1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Support for universe polymorphism by MS [2014] *)
(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu
Sozeau, Pierre-Marie Pédrot *)
open Pp
open CErrors
open Util
(* Universes are stratified by a partial ordering $\le$.
Let $\~{}$ be the associated equivalence. We also have a strict ordering
$<$ between equivalence classes, and we maintain that $<$ is acyclic,
and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.
At every moment, we have a finite number of universes, and we
maintain the ordering in the presence of assertions $U<V$ and $U\le V$.
The equivalence $\~{}$ is represented by a tree structure, as in the
union-find algorithm. The assertions $<$ and $\le$ are represented by
adjacency lists *)
module type Hashconsed =
sig
type t
val hash : t -> int
val eq : t -> t -> bool
val hcons : t -> t
end
module HashedList (M : Hashconsed) :
sig
type t = private Nil | Cons of M.t * int * t
val nil : t
val cons : M.t -> t -> t
end =
struct
type t = Nil | Cons of M.t * int * t
module Self =
struct
type _t = t
type t = _t
type u = (M.t -> M.t)
let hash = function Nil -> 0 | Cons (_, h, _) -> h
let eq l1 l2 = match l1, l2 with
| Nil, Nil -> true
| Cons (x1, _, l1), Cons (x2, _, l2) -> x1 == x2 && l1 == l2
| _ -> false
let hashcons hc = function
| Nil -> Nil
| Cons (x, h, l) -> Cons (hc x, h, l)
end
module Hcons = Hashcons.Make(Self)
let hcons = Hashcons.simple_hcons Hcons.generate Hcons.hcons M.hcons
(** No recursive call: the interface guarantees that all HLists from this
program are already hashconsed. If we get some external HList, we can
still reconstruct it by traversing it entirely. *)
let nil = Nil
let cons x l =
let h = M.hash x in
let hl = match l with Nil -> 0 | Cons (_, h, _) -> h in
let h = Hashset.Combine.combine h hl in
hcons (Cons (x, h, l))
end
module HList = struct
module type S = sig
type elt
type t = private Nil | Cons of elt * int * t
val hash : t -> int
val nil : t
val cons : elt -> t -> t
val tip : elt -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val map : (elt -> elt) -> t -> t
val smartmap : (elt -> elt) -> t -> t
val exists : (elt -> bool) -> t -> bool
val for_all : (elt -> bool) -> t -> bool
val for_all2 : (elt -> elt -> bool) -> t -> t -> bool
val mem : elt -> t -> bool
val remove : elt -> t -> t
val to_list : t -> elt list
val compare : (elt -> elt -> int) -> t -> t -> int
end
module Make (H : Hashconsed) : S with type elt = H.t =
struct
type elt = H.t
include HashedList(H)
let hash = function Nil -> 0 | Cons (_, h, _) -> h
let tip e = cons e nil
let rec fold f l accu = match l with
| Nil -> accu
| Cons (x, _, l) -> fold f l (f x accu)
let rec map f = function
| Nil -> nil
| Cons (x, _, l) -> cons (f x) (map f l)
let smartmap = map
(** Apriori hashconsing ensures that the map is equal to its argument *)
let rec exists f = function
| Nil -> false
| Cons (x, _, l) -> f x || exists f l
let rec for_all f = function
| Nil -> true
| Cons (x, _, l) -> f x && for_all f l
let rec for_all2 f l1 l2 = match l1, l2 with
| Nil, Nil -> true
| Cons (x1, _, l1), Cons (x2, _, l2) -> f x1 x2 && for_all2 f l1 l2
| _ -> false
let rec to_list = function
| Nil -> []
| Cons (x, _, l) -> x :: to_list l
let rec remove x = function
| Nil -> nil
| Cons (y, _, l) ->
if H.eq x y then l
else cons y (remove x l)
