aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/univ.ml
blob: 0f6b7185aebc45e62b00a29df504bdd134512c28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

(* $Id$ *)

(* Universes are stratified by a partial ordering $\ge$.
   Let $\~{}$ be the associated equivalence. We also have a strict ordering
   $>$ between equivalence classes, and we maintain that $>$ is acyclic,
   and contained in $\ge$ in the sense that $[U]>[V]$ implies $U\ge V$.

   At every moment, we have a finite number of universes, and we
   maintain the ordering in the presence of assertions $U>V$ and $U\ge V$.

   The equivalence $\~{}$ is represented by a tree structure, as in the
   union-find algorithm. The assertions $>$ and $\ge$ are represented by
   adjacency lists *)

open Pp
open Util
open Names

type universe = { u_sp : section_path; u_num : int }

let universe_ord x y =
  let c = x.u_num - y.u_num in
  if c <> 0 then c else sp_ord x.u_sp y.u_sp
  
module UniverseOrdered = struct
  type t = universe
  let compare = universe_ord
end

let pr_uni u = [< 'sTR(string_of_path u.u_sp) ; 'sTR"." ; 'iNT u.u_num >]

let dummy_sp = make_path ["univ"] (id_of_string "dummy") OBJ
let dummy_univ = {u_sp = dummy_sp; u_num = 0} (* for prover terms *)

let new_univ = 
  let univ_gen = ref 0 in
  (fun sp -> incr univ_gen; { u_sp = sp; u_num = !univ_gen })

type relation = 
  | Greater of bool * universe * relation (* if bool then > else >= *)
  | Equiv of universe
  | Terminal

module UniverseMap = Map.Make(UniverseOrdered)

type arc = Arc of universe * relation

type universes = arc UniverseMap.t

(* in Arc(u,Greater(b,v,r))::arcs, we have u>v if b, and u>=v if not b, 
   and r is the next relation pertaining to u; this relation may be
   Greater or Terminal. *)
		   
let enter_arc a g =
  let Arc(i,_) = a in
  UniverseMap.add i a g

let declare_univ u g =
  if not (UniverseMap.mem u g) then
    UniverseMap.add u (Arc(u,Terminal)) g
  else
    g

(* The universes of Prop and Set: Type_0, Type_1 and Type_2, and the
   resulting graph. *)
let (initial_universes,prop_univ,prop_univ_univ,prop_univ_univ_univ) =
  let prop_sp = make_path ["univ"] (id_of_string "prop_univ") OBJ in
  let u = { u_sp = prop_sp; u_num = 0 } in
  let su = { u_sp = prop_sp; u_num = 1 } in
  let ssu = { u_sp = prop_sp; u_num = 2 } in
  let g = enter_arc (Arc(u,Terminal)) UniverseMap.empty in
  let g = enter_arc (Arc(su,Terminal)) g in
  let g = enter_arc (Arc(ssu,Terminal)) g in
  let g = enter_arc (Arc(su,Greater(true,u,Terminal))) g in
  let g = enter_arc (Arc(ssu,Greater(true,su,Terminal))) g in
  (g,u,su,ssu)

(* Every universe has a unique canonical arc representative *)

(* repr : universes -> universe -> arc *)
(* canonical representative : we follow the Equiv links *)
let repr g u = 
  let rec repr_rec u =
    let arc =
      try UniverseMap.find u g
      with Not_found -> anomalylabstrm "Impuniv.repr"
	  [< 'sTR"Universe "; pr_uni u; 'sTR" undefined" >] 
    in
    match arc with 
      | Arc(_,Equiv(v)) -> repr_rec v
      | _ -> arc
  in
  repr_rec u

let can g = List.map (repr g)

(* transitive closure : we follow the Greater links *)
(* close : relation -> universe list * universe list *)
let close = 
  let rec closerec ((u,v) as pair) = function
    | Terminal -> pair
    | Greater(true,v_0,r)  -> closerec (v_0::u,v) r
    | Greater(false,v_0,r) -> closerec (u,v_0::v) r
    | _ -> anomaly "Wrong universe structure"
  in 
  closerec ([],[]) 

(* reprgeq : arc -> arc list *)
(* All canonical arcv such that arcu>=arcc with arcv#arcu *)
let reprgeq g (Arc(_,ru) as arcu) =
  let (_,v) = close ru in
  let rec searchrec w = function
    | [] -> w
    | v_0 :: v ->
	let arcv = repr g v_0 in
        if List.memq arcv w || arcu=arcv then 
	  searchrec w v
        else 
	  searchrec (arcv :: w) v
  in 
  searchrec [] v

