1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey *)
open Pp
open Errors
open Util
(* Universes are stratified by a partial ordering $\le$.
Let $\~{}$ be the associated equivalence. We also have a strict ordering
$<$ between equivalence classes, and we maintain that $<$ is acyclic,
and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.
At every moment, we have a finite number of universes, and we
maintain the ordering in the presence of assertions $U<V$ and $U\le V$.
The equivalence $\~{}$ is represented by a tree structure, as in the
union-find algorithm. The assertions $<$ and $\le$ are represented by
adjacency lists *)
module Uid = struct
type t = int
let make_maker () =
let _id = ref ~-1 in
fun () -> incr _id;!_id
let dummy = -1
let to_int id = id
end
module Hcons = struct
type 'a node = { id : Uid.t; key : int; node : 'a }
module type S =
sig
type data
type t = data node
val make : data -> t
val node : t -> data
val hash : t -> int
val stats : unit -> unit
val init : unit -> unit
end
module Make (H : Hashtbl.HashedType) : S with type data = H.t =
struct
let uid_make = Uid.make_maker()
type data = H.t
type t = data node
let node t = t.node
let hash t = t.key
module WH = Weak.Make( struct
type _t = t
type t = _t
let hash = hash
let equal a b = a == b || H.equal a.node b.node
end)
let pool = WH.create 491
let total_count = ref 0
let miss_count = ref 0
let init () =
total_count := 0;
miss_count := 0
let make x =
incr total_count;
let cell = { id = Uid.dummy; key = H.hash x; node = x } in
try
WH.find pool cell
with
| Not_found ->
let cell = { cell with id = uid_make(); } in
incr miss_count;
WH.add pool cell;
cell
let stats () = ()
end
end
module HList = struct
module type S = sig
type elt
type 'a node = Nil | Cons of elt * 'a
type t
type data = t node
val hash : t -> int
val make : data -> t
val nil : t
val is_nil : t -> bool
val tip : elt -> t
val node : t -> t node
val cons : (* ?sorted:bool -> *) elt -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val map : (elt -> elt) -> t -> t
val smartmap : (elt -> elt) -> t -> t
val exists : (elt -> bool) -> t -> bool
val for_all : (elt -> bool) -> t -> bool
val for_all2 : (elt -> elt -> bool) -> t -> t -> bool
val mem : elt -> t -> bool
val remove : elt -> t -> t
val to_list : t -> elt list
val compare : (elt -> elt -> int) -> t -> t -> int
end
module Make (H : Hashtbl.HashedType) : S with type elt = H.t =
struct
type elt = H.t
type 'a node = Nil | Cons of elt * 'a
module rec Node : Hcons.S with type data = Data.t = Hcons.Make(Data)
and Data : Hashtbl.HashedType with type t = Node.t node =
struct
type t = Node.t node
let equal x y =
match x,y with
| _,_ when x==y -> true
| Cons (a,aa), Cons(b,bb) -> (aa==bb) && (H.equal a b)
| _ -> false
let hash = function
| Nil -> 0
| Cons(a,aa) -> 17 + 65599 * (H.hash a) + 491 * (Uid.to_int aa.Hcons.id)
end
type data = Data.t
type t = Node.t
let make = Node.make
let node x = x.Hcons.node
let hash x = x.Hcons.key
let nil = Node.make Nil
let is_nil =
function { Hcons.node = Nil } -> true | _ -> false
let cons e l =
Node.make(Cons(e, l))
let tip e = Node.make (Cons(e, nil))
(* let cons ?(sorted=true) e l = *)
(* if sorted then sorted_cons e l else cons e l *)
let fold f l acc =
let rec loop acc l = match l.Hcons.node with
| Nil -> acc
| Cons (a, aa) -> loop (f a acc) aa
in
loop acc l
let map f l =
let rec loop l = match l.Hcons.node with
| Nil -> l
| Cons(a, aa) -> cons (f a) (loop aa)
in
loop l
let smartmap f l =
let rec loop l = match l.Hcons.node with
| Nil -> l
| Cons (a, aa) ->
let a' = f a in
if a' == a then
let aa' = loop aa in
if aa' == aa then l
else cons a aa'
else cons a' (loop aa)
in loop l
let exists f l =
let rec loop l = match l.Hcons.node with
| Nil -> false
| Cons(a,aa) -> f a || loop aa
in
loop l
let for_all f l =
let rec loop l = match l.Hcons.node with
| Nil -> true
| Cons(a,aa) -> f a && loop aa
in
loop l
let for_all2 f l l' =
let rec loop l l' = match l.Hcons.node, l'.Hcons.node with
| Nil, Nil -> true
| Cons(a,aa), Cons(b,bb) -> f a b && loop aa bb
| _, _ -> false
in
loop l l'
let to_list l =
let rec loop l = match l.Hcons.node with
| Nil -> []
| Cons(a,aa) -> a :: loop aa
in
loop l
let remove x l =
let rec loop l = match l.Hcons.node with
| Nil -> l
| Cons(a,aa) ->
if H.equal a x then aa
else cons a (loop aa)
in
loop l
let rec mem e l =
match l.Hcons.node with
| Nil -> false
| Cons (x, ll) -> H.equal x e || mem e ll
let rec compare cmp l1 l2 =
if l1 == l2 then 0
else
let hl1 = hash l1 and hl2 = hash l2 in
let c = Int.compare hl1 hl2 in
if c == 0 then
let nl1 = node l1 in
let nl2 = node l2 in
if nl1 == nl2 then 0
else
match nl1, nl2 with
| Nil, Nil -> assert false
| _, Nil -> 1
| Nil, _ -> -1
| Cons (x1,l1), Cons(x2,l2) ->
(match cmp x1 x2 with
| 0 -> compare cmp l1 l2
| c -> c)
else c
end
end
module RawLevel =
struct
open Names
type t =
| Prop
| Set
| Level of int * DirPath.t
| Var of int
(* Hash-consing *)
let equal x y =
x == y ||
match x, y with
| Prop, Prop -> true
| Set, Set -> true
| Level (n,d), Level (n',d') ->
Int.equal n n' && DirPath.equal d d'
| Var n, Var n' -> Int.equal n n'
| _ -> false
let compare u v =
match u, v with
| Prop,Prop -> 0
| Prop, _ -> -1
| _, Prop -> 1
| Set, Set -> 0
| Set, _ -> -1
| _, Set -> 1
| Level (i1, dp1), Level (i2, dp2) ->
if i1 < i2 then -1
else if i1 > i2 then 1
else DirPath.compare dp1 dp2
| Level _, _ -> -1
| _, Level _ -> 1
| Var n, Var m -> Int.compare n m
let hcons = function
| Prop as x -> x
| Set as x -> x
| Level (n,d) as x ->
let d' = Names.DirPath.hcons d in
if d' == d then x else Level (n,d')
| Var n as x -> x
open Hashset.Combine
let hash = function
| Prop -> combinesmall 1 0
| Set -> combinesmall 1 1
| Var n -> combinesmall 2 n
| Level (n, d) -> combinesmall 3 (combine n (Names.DirPath.hash d))
end
module Level = struct
open Names
type raw_level = RawLevel.t =
| Prop
| Set
| Level of int * DirPath.t
| Var of int
(** Embed levels with their hash value *)
type t = {
hash : int;
data : RawLevel.t }
let equal x y =
x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data
let hash x = x.hash
let hcons x =
let data' = RawLevel.hcons x.data in
if data' == x.data then x
else { x with data = data' }
let data x = x.data
(** Hashcons on levels + their hash *)
let make =
let module Self = struct
type _t = t
type t = _t