let rec mem x = function
| Nil -> false
| Cons (y, _, l) -> H.eq x y || mem x l
let rec compare cmp l1 l2 = match l1, l2 with
| Nil, Nil -> 0
| Cons (x1, h1, l1), Cons (x2, h2, l2) ->
let c = Int.compare h1 h2 in
if c == 0 then
let c = cmp x1 x2 in
if c == 0 then
compare cmp l1 l2
else c
else c
| Cons _, Nil -> 1
| Nil, Cons _ -> -1
end
end
module RawLevel =
struct
open Names
type t =
| Prop
| Set
| Level of int * DirPath.t
| Var of int
(* Hash-consing *)
let equal x y =
x == y ||
match x, y with
| Prop, Prop -> true
| Set, Set -> true
| Level (n,d), Level (n',d') ->
Int.equal n n' && DirPath.equal d d'
| Var n, Var n' -> Int.equal n n'
| _ -> false
let compare u v =
match u, v with
| Prop,Prop -> 0
| Prop, _ -> -1
| _, Prop -> 1
| Set, Set -> 0
| Set, _ -> -1
| _, Set -> 1
| Level (i1, dp1), Level (i2, dp2) ->
if i1 < i2 then -1
else if i1 > i2 then 1
else DirPath.compare dp1 dp2
| Level _, _ -> -1
| _, Level _ -> 1
| Var n, Var m -> Int.compare n m
let hequal x y =
x == y ||
match x, y with
| Prop, Prop -> true
| Set, Set -> true
| Level (n,d), Level (n',d') ->
n == n' && d == d'
| Var n, Var n' -> n == n'
| _ -> false
let hcons = function
| Prop as x -> x
| Set as x -> x
| Level (n,d) as x ->
let d' = Names.DirPath.hcons d in
if d' == d then x else Level (n,d')
| Var n as x -> x
open Hashset.Combine
let hash = function
| Prop -> combinesmall 1 0
| Set -> combinesmall 1 1
| Var n -> combinesmall 2 n
| Level (n, d) -> combinesmall 3 (combine n (Names.DirPath.hash d))
end
module Level = struct
open Names
type raw_level = RawLevel.t =
| Prop
| Set
| Level of int * DirPath.t
| Var of int
(** Embed levels with their hash value *)
type t = {
hash : int;
data : RawLevel.t }
let equal x y =
x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data
let hash x = x.hash
let data x = x.data
(** Hashcons on levels + their hash *)
module Self = struct
type _t = t
type t = _t
type u = unit
let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data
let hash x = x.hash
let hashcons () x =
let data' = RawLevel.hcons x.data in
if x.data == data' then x else { x with data = data' }
end
let hcons =
let module H = Hashcons.Make(Self) in
Hashcons.simple_hcons H.generate H.hcons ()
let make l = hcons { hash = RawLevel.hash l; data = l }
let set = make Set
let prop = make Prop
let is_small x =
match data x with
| Level _ -> false
| Var _ -> false
| Prop -> true
| Set -> true
let is_prop x =
match data x with
| Prop -> true
| _ -> false
let is_set x =
match data x with
| Set -> true
| _ -> false
let compare u v =
if u == v then 0
else
let c = Int.compare (hash u) (hash v) in
if c == 0 then RawLevel.compare (data u) (data v)
else c
let natural_compare u v =
if u == v then 0
else RawLevel.compare (data u) (data v)
let to_string x =
match data x with
| Prop -> "Prop"
| Set -> "Set"
| Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n
| Var n -> "Var(" ^ string_of_int n ^ ")"
let pr u = str (to_string u)
let apart u v =
match data u, data v with
| Prop, Set | Set, Prop -> true
| _ -> false
let vars = Array.init 20 (fun i -> make (Var i))
let var n =
if n < 20 then vars.(n) else make (Var n)
let var_index u =
match data u with
| Var n -> Some n | _ -> None
let make m n = make (Level (n, Names.DirPath.hcons m))
end
(** Level maps *)
module LMap = struct
module M = HMap.Make (Level)
include M
let union l r =