(* collect : arc -> arc list * arc list *)
(* collect u = (V,W) iff V={v canonical | u>v} W={w canonical | u>=w}-V *)
(* i.e. collect does the transitive closure of what is known about u *)
let collect g u = 
  let rec coll_rec v w = function
    | [],[] -> (v,list_subtractq w v)
    | (Arc(_,rv) as arcv)::v',w' ->
	if List.memq arcv v then 
	  coll_rec v w (v',w')
	else
          let (gt,geq) = close rv in
          coll_rec (arcv::v) w ((can g (gt@geq))@v',w')
    | [],(Arc(_,rw) as arcw)::w' -> 
	if (List.memq arcw v) or (List.memq arcw w) then 
	  coll_rec v w ([],w')
	else
          let (gt,geq) = close rw in
          coll_rec v (arcw::w) (can g gt, (can g geq)@w')
  in 
  coll_rec [] [] ([],[u])

type order = EQ | GT | GE | NGE

(* compare : universe -> universe -> order *)
let compare g u v = 
  let arcu = repr g u 
  and arcv = repr g v in
  if arcu=arcv then 
    EQ
  else 
    let (v,w) = collect g arcu in
    if List.memq arcv v then 
      GT
    else if List.memq arcv w then 
      GE
    else 
      NGE

(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
                compare(u,v) = GT or GE => compare(v,u) = NGE
                compare(u,v) = NGE => compare(v,u) = NGE or GE or GT

   Adding u>=v is consistent iff compare(v,u) # GT 
    and then it is redundant iff compare(u,v) # NGE
   Adding u>v is consistent iff compare(v,u) = NGE 
    and then it is redundant iff compare(u,v) = GT *)

(* between : universe -> arc -> arc list *)
(* we assume  compare(u,v) = GE with v canonical    *)
(* between u v = {w|u>=w>=v, w canonical}          *)     
let between g u arcv = 
  let rec explore (memo,l) arcu = 
    try 
      memo,list_unionq (List.assq arcu memo) l (* when memq arcu memo *)
    with Not_found ->
      let w = reprgeq g arcu in
      let (memo',sols) = List.fold_left explore (memo,[]) w in
      let sols' = if sols=[] then [] else arcu::sols in
      ((arcu,sols')::memo', list_unionq sols' l) 
  in
  snd (explore ([(arcv,[arcv])],[]) (repr g u))

(* Note: hd(between u v) = repr u  *)
(* between is the most costly operation *)

(* setgt : universe -> universe -> unit *)
(* forces u > v *)
let setgt g u v =
  let Arc(u',ru) = repr g u in
  enter_arc (Arc(u',Greater(true,v,ru))) g

(* checks that non-redondant *)
let setgt_if g u v = match compare g u v with
  | GT -> g
  | _ -> setgt g u v

(* setgeq : universe -> universe -> unit *)
(* forces u >= v *)
let setgeq g u v =
  let Arc(u',ru) = repr g u in
  enter_arc (Arc(u',Greater(false,v,ru))) g


(* checks that non-redondant *)
let setgeq_if g u v = match compare g u v with
  | NGE -> setgeq g u v
  | _ -> g

(* merge : universe -> universe -> unit *)
(* we assume  compare(u,v) = GE *)
(* merge u v  forces u ~ v with repr u as canonical repr *)
let merge g u v =
  match between g u (repr g v) with
    | Arc(u',_)::v ->
	let redirect (g,w,w') (Arc(v',rv)) =
       	  let v,v'_0 = close rv in
 	  let g' = enter_arc (Arc(v',Equiv(u'))) g in
 	  (g',list_unionq v w,v'_0@w') 
	in
	let (g',w,w') = List.fold_left redirect (g,[],[]) v in
	let g'' = List.fold_left (fun g -> setgt_if g u') g' w in
	let g''' = List.fold_left (fun g -> setgeq_if g u') g'' w' in
	g'''
    | [] -> anomaly "between"

(* merge_disc : universe -> universe -> unit *)
(* we assume  compare(u,v) = compare(v,u) = NGE *)
(* merge_disc u v  forces u ~ v with repr u as canonical repr *)
let merge_disc g u v =
  let (Arc(u',_), Arc(v',rv)) = (repr g u, repr g v) in
  let v,v'_0 = close rv in
  let g' = enter_arc (Arc(v',Equiv(u'))) g in
  let g'' = List.fold_left (fun g -> setgt_if g u') g' v in
  let g''' = List.fold_left (fun g -> setgeq_if g u') g'' v'_0 in
  g'''

(* Universe inconsistency: error raised when trying to enforce a relation
   that would create a cycle in the graph of universes. *)

exception UniverseInconsistency

let error_inconsistency () = raise UniverseInconsistency

(* enforcegeq : universe -> universe -> unit *)
(* enforcegeq u v will force u>=v if possible, will fail otherwise *)
let enforce_univ_geq u v g =
  let g = declare_univ u g in
  let g = declare_univ v g in
  match compare g u v with
    | NGE -> 
	(match compare g v u with
           | GT -> error_inconsistency()
           | GE -> merge g v u
           | NGE -> setgeq g u v
           | EQ -> anomaly "compare")
    | _ -> g