let equal = equal
let hash = hash
end in
let module WH = Weak.Make(Self) in
let pool = WH.create 4910 in fun x ->
let x = { hash = RawLevel.hash x; data = x } in
try WH.find pool x
with Not_found -> WH.add pool x; x
let set = make Set
let prop = make Prop
let is_small x =
match data x with
| Level _ -> false
| _ -> true
let is_prop x =
match data x with
| Prop -> true
| _ -> false
let is_set x =
match data x with
| Set -> true
| _ -> false
let compare u v =
if u == v then 0
else
let c = Int.compare (hash u) (hash v) in
if c == 0 then RawLevel.compare (data u) (data v)
else c
let to_string x =
match data x with
| Prop -> "Prop"
| Set -> "Set"
| Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n
| Var n -> "Var(" ^ string_of_int n ^ ")"
let pr u = str (to_string u)
let apart u v =
match data u, data v with
| Prop, Set | Set, Prop -> true
| _ -> false
let vars = Array.init 20 (fun i -> make (Var i))
let var n =
if n < 20 then vars.(n) else make (Var n)
let make m n = make (Level (n, Names.DirPath.hcons m))
end
(** Level maps *)
module LMap = struct
module M = HMap.Make (Level)
include M
let union l r =
merge (fun k l r ->
match l, r with
| Some _, _ -> l
| _, _ -> r) l r
let subst_union l r =
merge (fun k l r ->
match l, r with
| Some (Some _), _ -> l
| Some None, None -> l
| _, _ -> r) l r
let diff ext orig =
fold (fun u v acc ->
if mem u orig then acc
else add u v acc)
ext empty
let pr f m =
h 0 (prlist_with_sep fnl (fun (u, v) ->
Level.pr u ++ f v) (bindings m))
end
module LSet = struct
include LMap.Set
let pr s =
str"{" ++ prlist_with_sep spc Level.pr (elements s) ++ str"}"
let of_array l =
Array.fold_left (fun acc x -> add x acc) empty l
end
type 'a universe_map = 'a LMap.t
type universe_level = Level.t
type universe_level_subst_fn = universe_level -> universe_level
type universe_set = LSet.t
(* An algebraic universe [universe] is either a universe variable
[Level.t] or a formal universe known to be greater than some
universe variables and strictly greater than some (other) universe
variables
Universes variables denote universes initially present in the term
to type-check and non variable algebraic universes denote the
universes inferred while type-checking: it is either the successor
of a universe present in the initial term to type-check or the
maximum of two algebraic universes
*)
module Universe =
struct
(* Invariants: non empty, sorted and without duplicates *)
module Expr =
struct
type t = Level.t * int
type _t = t
(* Hashing of expressions *)
module ExprHash =
struct
type t = _t
type u = Level.t -> Level.t
let hashcons hdir (b,n as x) =
let b' = hdir b in
if b' == b then x else (b',n)
let equal l1 l2 =
l1 == l2 ||
match l1,l2 with
| (b,n), (b',n') -> b == b' && n == n'
let hash (x, n) = n + Level.hash x
end
module HExpr =
struct
include Hashcons.Make(ExprHash)
let make =
Hashcons.simple_hcons generate Level.hcons
let hash = ExprHash.hash
let equal x y = x == y ||
(let (u,n) = x and (v,n') = y in
Int.equal n n' && Level.equal u v)
end
let hcons = HExpr.make
let make l = hcons (l, 0)
let compare u v =
if u == v then 0
else
let (x, n) = u and (x', n') = v in
if Int.equal n n' then Level.compare x x'
else n - n'
let prop = make Level.prop
let set = make Level.set
let type1 = hcons (Level.set, 1)
let is_prop = function
| (l,0) -> Level.is_prop l
| _ -> false
let is_small = function
| (l,0) -> Level.is_small l
| _ -> false
let equal x y = x == y ||
(let (u,n) = x and (v,n') = y in
Int.equal n n' && Level.equal u v)
let leq (u,n) (v,n') =
let cmp = Level.compare u v in
if Int.equal cmp 0 then n <= n'
else if n <= n' then
(Level.is_prop u && Level.is_small v)
else false
let successor (u,n) =
if Level.is_prop u then type1
else hcons (u, n + 1)
let addn k (u,n as x) =
if k = 0 then x
else if Level.is_prop u then
hcons (Level.set,n+k)
else hcons (u,n+k)
let super (u,n as x) (v,n' as y) =
let cmp = Level.compare u v in
if Int.equal cmp 0 then
if n < n' then Inl true
else Inl false
else if is_prop x then Inl true
else if is_prop y then Inl false
else Inr cmp
let to_string (v, n) =
if Int.equal n 0 then Level.to_string v
else Level.to_string v ^ "+" ^ string_of_int n
let pr x = str(to_string x)
let pr_with f (v, n) =
if Int.equal n 0 then f v
else f v ++ str"+" ++ int n
let is_level = function
| (v, 0) -> true
| _ -> false
let level = function
| (v,0) -> Some v
| _ -> None
let get_level (v,n) = v
let map f (v, n as x) =
let v' = f v in
if v' == v then x
else if Level.is_prop v' && n != 0 then
hcons (Level.set, n)
else hcons (v', n)
end
let compare_expr = Expr.compare
module Huniv = HList.Make(Expr.HExpr)
type t = Huniv.t
open Huniv
let equal x y = x == y ||
(Huniv.hash x == Huniv.hash y &&
Huniv.for_all2 Expr.equal x y)
let hash = Huniv.hash
let compare x y =
if x == y then 0
else
let hx = Huniv.hash x and hy = Huniv.hash y in
let c = Int.compare hx hy in
if c == 0 then
Huniv.compare (fun e1 e2 -> compare_expr e1 e2) x y
else c
let hcons_unique = Huniv.make
let hcons x = hcons_unique x
let make l = Huniv.tip (Expr.make l)
let tip x = Huniv.tip x
let pr l = match node l with
| Cons (u, n) when is_nil n -> Expr.pr u
| _ ->
str "max(" ++ hov 0
(prlist_with_sep pr_comma Expr.pr (to_list l)) ++
str ")"
let pr_with f l = match node l with
| Cons (u, n) when is_nil n -> Expr.pr_with f u
| _ ->
str "max(" ++ hov 0
(prlist_with_sep pr_comma (Expr.pr_with f) (to_list l)) ++
str ")"
let atom l = match node l with
| Cons (l, n) when is_nil n -> Some l
| _ -> None
let is_level l = match node l with
| Cons (l, n) when is_nil n -> Expr.is_level l
| _ -> false
let level l = match node l with
| Cons (l, n) when is_nil n -> Expr.level l
| _ -> None
let levels l =
fold (fun x acc -> LSet.add (Expr.get_level x) acc) l LSet.empty
let is_small u =
match node u with
| Cons (l, n) when is_nil n -> Expr.is_small l
| _ -> false
(* The lower predicative level of the hierarchy that contains (impredicative)
Prop and singleton inductive types *)
let type0m = tip Expr.prop
(* The level of sets *)
let type0 = tip Expr.set
(* When typing [Prop] and [Set], there is no constraint on the level,
hence the definition of [type1_univ], the type of [Prop] *)
let type1 = tip (Expr.successor Expr.set)
let is_type0m x = equal type0m x
let is_type0 x = equal type0 x
(* Returns the formal universe that lies juste above the universe variable u.