merge (fun k l r ->
match l, r with
| Some _, _ -> l
| _, _ -> r) l r
let subst_union l r =
merge (fun k l r ->
match l, r with
| Some (Some _), _ -> l
| Some None, None -> l
| _, _ -> r) l r
let diff ext orig =
fold (fun u v acc ->
if mem u orig then acc
else add u v acc)
ext empty
let pr f m =
h 0 (prlist_with_sep fnl (fun (u, v) ->
Level.pr u ++ f v) (bindings m))
end
module LSet = struct
include LMap.Set
let pr prl s =
str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}"
let of_array l =
Array.fold_left (fun acc x -> add x acc) empty l
end
type 'a universe_map = 'a LMap.t
type universe_level = Level.t
type universe_level_subst_fn = universe_level -> universe_level
type universe_set = LSet.t
(* An algebraic universe [universe] is either a universe variable
[Level.t] or a formal universe known to be greater than some
universe variables and strictly greater than some (other) universe
variables
Universes variables denote universes initially present in the term
to type-check and non variable algebraic universes denote the
universes inferred while type-checking: it is either the successor
of a universe present in the initial term to type-check or the
maximum of two algebraic universes
*)
module Universe =
struct
(* Invariants: non empty, sorted and without duplicates *)
module Expr =
struct
type t = Level.t * int
type _t = t
(* Hashing of expressions *)
module ExprHash =
struct
type t = _t
type u = Level.t -> Level.t
let hashcons hdir (b,n as x) =
let b' = hdir b in
if b' == b then x else (b',n)
let eq l1 l2 =
l1 == l2 ||
match l1,l2 with
| (b,n), (b',n') -> b == b' && n == n'
let hash (x, n) = n + Level.hash x
end
module HExpr =
struct
module H = Hashcons.Make(ExprHash)
type t = ExprHash.t
let hcons =
Hashcons.simple_hcons H.generate H.hcons Level.hcons
let hash = ExprHash.hash
let eq x y = x == y ||
(let (u,n) = x and (v,n') = y in
Int.equal n n' && Level.equal u v)
end
let hcons = HExpr.hcons
let make l = hcons (l, 0)
let compare u v =
if u == v then 0
else
let (x, n) = u and (x', n') = v in
if Int.equal n n' then Level.compare x x'
else n - n'
let prop = make Level.prop
let set = make Level.set
let type1 = hcons (Level.set, 1)
let is_small = function
| (l,0) -> Level.is_small l
| _ -> false
let equal x y = x == y ||
(let (u,n) = x and (v,n') = y in
Int.equal n n' && Level.equal u v)
let leq (u,n) (v,n') =
let cmp = Level.compare u v in
if Int.equal cmp 0 then n <= n'
else if n <= n' then
(Level.is_prop u && Level.is_small v)
else false
let successor (u,n) =
if Level.is_prop u then type1
else hcons (u, n + 1)
let addn k (u,n as x) =
if k = 0 then x
else if Level.is_prop u then
hcons (Level.set,n+k)
else hcons (u,n+k)
type super_result =
SuperSame of bool
(* The level expressions are in cumulativity relation. boolean
indicates if left is smaller than right? *)
| SuperDiff of int
(* The level expressions are unrelated, the comparison result
is canonical *)
(** [super u v] compares two level expressions,
returning [SuperSame] if they refer to the same level at potentially different
increments or [SuperDiff] if they are different. The booleans indicate if the
left expression is "smaller" than the right one in both cases. *)
let super (u,n as x) (v,n' as y) =
let cmp = Level.compare u v in
if Int.equal cmp 0 then SuperSame (n < n')
else
match x, y with
| (l,0), (l',0) ->