(* enforceq : universe -> universe -> unit *)
(* enforceq u v will force u=v if possible, will fail otherwise *)
let enforce_univ_eq u v g =
  let g = declare_univ u g in
  let g = declare_univ v g in
  match compare g u v with
    | EQ -> g
    | GT -> error_inconsistency()
    | GE -> merge g u v
    | NGE -> 
	(match compare g v u with
           | GT -> error_inconsistency()
           | GE -> merge g v u
           | NGE -> merge_disc g u v
           | EQ -> anomaly "compare")

(* enforcegt u v will force u>v if possible, will fail otherwise *)
let enforce_univ_gt u v g =
  let g = declare_univ u g in
  let g = declare_univ v g in
  match compare g u v with
    | GT -> g
    | GE -> setgt g u v
    | EQ -> error_inconsistency()
    | NGE -> 
	(match compare g v u with
           | NGE -> setgt g u v
           | _ -> error_inconsistency())

let enforce_univ_relation g u = 
  let rec enfrec g = function
    | Terminal -> g
    | Equiv v -> enforce_univ_eq u v g
    | Greater(false,v,r) -> enfrec (enforce_univ_geq u v g) r
    | Greater(true,v,r) -> enfrec (enforce_univ_gt u v g) r
  in 
  enfrec g
    

(* Merging 2 universe graphs *)
let merge_universes sp u1 u2 =
  UniverseMap.fold (fun _ (Arc(u,r)) g -> enforce_univ_relation g u r) u1 u2



(* Constraints and sets of consrtaints. *)

type constraint_type = Gt | Geq | Eq

type univ_constraint = universe * constraint_type * universe

module Constraint = Set.Make(
  struct 
    type t = univ_constraint 
    let compare = Pervasives.compare 
  end)
		      
type constraints = Constraint.t

type constraint_function = 
    universe -> universe -> constraints -> constraints

let enforce_gt u v c = Constraint.add (u,Gt,v) c
let enforce_geq u v c = Constraint.add (u,Geq,v) c
let enforce_eq u v c = Constraint.add (u,Eq,v) c

let merge_constraints c g =
  Constraint.fold 
    (fun cst g -> match cst with
       | (u,Gt,v) -> enforce_univ_gt u v g
       | (u,Geq,v) -> enforce_univ_geq u v g
       | (u,Eq,v) -> enforce_univ_eq u v g)
    c g

(* Returns the least upper bound of universes u and v. If they are not
   constrained, then a new universe is created.
   Used to type the products. *)
let sup u v g = 
  let g = declare_univ u g in
  let g = declare_univ v g in
  match compare g u v with
    | NGE -> 
	(match compare g v u with
           | NGE -> 
	       let w = new_univ u.u_sp in
	       let c = Constraint.add (w,Geq,u) 
			 (Constraint.singleton (w,Geq,v)) in
	       w, c
           | _ -> v, Constraint.empty)
    | _ -> u, Constraint.empty

(* Returns a fresh universe, juste above u. Does not create new universes
   for Type_0 (the sort of Prop and Set).
   Used to type the sort u. *)
let super u = 
  if u == prop_univ then 
    prop_univ_univ, Constraint.empty
  else if u == prop_univ_univ then 
    prop_univ_univ_univ, Constraint.empty
  else
    let v = new_univ u.u_sp in
    let c = Constraint.singleton (v,Gt,u) in
    v,c

let super_super u =
  if u == prop_univ then
    prop_univ_univ, prop_univ_univ_univ, Constraint.empty
  else if u == prop_univ_univ then 
    let v = new_univ u.u_sp in
    prop_univ_univ_univ, v, Constraint.singleton (v,Gt,prop_univ_univ_univ)
  else
    let v = new_univ u.u_sp in
    let w = new_univ u.u_sp in
    let c = Constraint.add (w,Gt,v) (Constraint.singleton (v,Gt,u)) in
    v, w, c

(* Pretty-printing *)
let num_universes g =
  UniverseMap.fold (fun _ _ -> succ) g 0

let num_edges g =
  let reln_len = 
    let rec lenrec n = function
      | Terminal -> n
      | Equiv _ -> n+1
      | Greater(_,_,r) -> lenrec (n+1) r
    in 
    lenrec 0 
  in
  UniverseMap.fold (fun _ (Arc(_,r)) n -> n + (reln_len r)) g 0
    
let pr_reln u r = 
  let rec prec = function
    | Greater(true,v,r) -> 
	[< pr_uni u ; 'sTR">" ; pr_uni v ; 'fNL ; prec r >]
    | Greater(false,v,r) -> 
	[< pr_uni u ; 'sTR">=" ; pr_uni v ; 'fNL ; prec r >]
    | Equiv v -> 
	[< pr_uni u ; 'sTR"=" ; pr_uni v >]
    | Terminal -> [< >]
  in 
  prec r
    
let pr_universes g =
  let graph = UniverseMap.fold (fun k a l -> (k,a)::l) g [] in
  prlist_with_sep pr_fnl (function (_,Arc(u,r)) -> pr_reln u r) graph