Used to type the sort u. *)
let super l =
if is_small l then type1
else
Huniv.map (fun x -> Expr.successor x) l
let addn n l =
Huniv.map (fun x -> Expr.addn n x) l
let rec merge_univs l1 l2 =
match node l1, node l2 with
| Nil, _ -> l2
| _, Nil -> l1
| Cons (h1, t1), Cons (h2, t2) ->
(match Expr.super h1 h2 with
| Inl true (* h1 < h2 *) -> merge_univs t1 l2
| Inl false -> merge_univs l1 t2
| Inr c ->
if c <= 0 (* h1 < h2 is name order *)
then cons h1 (merge_univs t1 l2)
else cons h2 (merge_univs l1 t2))
let sort u =
let rec aux a l =
match node l with
| Cons (b, l') ->
(match Expr.super a b with
| Inl false -> aux a l'
| Inl true -> l
| Inr c ->
if c <= 0 then cons a l
else cons b (aux a l'))
| Nil -> cons a l
in
fold (fun a acc -> aux a acc) u nil
(* Returns the formal universe that is greater than the universes u and v.
Used to type the products. *)
let sup x y = merge_univs x y
let empty = nil
let is_empty n = is_nil n
let exists = Huniv.exists
let for_all = Huniv.for_all
let smartmap = Huniv.smartmap
end
type universe = Universe.t
(* The level of predicative Set *)
let type0m_univ = Universe.type0m
let type0_univ = Universe.type0
let type1_univ = Universe.type1
let is_type0m_univ = Universe.is_type0m
let is_type0_univ = Universe.is_type0
let is_univ_variable l = Universe.level l != None
let is_small_univ = Universe.is_small
let pr_uni = Universe.pr
let sup = Universe.sup
let super = Universe.super
open Universe
let universe_level = Universe.level
type status = Unset | SetLe | SetLt
(* Comparison on this type is pointer equality *)
type canonical_arc =
{ univ: Level.t;
lt: Level.t list;
le: Level.t list;
rank : int;
predicative : bool;
mutable status : status;
(** Guaranteed to be unset out of the [compare_neq] functions. It is used
to do an imperative traversal of the graph, ensuring a O(1) check that
a node has already been visited. Quite performance critical indeed. *)
}
let arc_is_le arc = match arc.status with
| Unset -> false
| SetLe | SetLt -> true
let arc_is_lt arc = match arc.status with
| Unset | SetLe -> false
| SetLt -> true
let terminal u = {univ=u; lt=[]; le=[]; rank=0; predicative=false; status = Unset}
module UMap :
sig
type key = Level.t
type +'a t
val empty : 'a t
val add : key -> 'a -> 'a t -> 'a t
val find : key -> 'a t -> 'a
val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val iter : (key -> 'a -> unit) -> 'a t -> unit
val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t
end = HMap.Make(Level)
(* A Level.t is either an alias for another one, or a canonical one,
for which we know the universes that are above *)
type univ_entry =
Canonical of canonical_arc
| Equiv of Level.t
type universes = univ_entry UMap.t
(** Used to cleanup universes if a traversal function is interrupted before it
has the opportunity to do it itself. *)
let unsafe_cleanup_universes g =
let iter _ arc = match arc with
| Equiv _ -> ()
| Canonical arc -> arc.status <- Unset
in
UMap.iter iter g
let rec cleanup_universes g =
try unsafe_cleanup_universes g
with e ->
(** The only way unsafe_cleanup_universes may raise an exception is when
a serious error (stack overflow, out of memory) occurs, or a signal is
sent. In this unlikely event, we relaunch the cleanup until we finally
succeed. *)
cleanup_universes g; raise e
let enter_equiv_arc u v g =
UMap.add u (Equiv v) g
let enter_arc ca g =
UMap.add ca.univ (Canonical ca) g
(* Every Level.t has a unique canonical arc representative *)
(* repr : universes -> Level.t -> canonical_arc *)
(* canonical representative : we follow the Equiv links *)
let repr g u =
let rec repr_rec u =
let a =
try UMap.find u g
with Not_found -> anomaly ~label:"Univ.repr"
(str"Universe " ++ Level.pr u ++ str" undefined")
in
match a with
| Equiv v -> repr_rec v
| Canonical arc -> arc
in
repr_rec u
(* [safe_repr] also search for the canonical representative, but
if the graph doesn't contain the searched universe, we add it. *)
let safe_repr g u =
let rec safe_repr_rec u =
match UMap.find u g with
| Equiv v -> safe_repr_rec v
| Canonical arc -> arc
in
try g, safe_repr_rec u
with Not_found ->
let can = terminal u in
enter_arc can g, can
(* reprleq : canonical_arc -> canonical_arc list *)
(* All canonical arcv such that arcu<=arcv with arcv#arcu *)
let reprleq g arcu =
let rec searchrec w = function
| [] -> w
| v :: vl ->
let arcv = repr g v in
if List.memq arcv w || arcu==arcv then
searchrec w vl
else
searchrec (arcv :: w) vl
in
searchrec [] arcu.le
(* between : Level.t -> canonical_arc -> canonical_arc list *)
(* between u v = { w | u<=w<=v, w canonical } *)
(* between is the most costly operation *)
let between g arcu arcv =
(* good are all w | u <= w <= v *)
(* bad are all w | u <= w ~<= v *)
(* find good and bad nodes in {w | u <= w} *)
(* explore b u = (b or "u is good") *)
let rec explore ((good, bad, b) as input) arcu =
if List.memq arcu good then
(good, bad, true) (* b or true *)
else if List.memq arcu bad then
input (* (good, bad, b or false) *)
else
let leq = reprleq g arcu in
(* is some universe >= u good ? *)
let good, bad, b_leq =
List.fold_left explore (good, bad, false) leq
in
if b_leq then
arcu::good, bad, true (* b or true *)
else
good, arcu::bad, b (* b or false *)
in
let good,_,_ = explore ([arcv],[],false) arcu in
good
(* We assume compare(u,v) = LE with v canonical (see compare below).
In this case List.hd(between g u v) = repr u
Otherwise, between g u v = []
*)
type constraint_type = Lt | Le | Eq
type explanation = (constraint_type * universe) list
let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1
(** [fast_compare_neq] : is [arcv] in the transitive upward closure of [arcu] ?
In [strict] mode, we fully distinguish between LE and LT, while in
non-strict mode, we simply answer LE for both situations.
If [arcv] is encountered in a LT part, we could directly answer
without visiting unneeded parts of this transitive closure.
In [strict] mode, if [arcv] is encountered in a LE part, we could only
change the default answer (1st arg [c]) from NLE to LE, since a strict
constraint may appear later. During the recursive traversal,
[lt_done] and [le_done] are universes we have already visited,
they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)],
two lists of universes not yet considered, known to be above [arcu],
strictly or not.
We use depth-first search, but the presence of [arcv] in [new_lt]
is checked as soon as possible : this seems to be slightly faster
on a test.
We do the traversal imperatively, setting the [status] flag on visited nodes.
This ensures O(1) check, but it also requires unsetting the flag when leaving
the function. Some special care has to be taken in order to ensure we do not
recover a messed up graph at the end. This occurs in particular when the
traversal raises an exception. Even though the code below is exception-free,
OCaml may still raise random exceptions, essentially fatal exceptions or
signal handlers. Therefore we ensure the cleanup by a catch-all clause. Note
also that the use of an imperative solution does make this function
thread-unsafe. For now we do not check universes in different threads, but if
ever this is to be done, we would need some lock somewhere.