let open RawLevel in
(match Level.data l, Level.data l' with
| Prop, Prop -> SuperSame false
| Prop, _ -> SuperSame true
| _, Prop -> SuperSame false
| _, _ -> SuperDiff cmp)
| _, _ -> SuperDiff cmp
let to_string (v, n) =
if Int.equal n 0 then Level.to_string v
else Level.to_string v ^ "+" ^ string_of_int n
let pr x = str(to_string x)
let pr_with f (v, n) =
if Int.equal n 0 then f v
else f v ++ str"+" ++ int n
let is_level = function
| (v, 0) -> true
| _ -> false
let level = function
| (v,0) -> Some v
| _ -> None
let get_level (v,n) = v
let map f (v, n as x) =
let v' = f v in
if v' == v then x
else if Level.is_prop v' && n != 0 then
hcons (Level.set, n)
else hcons (v', n)
end
let compare_expr = Expr.compare
module Huniv = HList.Make(Expr.HExpr)
type t = Huniv.t
open Huniv
let equal x y = x == y ||
(Huniv.hash x == Huniv.hash y &&
Huniv.for_all2 Expr.equal x y)
let hash = Huniv.hash
let compare x y =
if x == y then 0
else
let hx = Huniv.hash x and hy = Huniv.hash y in
let c = Int.compare hx hy in
if c == 0 then
Huniv.compare (fun e1 e2 -> compare_expr e1 e2) x y
else c
let rec hcons = function
| Nil -> Huniv.nil
| Cons (x, _, l) -> Huniv.cons x (hcons l)
let make l = Huniv.tip (Expr.make l)
let tip x = Huniv.tip x
let pr l = match l with
| Cons (u, _, Nil) -> Expr.pr u
| _ ->
str "max(" ++ hov 0
(prlist_with_sep pr_comma Expr.pr (to_list l)) ++
str ")"
let pr_with f l = match l with
| Cons (u, _, Nil) -> Expr.pr_with f u
| _ ->
str "max(" ++ hov 0
(prlist_with_sep pr_comma (Expr.pr_with f) (to_list l)) ++
str ")"
let is_level l = match l with
| Cons (l, _, Nil) -> Expr.is_level l
| _ -> false
let rec is_levels l = match l with
| Cons (l, _, r) -> Expr.is_level l && is_levels r
| Nil -> true
let level l = match l with
| Cons (l, _, Nil) -> Expr.level l
| _ -> None
let levels l =
fold (fun x acc -> LSet.add (Expr.get_level x) acc) l LSet.empty
let is_small u =
match u with
| Cons (l, _, Nil) -> Expr.is_small l
| _ -> false
(* The lower predicative level of the hierarchy that contains (impredicative)
Prop and singleton inductive types *)
let type0m = tip Expr.prop
(* The level of sets *)
let type0 = tip Expr.set
(* When typing [Prop] and [Set], there is no constraint on the level,
hence the definition of [type1_univ], the type of [Prop] *)
let type1 = tip (Expr.successor Expr.set)
let is_type0m x = equal type0m x
let is_type0 x = equal type0 x
(* Returns the formal universe that lies just above the universe variable u.
Used to type the sort u. *)
let super l =
if is_small l then type1
else
Huniv.map (fun x -> Expr.successor x) l
let addn n l =
Huniv.map (fun x -> Expr.addn n x) l
let rec merge_univs l1 l2 =
match l1, l2 with
| Nil, _ -> l2
| _, Nil -> l1
| Cons (h1, _, t1), Cons (h2, _, t2) ->
let open Expr in
(match super h1 h2 with
| SuperSame true (* h1 < h2 *) -> merge_univs t1 l2
| SuperSame false -> merge_univs l1 t2
| SuperDiff c ->
if c <= 0 (* h1 < h2 is name order *)
then cons h1 (merge_univs t1 l2)
else cons h2 (merge_univs l1 t2))
let sort u =
let rec aux a l =
match l with
| Cons (b, _, l') ->
let open Expr in
(match super a b with
| SuperSame false -> aux a l'
| SuperSame true -> l
| SuperDiff c ->
if c <= 0 then cons a l
else cons b (aux a l'))
| Nil -> cons a l
in
fold (fun a acc -> aux a acc) u nil
(* Returns the formal universe that is greater than the universes u and v.
