> incr n; UniverseLevel.Level (!n, Names.make_dirpath [])
let fresh_local_univ () = Atom (fresh_level ())
(* Miscellaneous functions to remove or test local univ assumed to
occur only in the le constraints *)
let make_max = function
| ([u],[]) -> Atom u
| (le,lt) -> Max (le,lt)
let remove_large_constraint u = function
| Atom u' as x -> if UniverseLevel.equal u u' then Max ([],[]) else x
| Max (le,lt) -> make_max (List.remove u le,lt)
let is_direct_constraint u = function
| Atom u' -> UniverseLevel.equal u u'
| Max (le,lt) -> List.mem u le
(*
Solve a system of universe constraint of the form
u_s11, ..., u_s1p1, w1 <= u1
...
u_sn1, ..., u_snpn, wn <= un
where
- the ui (1 <= i <= n) are universe variables,
- the sjk select subsets of the ui for each equations,
- the wi are arbitrary complex universes that do not mention the ui.
*)
let is_direct_sort_constraint s v = match s with
| Some u -> is_direct_constraint u v
| None -> false
let solve_constraints_system levels level_bounds =
let levels =
Array.map (Option.map (function Atom u -> u | _ -> anomaly "expects Atom"))
levels in
let v = Array.copy level_bounds in
let nind = Array.length v in
for i=0 to nind-1 do
for j=0 to nind-1 do
if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then
v.(i) <- sup v.(i) level_bounds.(j)
done;
for j=0 to nind-1 do
match levels.(j) with
| Some u -> v.(i) <- remove_large_constraint u v.(i)
| None -> ()
done
done;
v
let subst_large_constraint u u' v =
match u with
| Atom u ->
if is_direct_constraint u v then sup u' (remove_large_constraint u v)
else v
| _ ->
anomaly "expect a universe level"
let subst_large_constraints =
List.fold_right (fun (u,u') -> subst_large_constraint u u')
let no_upper_constraints u cst =
match u with
| Atom u ->
let test (u1, _, _) =
not (Int.equal (UniverseLevel.compare u1 u) 0) in
Constraint.for_all test cst
| Max _ -> anomaly "no_upper_constraints"
(* Is u mentionned in v (or equals to v) ? *)
let univ_depends u v =
match u, v with
| Atom u, Atom v -> UniverseLevel.equal u v
| Atom u, Max (gel,gtl) -> List.mem u gel || List.mem u gtl
| _ -> anomaly "univ_depends given a non-atomic 1st arg"
(* Pretty-printing *)
let pr_arc = function
| _, Canonical {univ=u; lt=[]; le=[]} ->
mt ()
| _, Canonical {univ=u; lt=lt; le=le} ->
let opt_sep = match lt, le with
| [], _ | _, [] -> mt ()
| _ -> spc ()
in
pr_uni_level u ++ str " " ++
v 0
(pr_sequence (fun v -> str "< " ++ pr_uni_level v) lt ++
opt_sep ++
pr_sequence (fun v -> str "<= " ++ pr_uni_level v) le) ++
fnl ()
| u, Equiv v ->
pr_uni_level u ++ str " = " ++ pr_uni_level v ++ fnl ()
let pr_universes g =
let graph = UniverseLMap.fold (fun u a l -> (u,a)::l) g [] in
prlist pr_arc graph
let pr_constraints c =
Constraint.fold (fun (u1,op,u2) pp_std ->
let op_str = match op with
| Lt -> " < "
| Le -> " <= "
| Eq -> " = "
in pp_std ++ pr_uni_level u1 ++ str op_str ++
pr_uni_level u2 ++ fnl () ) c (str "")
(* Dumping constraints to a file *)
let dump_universes output g =
let dump_arc u = function
| Canonical {univ=u; lt=lt; le=le} ->
let u_str = UniverseLevel.to_string u in
List.iter (fun v -> output Lt u_str (UniverseLevel.to_string v)) lt;
List.iter (fun v -> output Le u_str (UniverseLevel.to_string v)) le
| Equiv v ->
output Eq (UniverseLevel.to_string u) (UniverseLevel.to_string v)
in
UniverseLMap.iter dump_arc g
(* Hash-consing *)
module Hunivlevel =
Hashcons.Make(
struct
type t = universe_level
type u = Names.dir_path -> Names.dir_path
let hashcons hdir = function
| UniverseLevel.Set -> UniverseLevel.Set
| UniverseLevel.Level (n,d) -> UniverseLevel.Level (n,hdir d)
let equal l1 l2 =
l1 == l2 ||
match l1,l2 with
| UniverseLevel.Set, UniverseLevel.Set -> true
| UniverseLevel.Level (n,d), UniverseLevel.Level (n',d') ->
n == n' && d == d'
| _ -> false
let hash = Hashtbl.hash
end)
module Huniv =
Hashcons.Make(
struct
type t = universe
type u = universe_level -> universe_level
let hashcons hdir = function
| Atom u -> Atom (hdir u)
| Max (gel,gtl) -> Max (List.map hdir gel, List.map hdir gtl)
let equal u v =
u == v ||
match u, v with
| Atom u, Atom v -> u == v
| Max (gel,gtl), Max (gel',gtl') ->
(List.for_all2eq (==) gel gel') &&
(List.for_all2eq (==) gtl gtl')
| _ -> false
let hash = Hashtbl.hash
end)
let hcons_univlevel = Hashcons.simple_hcons Hunivlevel.generate Names.hcons_dirpath
let hcons_univ = Hashcons.simple_hcons Huniv.generate hcons_univlevel
module Hconstraint =
Hashcons.Make(
struct
type t = univ_constraint
type u = universe_level -> universe_level
let hashcons hul (l1,k,l2) = (hul l1, k, hul l2)
let equal (l1,k,l2) (l1',k',l2') =
l1 == l1' && k == k' && l2 == l2'
let hash = Hashtbl.hash
end)
module Hconstraints =
Hashcons.Make(
struct
type t = constraints
type u = univ_constraint -> univ_constraint
let hashcons huc s =
Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty
let equal s s' =
List.for_all2eq (==)
(Constraint.elements s)
(Constraint.elements s')
let hash = Hashtbl.hash
end)
let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate hcons_univlevel
let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate hcons_constraint
|