*)
let get_explanation strict g arcu arcv =
(* [c] characterizes whether (and how) arcv has already been related
to arcu among the lt_done,le_done universe *)
let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
| [],[] -> (to_revert, c)
| (arc,p)::lt_todo, le_todo ->
if arc_is_lt arc then
cmp c to_revert lt_todo le_todo
else
let rec find lt_todo lt le = match le with
| [] ->
begin match lt with
| [] ->
let () = arc.status <- SetLt in
cmp c (arc :: to_revert) lt_todo le_todo
| u :: lt ->
let arc = repr g u in
let p = (Lt, make u) :: p in
if arc == arcv then
if strict then (to_revert, p) else (to_revert, p)
else find ((arc, p) :: lt_todo) lt le
end
| u :: le ->
let arc = repr g u in
let p = (Le, make u) :: p in
if arc == arcv then
if strict then (to_revert, p) else (to_revert, p)
else find ((arc, p) :: lt_todo) lt le
in
find lt_todo arc.lt arc.le
| [], (arc,p)::le_todo ->
if arc == arcv then
(* No need to continue inspecting universes above arc:
if arcv is strictly above arc, then we would have a cycle.
But we cannot answer LE yet, a stronger constraint may
come later from [le_todo]. *)
if strict then cmp p to_revert [] le_todo else (to_revert, p)
else
if arc_is_le arc then
cmp c to_revert [] le_todo
else
let rec find lt_todo lt = match lt with
| [] ->
let fold accu u =
let p = (Le, make u) :: p in
let node = (repr g u, p) in
node :: accu
in
let le_new = List.fold_left fold le_todo arc.le in
let () = arc.status <- SetLe in
cmp c (arc :: to_revert) lt_todo le_new
| u :: lt ->
let arc = repr g u in
let p = (Lt, make u) :: p in
if arc == arcv then
if strict then (to_revert, p) else (to_revert, p)
else find ((arc, p) :: lt_todo) lt
in
find [] arc.lt
in
try
let (to_revert, c) = cmp [] [] [] [(arcu, [])] in
(** Reset all the touched arcs. *)
let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
List.rev c
with e ->
(** Unlikely event: fatal error or signal *)
let () = cleanup_universes g in
raise e
let get_explanation strict g arcu arcv =
if !Flags.univ_print then Some (get_explanation strict g arcu arcv)
else None
type fast_order = FastEQ | FastLT | FastLE | FastNLE
let fast_compare_neq strict g arcu arcv =
(* [c] characterizes whether arcv has already been related
to arcu among the lt_done,le_done universe *)
let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
| [],[] -> (to_revert, c)
| arc::lt_todo, le_todo ->
if arc_is_lt arc then
cmp c to_revert lt_todo le_todo
else
let rec find lt_todo lt le = match le with
| [] ->
begin match lt with
| [] ->
let () = arc.status <- SetLt in
cmp c (arc :: to_revert) lt_todo le_todo
| u :: lt ->
let arc = repr g u in
if arc == arcv then
if strict then (to_revert, FastLT) else (to_revert, FastLE)
else find (arc :: lt_todo) lt le
end
| u :: le ->
let arc = repr g u in
if arc == arcv then
if strict then (to_revert, FastLT) else (to_revert, FastLE)
else find (arc :: lt_todo) lt le
in
find lt_todo arc.lt arc.le
| [], arc::le_todo ->
if arc == arcv then
(* No need to continue inspecting universes above arc:
if arcv is strictly above arc, then we would have a cycle.
But we cannot answer LE yet, a stronger constraint may
come later from [le_todo]. *)
if strict then cmp FastLE to_revert [] le_todo else (to_revert, FastLE)
else
if arc_is_le arc then
cmp c to_revert [] le_todo
else
let rec find lt_todo lt = match lt with
| [] ->
let fold accu u =
let node = repr g u in
node :: accu
in
let le_new = List.fold_left fold le_todo arc.le in
let () = arc.status <- SetLe in
cmp c (arc :: to_revert) lt_todo le_new
| u :: lt ->
let arc = repr g u in
if arc == arcv then
if strict then (to_revert, FastLT) else (to_revert, FastLE)
else find (arc :: lt_todo) lt
in
find [] arc.lt
in
try
let (to_revert, c) = cmp FastNLE [] [] [arcu] in
(** Reset all the touched arcs. *)
let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
c
with e ->
(** Unlikely event: fatal error or signal *)
let () = cleanup_universes g in
raise e
let get_explanation_strict g arcu arcv = get_explanation true g arcu arcv
let fast_compare g arcu arcv =
if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv
let is_leq g arcu arcv =
arcu == arcv ||
(match fast_compare_neq false g arcu arcv with
| FastNLE -> false
| (FastEQ|FastLE|FastLT) -> true)
let is_lt g arcu arcv =
if arcu == arcv then false
else
match fast_compare_neq true g arcu arcv with
| FastLT -> true
| (FastEQ|FastLE|FastNLE) -> false
(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
compare(u,v) = LT or LE => compare(v,u) = NLE
compare(u,v) = NLE => compare(v,u) = NLE or LE or LT
Adding u>=v is consistent iff compare(v,u) # LT
and then it is redundant iff compare(u,v) # NLE
Adding u>v is consistent iff compare(v,u) = NLE
and then it is redundant iff compare(u,v) = LT *)
(** * Universe checks [check_eq] and [check_leq], used in coqchk *)
(** First, checks on universe levels *)
let check_equal g u v =
let g, arcu = safe_repr g u in
let _, arcv = safe_repr g v in
arcu == arcv
let check_eq_level g u v = u == v || check_equal g u v
let is_set_arc u = Level.is_set u.univ
let is_prop_arc u = Level.is_prop u.univ
let get_prop_arc g = snd (safe_repr g Level.prop)
let check_smaller g strict u v =
let g, arcu = safe_repr g u in
let g, arcv = safe_repr g v in
if strict then
is_lt g arcu arcv
else
is_prop_arc arcu
|| (is_set_arc arcu && arcv.predicative)
|| is_leq g arcu arcv
(** Then, checks on universes *)
type 'a check_function = universes -> 'a -> 'a -> bool
let check_equal_expr g x y =
x == y || (let (u, n) = x and (v, m) = y in
Int.equal n m && check_equal g u v)
let check_eq_univs g l1 l2 =
let f x1 x2 = check_equal_expr g x1 x2 in
let exists x1 l = Huniv.exists (fun x2 -> f x1 x2) l in
Huniv.for_all (fun x1 -> exists x1 l2) l1
&& Huniv.for_all (fun x2 -> exists x2 l1) l2
let check_eq g u v =
Universe.equal u v || check_eq_univs g u v
let check_smaller_expr g (u,n) (v,m) =
let diff = n - m in
match diff with
| 0 -> check_smaller g false u v
| 1 -> check_smaller g true u v
| x when x < 0 -> check_smaller g false u v
| _ -> false
let exists_bigger g ul l =
Huniv.exists (fun ul' ->
check_smaller_expr g ul ul') l
let real_check_leq g u v =
Huniv.for_all (fun ul -> exists_bigger g ul v) u
let check_leq g u v =
Universe.equal u v ||
Universe.is_type0m u ||
check_eq_univs g u v || real_check_leq g u v
(** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *)
(** To speed up tests of Set </<= i *)
let set_predicative g arcv =
enter_arc {arcv with predicative = true} g
(* setlt : Level.t -> Level.t -> reason -> unit *)
(* forces u > v *)
(* this is normally an update of u in g rather than a creation. *)
let setlt g arcu arcv =
let arcu' = {arcu with lt=arcv.univ::arcu.lt} in
let g =
if is_set_arc arcu then set_predicative g arcv