Used to type the products. *)
let sup x y = merge_univs x y
let empty = nil
let exists = Huniv.exists
let for_all = Huniv.for_all
let smartmap = Huniv.smartmap
end
type universe = Universe.t
(* The level of predicative Set *)
let type0m_univ = Universe.type0m
let type0_univ = Universe.type0
let type1_univ = Universe.type1
let is_type0m_univ = Universe.is_type0m
let is_type0_univ = Universe.is_type0
let is_univ_variable l = Universe.level l != None
let is_small_univ = Universe.is_small
let pr_uni = Universe.pr
let sup = Universe.sup
let super = Universe.super
open Universe
let universe_level = Universe.level
type constraint_type = Lt | Le | Eq
type explanation = (constraint_type * universe) list
let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1
(* Universe inconsistency: error raised when trying to enforce a relation
that would create a cycle in the graph of universes. *)
type univ_inconsistency = constraint_type * universe * universe * explanation option
exception UniverseInconsistency of univ_inconsistency
let error_inconsistency o u v (p:explanation option) =
raise (UniverseInconsistency (o,make u,make v,p))
(* Constraints and sets of constraints. *)
type univ_constraint = Level.t * constraint_type * Level.t
let pr_constraint_type op =
let op_str = match op with
| Lt -> " < "
| Le -> " <= "
| Eq -> " = "
in str op_str
module UConstraintOrd =
struct
type t = univ_constraint
let compare (u,c,v) (u',c',v') =
let i = constraint_type_ord c c' in
if not (Int.equal i 0) then i
else
let i' = Level.compare u u' in
if not (Int.equal i' 0) then i'
else Level.compare v v'
end
module Constraint =
struct
module S = Set.Make(UConstraintOrd)
include S
let pr prl c =
fold (fun (u1,op,u2) pp_std ->
pp_std ++ prl u1 ++ pr_constraint_type op ++
prl u2 ++ fnl () ) c (str "")
let universes_of c =
fold (fun (u1, op, u2) unvs -> LSet.add u2 (LSet.add u1 unvs)) c LSet.empty
end
let universes_of_constraints = Constraint.universes_of
let empty_constraint = Constraint.empty
let union_constraint = Constraint.union
let eq_constraint = Constraint.equal
type constraints = Constraint.t
module Hconstraint =
Hashcons.Make(
struct
type t = univ_constraint
type u = universe_level -> universe_level
let hashcons hul (l1,k,l2) = (hul l1, k, hul l2)
let eq (l1,k,l2) (l1',k',l2') =
l1 == l1' && k == k' && l2 == l2'
let hash = Hashtbl.hash
end)
module Hconstraints =
Hashcons.Make(
struct
type t = constraints
type u = univ_constraint -> univ_constraint
let hashcons huc s =
Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty
let eq s s' =
List.for_all2eq (==)
(Constraint.elements s)
(Constraint.elements s')
let hash = Hashtbl.hash
end)
let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons
let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint
(** A value with universe constraints. *)
type 'a constrained = 'a * constraints
let constraints_of (_, cst) = cst
(** Constraint functions. *)
type 'a constraint_function = 'a -> 'a -> constraints -> constraints
let enforce_eq_level u v c =
(* We discard trivial constraints like u=u *)
if Level.equal u v then c
else if Level.apart u v then
error_inconsistency Eq u v None
else Constraint.add (u,Eq,v) c
let enforce_eq u v c =
match Universe.level u, Universe.level v with
| Some u, Some v -> enforce_eq_level u v c
| _ -> anomaly (Pp.str "A universe comparison can only happen between variables.")
let check_univ_eq u v = Universe.equal u v
let enforce_eq u v c =
if check_univ_eq u v then c
else enforce_eq u v c
let constraint_add_leq v u c =
(* We just discard trivial constraints like u<=u *)
if Expr.equal v u then c
else
match v, u with
| (x,n), (y,m) ->
let j = m - n in
if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then
Constraint.add (x,Lt,y) c
else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then
if Level.equal x y then (* u+(k+1) <= u *)
raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u, None))
else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.")
else if j = 0 then
Constraint.add (x,Le,y) c
else (* j >= 1 *) (* m = n + k, u <= v+k *)
if Level.equal x y then c (* u <= u+k, trivial *)
else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *)
else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints.")
let check_univ_leq_one u v = Universe.exists (Expr.leq u) v
let check_univ_leq u v =
Universe.for_all (fun u -> check_univ_leq_one u v) u
let enforce_leq u v c =
let open Universe.Huniv in
let rec aux acc v =
match v with
| Cons (v, _, l) ->
aux (fold (fun u -> constraint_add_leq u v) u c) l
| Nil -> acc
in aux c v
let enforce_leq u v c =
if check_univ_leq u v then c
else enforce_leq u v c
let enforce_leq_level u v c =
if Level.equal u v then c else Constraint.add (u,Le,v) c
let enforce_univ_constraint (u,d,v) =
match d with
| Eq -> enforce_eq u v
| Le -> enforce_leq u v
| Lt -> enforce_leq (super u) v
(* Miscellaneous functions to remove or test local univ assumed to
occur in a universe *)
let univ_level_mem u v = Huniv.mem (Expr.make u) v
let univ_level_rem u v min =
match Universe.level v with
| Some u' -> if Level.equal u u' then min else v
| None -> Huniv.remove (Universe.Expr.make u) v
(* Is u mentionned in v (or equals to v) ? *)
(**********************************************************************)
(** Universe polymorphism *)
(**********************************************************************)
(** A universe level substitution, note that no algebraic universes are
involved *)
type universe_level_subst = universe_level universe_map
(** A full substitution might involve algebraic universes *)
type universe_subst = universe universe_map
let level_subst_of f =
fun l ->
try let u = f l in
match Universe.level u with
| None -> l
| Some l -> l
with Not_found -> l
module Instance : sig
type t = Level.t array
val empty : t
val is_empty : t -> bool
val of_array : Level.t array -> t
val to_array : t -> Level.t array
val append : t -> t -> t
val equal : t -> t -> bool
val length : t -> int
val hcons : t -> t
val hash : t -> int
val share : t -> t * int
val subst_fn : universe_level_subst_fn -> t -> t
val pr : (Level.t -> Pp.std_ppcmds) -> t -> Pp.std_ppcmds
val levels : t -> LSet.t
end =
struct
type t = Level.t array
let empty : t = [||]
module HInstancestruct =
struct
type _t = t
type t = _t
type u = Level.t -> Level.t
let hashcons huniv a =
let len = Array.length a in
if Int.equal len 0 then empty
else begin
for i = 0 to len - 1 do
let x = Array.unsafe_get a i in
let x' = huniv x in
if x == x' then ()
else Array.unsafe_set a i x'
done;
a
end
let eq t1 t2 =
t1 == t2 ||
(Int.equal (Array.length t1) (Array.length t2) &&
let rec aux i =
(Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1))
in aux 0)
let hash a =
let accu = ref 0 in
for i = 0 to Array.length a - 1 do
let l = Array.unsafe_get a i in
let h = Level.hash l in
accu := Hashset.Combine.combine !accu h;
done;
(* [h] must be positive. *)
let h = !accu land 0x3FFFFFFF in
h
end
module HInstance = Hashcons.Make(HInstancestruct)
let hcons = Hashcons.simple_hcons HInstance.generate HInstance.hcons Level.hcons
let hash = HInstancestruct.hash
let share a = (hcons a, hash a)
let empty = hcons [||]
let is_empty x = Int.equal (Array.length x) 0
let append x y =
if Array.length x = 0 then y
else if Array.length y = 0 then x
else Array.append x y
let of_array a =
assert(Array.for_all (fun x -> not (Level.is_prop x)) a);
a
let to_array a = a
let length a = Array.length a
let subst_fn fn t =
let t' = CArray.smartmap fn t in
if t' == t then t else of_array t'
let levels x = LSet.of_array x
let pr =
prvect_with_sep spc
let equal t u =
t == u ||
(Array.is_empty t && Array.is_empty u) ||
(CArray.for_all2 Level.equal t u
(* Necessary as universe instances might come from different modules and
unmarshalling doesn't preserve sharing *))
end
let enforce_eq_instances x y =
let ax = Instance.to_array x and ay = Instance.to_array y in
if Array.length ax != Array.length ay then
anomaly (Pp.(++) (Pp.str "Invalid argument: enforce_eq_instances called with")
(Pp.str " instances of different lengths."));
CArray.fold_right2 enforce_eq_level ax ay
let subst_instance_level s l =
match l.Level.data with
| Level.Var n -> s.(n)
| _ -> l
let subst_instance_instance s i =
Array.smartmap (fun l -> subst_instance_level s l) i
let subst_instance_universe s u =
let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in