else g
in
enter_arc arcu' g, arcu'
(* checks that non-redundant *)
let setlt_if (g,arcu) v =
let arcv = repr g v in
if is_lt g arcu arcv then g, arcu
else setlt g arcu arcv
(* setleq : Level.t -> Level.t -> unit *)
(* forces u >= v *)
(* this is normally an update of u in g rather than a creation. *)
let setleq g arcu arcv =
let arcu' = {arcu with le=arcv.univ::arcu.le} in
let g =
if is_set_arc arcu' then
set_predicative g arcv
else g
in
enter_arc arcu' g, arcu'
(* checks that non-redundant *)
let setleq_if (g,arcu) v =
let arcv = repr g v in
if is_leq g arcu arcv then g, arcu
else setleq g arcu arcv
(* merge : Level.t -> Level.t -> unit *)
(* we assume compare(u,v) = LE *)
(* merge u v forces u ~ v with repr u as canonical repr *)
let merge g arcu arcv =
(* we find the arc with the biggest rank, and we redirect all others to it *)
let arcu, g, v =
let best_ranked (max_rank, old_max_rank, best_arc, rest) arc =
if Level.is_small arc.univ || arc.rank >= max_rank
then (arc.rank, max_rank, arc, best_arc::rest)
else (max_rank, old_max_rank, best_arc, arc::rest)
in
match between g arcu arcv with
| [] -> anomaly (str "Univ.between")
| arc::rest ->
let (max_rank, old_max_rank, best_arc, rest) =
List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in
if max_rank > old_max_rank then best_arc, g, rest
else begin
(* one redirected node also has max_rank *)
let arcu = {best_arc with rank = max_rank + 1} in
arcu, enter_arc arcu g, rest
end
in
let redirect (g,w,w') arcv =
let g' = enter_equiv_arc arcv.univ arcu.univ g in
(g',List.unionq arcv.lt w,arcv.le@w')
in
let (g',w,w') = List.fold_left redirect (g,[],[]) v in
let g_arcu = (g',arcu) in
let g_arcu = List.fold_left setlt_if g_arcu w in
let g_arcu = List.fold_left setleq_if g_arcu w' in
fst g_arcu
(* merge_disc : Level.t -> Level.t -> unit *)
(* we assume compare(u,v) = compare(v,u) = NLE *)
(* merge_disc u v forces u ~ v with repr u as canonical repr *)
let merge_disc g arc1 arc2 =
let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in
let arcu, g =
if not (Int.equal arc1.rank arc2.rank) then arcu, g
else
let arcu = {arcu with rank = succ arcu.rank} in
arcu, enter_arc arcu g
in
let g' = enter_equiv_arc arcv.univ arcu.univ g in
let g_arcu = (g',arcu) in
let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in
let g_arcu = List.fold_left setleq_if g_arcu arcv.le in
fst g_arcu
(* Universe inconsistency: error raised when trying to enforce a relation
that would create a cycle in the graph of universes. *)
type univ_inconsistency = constraint_type * universe * universe * explanation option
exception UniverseInconsistency of univ_inconsistency
let error_inconsistency o u v (p:explanation option) =
raise (UniverseInconsistency (o,make u,make v,p))
(* enforc_univ_eq : Level.t -> Level.t -> unit *)
(* enforc_univ_eq u v will force u=v if possible, will fail otherwise *)
let enforce_univ_eq u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
match fast_compare g arcu arcv with
| FastEQ -> g
| FastLT ->
let p = get_explanation_strict g arcu arcv in
error_inconsistency Eq v u p
| FastLE -> merge g arcu arcv
| FastNLE ->
(match fast_compare g arcv arcu with
| FastLT ->
let p = get_explanation_strict g arcv arcu in
error_inconsistency Eq u v p
| FastLE -> merge g arcv arcu
| FastNLE -> merge_disc g arcu arcv
| FastEQ -> anomaly (Pp.str "Univ.compare"))
(* enforce_univ_leq : Level.t -> Level.t -> unit *)
(* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *)
let enforce_univ_leq u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
if is_leq g arcu arcv then g
else
match fast_compare g arcv arcu with
| FastLT ->
let p = get_explanation_strict g arcv arcu in
error_inconsistency Le u v p
| FastLE -> merge g arcv arcu
| FastNLE -> fst (setleq g arcu arcv)
| FastEQ -> anomaly (Pp.str "Univ.compare")
(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
let enforce_univ_lt u v g =
let g,arcu = safe_repr g u in
let g,arcv = safe_repr g v in
match fast_compare g arcu arcv with
| FastLT -> g
| FastLE -> fst (setlt g arcu arcv)
| FastEQ -> error_inconsistency Lt u v (Some [(Eq,make v)])
| FastNLE ->
match fast_compare_neq false g arcv arcu with
FastNLE -> fst (setlt g arcu arcv)
| FastEQ -> anomaly (Pp.str "Univ.compare")
| (FastLE|FastLT) ->
let p = get_explanation false g arcv arcu in
error_inconsistency Lt u v p
let empty_universes = UMap.empty
(* Prop = Set is forbidden here. *)
let initial_universes = enforce_univ_lt Level.prop Level.set UMap.empty
let is_initial_universes g = UMap.equal (==) g initial_universes
let add_universe vlev g =
let v = terminal vlev in
let proparc = get_prop_arc g in
enter_arc {proparc with le=vlev::proparc.le}
(enter_arc v g)
(* Constraints and sets of constraints. *)
type univ_constraint = Level.t * constraint_type * Level.t
let enforce_constraint cst g =
match cst with
| (u,Lt,v) -> enforce_univ_lt u v g
| (u,Le,v) -> enforce_univ_leq u v g
| (u,Eq,v) -> enforce_univ_eq u v g
let pr_constraint_type op =
let op_str = match op with
| Lt -> " < "
| Le -> " <= "
| Eq -> " = "
in str op_str
module UConstraintOrd =
struct
type t = univ_constraint
let compare (u,c,v) (u',c',v') =
let i = constraint_type_ord c c' in
if not (Int.equal i 0) then i
else
let i' = Level.compare u u' in
if not (Int.equal i' 0) then i'
else Level.compare v v'
end
module Constraint =
struct
module S = Set.Make(UConstraintOrd)
include S
let pr c =
fold (fun (u1,op,u2) pp_std ->
pp_std ++ Level.pr u1 ++ pr_constraint_type op ++
Level.pr u2 ++ fnl () ) c (str "")
end
let empty_constraint = Constraint.empty
let union_constraint = Constraint.union
let eq_constraint = Constraint.equal
let merge_constraints c g =
Constraint.fold enforce_constraint c g
type constraints = Constraint.t
module Hconstraint =
Hashcons.Make(
struct
type t = univ_constraint
type u = universe_level -> universe_level
let hashcons hul (l1,k,l2) = (hul l1, k, hul l2)
let equal (l1,k,l2) (l1',k',l2') =
l1 == l1' && k == k' && l2 == l2'
let hash = Hashtbl.hash
end)
module Hconstraints =
Hashcons.Make(
struct
type t = constraints
type u = univ_constraint -> univ_constraint
let hashcons huc s =
Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty
let equal s s' =
List.for_all2eq (==)
(Constraint.elements s)
(Constraint.elements s')
let hash = Hashtbl.hash
end)
let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Level.hcons
let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate hcons_constraint
(** A value with universe constraints. *)
type 'a constrained = 'a * constraints
let constraints_of (_, cst) = cst
(** Constraint functions. *)
type 'a constraint_function = 'a -> 'a -> constraints -> constraints
let enforce_eq_level u v c =
(* We discard trivial constraints like u=u *)
if Level.equal u v then c
else if Level.apart u v then
error_inconsistency Eq u v None
else Constraint.add (u,Eq,v) c
let enforce_eq u v c =
match Universe.level u, Universe.level v with
| Some u, Some v -> enforce_eq_level u v c
| _ -> anomaly (Pp.str "A universe comparison can only happen between variables")
let check_univ_eq u v = Universe.equal u v
let enforce_eq u v c =
if check_univ_eq u v then c
else enforce_eq u v c
let constraint_add_leq v u c =
(* We just discard trivial constraints like u<=u *)
if Expr.equal v u then c
else
match v, u with
| (x,n), (y,m) ->
let j = m - n in
if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then
Constraint.add (x,Lt,y) c
else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then
if Level.equal x y then (* u+(k+1) <= u *)
raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u, None))
else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints")
else if j = 0 then
Constraint.add (x,Le,y) c
else (* j >= 1 *) (* m = n + k, u <= v+k *)
if Level.equal x y then c (* u <= u+k, trivial *)
else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *)
else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints")
let check_univ_leq_one u v = Universe.exists (Expr.leq u) v
let check_univ_leq u v =
Universe.for_all (fun u -> check_univ_leq_one u v) u
let enforce_leq u v c =
match Huniv.node v with
| Universe.Huniv.Cons (v, n) when Universe.is_empty n ->
Universe.Huniv.fold (fun u -> constraint_add_leq u v) u c
| _ -> anomaly (Pp.str"A universe bound can only be a variable")
let enforce_leq u v c =
if check_univ_leq u v then c
else enforce_leq u v c
let enforce_leq_level u v c =
if Level.equal u v then c else Constraint.add (u,Le,v) c
let check_constraint g (l,d,r) =
match d with
| Eq -> check_equal g l r
| Le -> check_smaller g false l r
| Lt -> check_smaller g true l r
let check_constraints c g =
Constraint.for_all (check_constraint g) c
let enforce_univ_constraint (u,d,v) =
match d with
| Eq -> enforce_eq u v
| Le -> enforce_leq u v
| Lt -> enforce_leq (super u) v
(* Normalization *)
let lookup_level u g =
try Some (UMap.find u g) with Not_found -> None
(** [normalize_universes g] returns a graph where all edges point
directly to the canonical representent of their target. The output
graph should be equivalent to the input graph from a logical point
of view, but optimized. We maintain the invariant that the key of
a [Canonical] element is its own name, by keeping [Equiv] edges
(see the assertion)... I (Stéphane Glondu) am not sure if this
plays a role in the rest of the module. *)
let normalize_universes g =
let rec visit u arc cache = match lookup_level u cache with
| Some x -> x, cache
| None -> match Lazy.force arc with
| None ->
u, UMap.add u u cache
| Some (Canonical {univ=v; lt=_; le=_}) ->
v, UMap.add u v cache
| Some (Equiv v) ->
let v, cache = visit v (lazy (lookup_level v g)) cache in
v, UMap.add u v cache
in
let cache = UMap.fold
(fun u arc cache -> snd (visit u (Lazy.lazy_from_val (Some arc)) cache))
g UMap.empty
in
let repr x = UMap.find x cache in
let lrepr us = List.fold_left
(fun e x -> LSet.add (repr x) e) LSet.empty us
in
let canonicalize u = function
| Equiv _ -> Equiv (repr u)
| Canonical {univ=v; lt=lt; le=le; rank=rank} ->
assert (u == v);
(* avoid duplicates and self-loops *)
let lt = lrepr lt and le = lrepr le in
let le = LSet.filter
(fun x -> x != u && not (LSet.mem x lt)) le
in
LSet.iter (fun x -> assert (x != u)) lt;
Canonical {
univ = v;
lt = LSet.elements lt;
le = LSet.elements le;
rank = rank;
predicative = false;
status = Unset;
}
in
UMap.mapi canonicalize g
let constraints_of_universes g =
let constraints_of u v acc =
match v with
| Canonical {univ=u; lt=lt; le=le} ->
let acc = List.fold_left (fun acc v -> Constraint.add (u,Lt,v) acc) acc lt in
let acc = List.fold_left (fun acc v -> Constraint.add (u,Le,v) acc) acc le in
acc
| Equiv v -> Constraint.add (u,Eq,v) acc
in
UMap.fold constraints_of g Constraint.empty
let constraints_of_universes g =
constraints_of_universes (normalize_universes g)
(** Longest path algorithm. This is used to compute the minimal number of
universes required if the only strict edge would be the Lt one. This
algorithm assumes that the given universes constraints are a almost DAG, in
the sense that there may be {Eq, Le}-cycles. This is OK for consistent
universes, which is the only case where we use this algorithm. *)
(** Adjacency graph *)
type graph = constraint_type LMap.t LMap.t
exception Connected
(** Check connectedness *)
let connected x y (g : graph) =
let rec connected x target seen g =
if Level.equal x target then raise Connected
else if not (LSet.mem x seen) then
let seen = LSet.add x seen in
let fold z _ seen = connected z target seen g in
let neighbours = try LMap.find x g with Not_found -> LMap.empty in
LMap.fold fold neighbours seen
else seen
in
try ignore(connected x y LSet.empty g); false with Connected -> true
let add_edge x y v (g : graph) =
try
let neighbours = LMap.find x g in
let neighbours = LMap.add y v neighbours in
LMap.add x neighbours g
with Not_found ->
LMap.add x (LMap.singleton y v) g
(** We want to keep the graph DAG. If adding an edge would cause a cycle, that
would necessarily be an {Eq, Le}-cycle, otherwise there would have been a
universe inconsistency. Therefore we may omit adding such a cycling edge
without changing the compacted graph. *)
let add_eq_edge x y v g = if connected y x g then g else add_edge x y v g
(** Construct the DAG and its inverse at the same time. *)
let make_graph g : (graph * graph) =
let fold u arc accu = match arc with
| Equiv v ->
let (dir, rev) = accu in
(add_eq_edge u v Eq dir, add_eq_edge v u Eq rev)
| Canonical { univ; lt; le; } ->
let () = assert (u == univ) in
let fold_lt (dir, rev) v = (add_edge u v Lt dir, add_edge v u Lt rev) in
let fold_le (dir, rev) v = (add_eq_edge u v Le dir, add_eq_edge v u Le rev) in
(** Order is important : lt after le, because of the possible redundancy
between [le] and [lt] in a canonical arc. This way, the [lt] constraint
is the last one set, which is correct because it implies [le]. *)
let accu = List.fold_left fold_le accu le in
let accu = List.fold_left fold_lt accu lt in
accu
in
UMap.fold fold g (LMap.empty, LMap.empty)
(** Construct a topological order out of a DAG. *)
let rec topological_fold u g rem seen accu =
let is_seen =
try
let status = LMap.find u seen in
assert status; (** If false, not a DAG! *)
true
with Not_found -> false
in
if not is_seen then
let rem = LMap.remove u rem in
let seen = LMap.add u false seen in
let neighbours = try LMap.find u g with Not_found -> LMap.empty in
let fold v _ (rem, seen, accu) = topological_fold v g rem seen accu in
let (rem, seen, accu) = LMap.fold fold neighbours (rem, seen, accu) in
(rem, LMap.add u true seen, u :: accu)
else (rem, seen, accu)
let rec topological g rem seen accu =
let node = try Some (LMap.choose rem) with Not_found -> None in
match node with
| None -> accu
| Some (u, _) ->
let rem, seen, accu = topological_fold u g rem seen accu in
topological g rem seen accu
(** Compute the longest path from any vertex. *)
let constraint_cost = function
| Eq | Le -> 0
| Lt -> 1
(** This algorithm browses the graph in topological order, computing for each
encountered node the length of the longest path leading to it. Should be
O(|V|) or so (modulo map representation). *)
let rec flatten_graph rem (rev : graph) map mx = match rem with
| [] -> map, mx
| u :: rem ->
let prev = try LMap.find u rev with Not_found -> LMap.empty in
let fold v cstr accu =
let v_cost = LMap.find v map in
max (v_cost + constraint_cost cstr) accu
in
let u_cost = LMap.fold fold prev 0 in
let map = LMap.add u u_cost map in
flatten_graph rem rev map (max mx u_cost)
(** [sort_universes g] builds a map from universes in [g] to natural
numbers. It outputs a graph containing equivalence edges from each
level appearing in [g] to [Type.n], and [lt] edges between the
[Type.n]s. The output graph should imply the input graph (and the
[Type.n]s. The output graph should imply the input graph (and the
implication will be strict most of the time), but is not
necessarily minimal. Note: the result is unspecified if the input
graph already contains [Type.n] nodes (calling a module Type is
probably a bad idea anyway). *)
let sort_universes orig =
let (dir, rev) = make_graph orig in
let order = topological dir dir LMap.empty [] in
let compact, max = flatten_graph order rev LMap.empty 0 in
let mp = Names.DirPath.make [Names.Id.of_string "Type"] in
let types = Array.init (max + 1) (fun n -> Level.make mp n) in
(** Old universes are made equal to [Type.n] *)
let fold u level accu = UMap.add u (Equiv types.(level)) accu in
let sorted = LMap.fold fold compact UMap.empty in
(** Add all [Type.n] nodes *)
let fold i accu u =
if 0 < i then
let pred = types.(i - 1) in
let arc = {univ = u; lt = [pred]; le = []; rank = 0; predicative = false; status = Unset; } in
UMap.add u (Canonical arc) accu
else accu
in
Array.fold_left_i fold sorted types
(* Miscellaneous functions to remove or test local univ assumed to
occur in a universe *)
let univ_level_mem u v = Huniv.mem (Expr.make u) v
let univ_level_rem u v min =
match Universe.level v with
| Some u' -> if Level.equal u u' then min else v
| None -> Huniv.remove (Universe.Expr.make u) v
(* Is u mentionned in v (or equals to v) ? *)
(**********************************************************************)
(** Universe polymorphism *)
(**********************************************************************)
(** A universe level substitution, note that no algebraic universes are
involved *)
type universe_level_subst = universe_level universe_map
(** A full substitution might involve algebraic universes *)
type universe_subst = universe universe_map
let level_subst_of f =
fun l ->
try let u = f l in
match Universe.level u with
| None -> l
| Some l -> l
with Not_found -> l
module Instance : sig
type t = Level.t array
val empty : t
val is_empty : t -> bool
val of_array : Level.t array -> t
val to_array : t -> Level.t array
val append : t -> t -> t
val equal : t -> t -> bool
val hcons : t -> t
val hash : t -> int
val share : t -> t * int
val subst_fn : universe_level_subst_fn -> t -> t
val pr : t -> Pp.std_ppcmds
val levels : t -> LSet.t
val check_eq : t check_function
end =
struct
type t = Level.t array
let empty : t = [||]
module HInstancestruct =
struct
type _t = t
type t = _t
type u = Level.t -> Level.t
let hashcons huniv a =
let len = Array.length a in
if Int.equal len 0 then empty
else begin
for i = 0 to len - 1 do
let x = Array.unsafe_get a i in
let x' = huniv x in
if x == x' then ()
else Array.unsafe_set a i x'
done;
a
end
let equal t1 t2 =
t1 == t2 ||
(Int.equal (Array.length t1) (Array.length t2) &&
let rec aux i =
(Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1))
in aux 0)
let hash a =
let accu = ref 0 in
for i = 0 to Array.length a - 1 do
let l = Array.unsafe_get a i in
let h = Level.hash l in
accu := Hashset.Combine.combine !accu h;
done;
(* [h] must be positive. *)
let h = !accu land 0x3FFFFFFF in
h
end
module HInstance = Hashcons.Make(HInstancestruct)
let hcons = Hashcons.simple_hcons HInstance.generate Level.hcons
let hash = HInstancestruct.hash
let share a = (hcons a, hash a)
let empty = hcons [||]
let is_empty x = Int.equal (Array.length x) 0
let append x y =
if Array.length x = 0 then y
else if Array.length y = 0 then x
else Array.append x y
let of_array a = a
let to_array a = a
let subst_fn fn t =
let t' = CArray.smartmap fn t in
if t' == t then t else t'
let levels x = LSet.of_array x
let pr =
prvect_with_sep spc Level.pr
let equal t u =
t == u ||
(Array.is_empty t && Array.is_empty u) ||
(CArray.for_all2 Level.equal t u
(* Necessary as universe instances might come from different modules and
unmarshalling doesn't preserve sharing *))
let check_eq g t1 t2 =
t1 == t2 ||
(Int.equal (Array.length t1) (Array.length t2) &&
let rec aux i =
(Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
in aux 0)
end
let enforce_eq_instances x y =
let ax = Instance.to_array x and ay = Instance.to_array y in
if Array.length ax != Array.length ay then
anomaly (Pp.(++) (Pp.str "Invalid argument: enforce_eq_instances called with")
(Pp.str " instances of different lengths"));
CArray.fold_right2 enforce_eq_level ax ay
type universe_instance = Instance.t
type 'a puniverses = 'a * Instance.t
let out_punivs (x, y) = x
let in_punivs x = (x, Instance.empty)
(** A context of universe levels with universe constraints,
representiong local universe variables and constraints *)
module UContext =
struct
type t = Instance.t constrained
let make x = x
(** Universe contexts (variables as a list) *)
let empty = (Instance.empty, Constraint.empty)
let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst
let pr (univs, cst as ctx) =
if is_empty ctx then mt() else
Instance.pr univs ++ str " |= " ++ v 1 (Constraint.pr cst)
let hcons (univs, cst) =
(Instance.hcons univs, hcons_constraints cst)
let instance (univs, cst) = univs
let constraints (univs, cst) = cst
let union (univs, cst) (univs', cst') =
Instance.append univs univs', Constraint.union cst cst'
end
type universe_context = UContext.t
let hcons_universe_context = UContext.hcons
(** A set of universes with universe constraints.
We linearize the set to a list after typechecking.
Beware, representation could change.
*)
module ContextSet =
struct
type t = universe_set constrained
let empty = (LSet.empty, Constraint.empty)
let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst
let of_set s = (s, Constraint.empty)
let singleton l = of_set (LSet.singleton l)
let of_instance i = of_set (Instance.levels i)
let union (univs, cst) (univs', cst') =
LSet.union univs univs', Constraint.union cst cst'
let append (univs, cst) (univs', cst') =
let univs = LSet.fold LSet.add univs univs' in
let cst = Constraint.fold Constraint.add cst cst' in
(univs, cst)
let diff (univs, cst) (univs', cst') =
LSet.diff univs univs', Constraint.diff cst cst'
let add_universe u (univs, cst) =
LSet.add u univs, cst
let add_constraints cst' (univs, cst) =
univs, Constraint.union cst cst'
let add_instance inst (univs, cst) =
let v = Instance.to_array inst in
let fold accu u = LSet.add u accu in
let univs = Array.fold_left fold univs v in
(univs, cst)
let to_context (ctx, cst) =
(Instance.of_array (Array.of_list (LSet.elements ctx)), cst)
let of_context (ctx, cst) =
(Instance.levels ctx, cst)
let pr (univs, cst as ctx) =
if is_empty ctx then mt() else
LSet.pr univs ++ str " |= " ++ v 1 (Constraint.pr cst)
let constraints (univs, cst) = cst
let levels (univs, cst) = univs
end
type universe_context_set = ContextSet.t
(** A value in a universe context (resp. context set). *)
type 'a in_universe_context = 'a * universe_context
type 'a in_universe_context_set = 'a * universe_context_set
(** Substitutions. *)
let empty_subst = LMap.empty
let is_empty_subst = LMap.is_empty
let empty_level_subst = LMap.empty
let is_empty_level_subst = LMap.is_empty
(** Substitution functions *)
(** With level to level substitutions. *)
let subst_univs_level_level subst l =
try LMap.find l subst
with Not_found -> l
let subst_univs_level_universe subst u =
let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in
let u' = Universe.smartmap f u in
if u == u' then u
else Universe.sort u'
let subst_univs_level_instance subst i =
let i' = Instance.subst_fn (subst_univs_level_level subst) i in
if i == i' then i
else i'
let subst_univs_level_constraint subst (u,d,v) =
let u' = subst_univs_level_level subst u
and v' = subst_univs_level_level subst v in
if d != Lt && Level.equal u' v' then None
else Some (u',d,v')
let subst_univs_level_constraints subst csts =
Constraint.fold
(fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c))
csts Constraint.empty
(** With level to universe substitutions. *)
type universe_subst_fn = universe_level -> universe
let make_subst subst = fun l -> LMap.find l subst
let subst_univs_expr_opt fn (l,n) =
Universe.addn n (fn l)
let subst_univs_universe fn ul =
let subst, nosubst =
Universe.Huniv.fold (fun u (subst,nosubst) ->
try let a' = subst_univs_expr_opt fn u in
(a' :: subst, nosubst)
with Not_found -> (subst, u :: nosubst))
ul ([], [])
in
if CList.is_empty subst then ul
else
let substs =
List.fold_left Universe.merge_univs Universe.empty subst
in
List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.Huniv.tip u))
substs nosubst
let subst_univs_level fn l =
try Some (fn l)
with Not_found -> None
let subst_univs_constraint fn (u,d,v as c) cstrs =
let u' = subst_univs_level fn u in
let v' = subst_univs_level fn v in
match u', v' with
| None, None -> Constraint.add c cstrs
| Some u, None -> enforce_univ_constraint (u,d,make v) cstrs
| None, Some v -> enforce_univ_constraint (make u,d,v) cstrs
| Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs
let subst_univs_constraints subst csts =
Constraint.fold
(fun c cstrs -> subst_univs_constraint subst c cstrs)
csts Constraint.empty
let subst_instance_level s l =
match l.Level.data with
| Level.Var n -> s.(n)
| _ -> l
let subst_instance_instance s i =
Array.smartmap (fun l -> subst_instance_level s l) i
let subst_instance_universe s u =
let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in
let u' = Universe.smartmap f u in
if u == u' then u
else Universe.sort u'
let subst_instance_constraint s (u,d,v as c) =
let u' = subst_instance_level s u in
let v' = subst_instance_level s v in
if u' == u && v' == v then c
else (u',d,v')
let subst_instance_constraints s csts =
Constraint.fold
(fun c csts -> Constraint.add (subst_instance_constraint s c) csts)
csts Constraint.empty
(** Substitute instance inst for ctx in csts *)
let instantiate_univ_context (ctx, csts) =
(ctx, subst_instance_constraints ctx csts)
let instantiate_univ_constraints u (_, csts) =
subst_instance_constraints u csts
let make_instance_subst i =
let arr = Instance.to_array i in
Array.fold_left_i (fun i acc l ->
LMap.add l (Level.var i) acc)
LMap.empty arr
let make_inverse_instance_subst i =
let arr = Instance.to_array i in
Array.fold_left_i (fun i acc l ->
LMap.add (Level.var i) l acc)
LMap.empty arr
let abstract_universes poly ctx =
let instance = UContext.instance ctx in
if poly then
let subst = make_instance_subst instance in
let cstrs = subst_univs_level_constraints subst
(UContext.constraints ctx)
in
let ctx = UContext.make (instance, cstrs) in
subst, ctx
else empty_level_subst, ctx
(** Pretty-printing *)
let pr_arc = function
| _, Canonical {univ=u; lt=[]; le=[]} ->
mt ()
| _, Canonical {univ=u; lt=lt; le=le} ->
let opt_sep = match lt, le with
| [], _ | _, [] -> mt ()
| _ -> spc ()
in
Level.pr u ++ str " " ++
v 0
(pr_sequence (fun v -> str "< " ++ Level.pr v) lt ++
opt_sep ++
pr_sequence (fun v -> str "<= " ++ Level.pr v) le) ++
fnl ()
| u, Equiv v ->
Level.pr u ++ str " = " ++ Level.pr v ++ fnl ()
let pr_universes g =
let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in
prlist pr_arc graph
let pr_constraints = Constraint.pr
let pr_universe_context = UContext.pr
let pr_universe_context_set = ContextSet.pr
let pr_universe_subst =
LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ())
let pr_universe_level_subst =
LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ())
(* Dumping constraints to a file *)
let dump_universes output g =
let dump_arc u = function
| Canonical {univ=u; lt=lt; le=le} ->
let u_str = Level.to_string u in
List.iter (fun v -> output Lt (Level.to_string v) u_str) lt;
List.iter (fun v -> output Le (Level.to_string v) u_str) le
| Equiv v ->
output Eq (Level.to_string u) (Level.to_string v)
in
UMap.iter dump_arc g
module Huniverse_set =
Hashcons.Make(
struct
type t = universe_set
type u = universe_level -> universe_level
let hashcons huc s =
LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty
let equal s s' =
LSet.equal s s'
let hash = Hashtbl.hash
end)
let hcons_universe_set =
Hashcons.simple_hcons Huniverse_set.generate Level.hcons
let hcons_universe_context_set (v, c) =
(hcons_universe_set v, hcons_constraints c)
let hcons_univ x = Universe.hcons (Huniv.node x)
let explain_universe_inconsistency (o,u,v,p) =
let pr_rel = function
| Eq -> str"=" | Lt -> str"<" | Le -> str"<="
in
let reason = match p with
| None | Some [] -> mt()
| Some p ->
str " because" ++ spc() ++ pr_uni v ++
prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ pr_uni v)
p ++
(if Universe.equal (snd (List.last p)) u then mt() else
(spc() ++ str "= " ++ pr_uni u))
in
str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++
pr_rel o ++ spc() ++ pr_uni v ++ reason ++ str")"
let compare_levels = Level.compare
let eq_levels = Level.equal
let equal_universes = Universe.equal
let subst_instance_constraints =
if Flags.profile then
let key = Profile.declare_profile "subst_instance_constraints" in
Profile.profile2 key subst_instance_constraints
else subst_instance_constraints
let merge_constraints =
if Flags.profile then
let key = Profile.declare_profile "merge_constraints" in
Profile.profile2 key merge_constraints
else merge_constraints
let check_constraints =
if Flags.profile then
let key = Profile.declare_profile "check_constraints" in
Profile.profile2 key check_constraints
else check_constraints
let check_eq =
if Flags.profile then
let check_eq_key = Profile.declare_profile "check_eq" in
Profile.profile3 check_eq_key check_eq
else check_eq
let check_leq =
if Flags.profile then
let check_leq_key = Profile.declare_profile "check_leq" in
Profile.profile3 check_leq_key check_leq
else check_leq
|