let u' = Universe.smartmap f u in
if u == u' then u
else Universe.sort u'
let subst_instance_constraint s (u,d,v as c) =
let u' = subst_instance_level s u in
let v' = subst_instance_level s v in
if u' == u && v' == v then c
else (u',d,v')
let subst_instance_constraints s csts =
Constraint.fold
(fun c csts -> Constraint.add (subst_instance_constraint s c) csts)
csts Constraint.empty
type universe_instance = Instance.t
type 'a puniverses = 'a * Instance.t
let out_punivs (x, y) = x
let in_punivs x = (x, Instance.empty)
let eq_puniverses f (x, u) (y, u') =
f x y && Instance.equal u u'
(** A context of universe levels with universe constraints,
representing local universe variables and constraints *)
module UContext =
struct
type t = Instance.t constrained
let make x = x
(** Universe contexts (variables as a list) *)
let empty = (Instance.empty, Constraint.empty)
let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst
let pr prl (univs, cst as ctx) =
if is_empty ctx then mt() else
h 0 (Instance.pr prl univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst))
let hcons (univs, cst) =
(Instance.hcons univs, hcons_constraints cst)
let instance (univs, cst) = univs
let constraints (univs, cst) = cst
let union (univs, cst) (univs', cst') =
Instance.append univs univs', Constraint.union cst cst'
let dest x = x
let size (x,_) = Instance.length x
end
type universe_context = UContext.t
let hcons_universe_context = UContext.hcons
module AUContext =
struct
include UContext
let repr (inst, cst) =
(Array.mapi (fun i l -> Level.var i) inst, cst)
let instantiate inst (u, cst) =
assert (Array.length u = Array.length inst);
subst_instance_constraints inst cst
end
type abstract_universe_context = AUContext.t
let hcons_abstract_universe_context = AUContext.hcons
(** Universe info for cumulative inductive types:
A context of universe levels
with universe constraints, representing local universe variables
and constraints, together with a context of universe levels with
universe constraints, representing conditions for subtyping used
for inductive types.
This data structure maintains the invariant that the context for
subtyping constraints is exactly twice as big as the context for
universe constraints. *)
module CumulativityInfo =
struct
type t = universe_context * universe_context
let make x =
if (Instance.length (UContext.instance (snd x))) =
(Instance.length (UContext.instance (fst x))) * 2 then x
else anomaly (Pp.str "Invalid subtyping information encountered!")
let empty = (UContext.empty, UContext.empty)
let is_empty (univcst, subtypcst) = UContext.is_empty univcst && UContext.is_empty subtypcst
let halve_context ctx =
let len = Array.length (Instance.to_array ctx) in
let halflen = len / 2 in
(Instance.of_array (Array.sub (Instance.to_array ctx) 0 halflen),
Instance.of_array (Array.sub (Instance.to_array ctx) halflen halflen))
let pr prl (univcst, subtypcst) =
if UContext.is_empty univcst then mt() else
let (ctx, ctx') = halve_context (UContext.instance subtypcst) in
(UContext.pr prl univcst) ++ fnl () ++ fnl () ++
h 0 (str "~@{" ++ Instance.pr prl ctx ++ str "} <= ~@{" ++ Instance.pr prl ctx' ++ str "} iff ")
++ fnl () ++ h 0 (v 0 (Constraint.pr prl (UContext.constraints subtypcst)))
let hcons (univcst, subtypcst) =
(UContext.hcons univcst, UContext.hcons subtypcst)
let univ_context (univcst, subtypcst) = univcst
let subtyp_context (univcst, subtypcst) = subtypcst
let create_trivial_subtyping ctx ctx' =
CArray.fold_left_i
(fun i cst l -> Constraint.add (l, Eq, Array.get ctx' i) cst)
Constraint.empty (Instance.to_array ctx)
(** This function takes a universe context representing constraints
of an inductive and a Instance.t of fresh universe names for the
subtyping (with the same length as the context in the given
universe context) and produces a UInfoInd.t that with the
trivial subtyping relation. *)
let from_universe_context univcst freshunivs =
let inst = (UContext.instance univcst) in
assert (Instance.length freshunivs = Instance.length inst);
(univcst, UContext.make (Instance.append inst freshunivs,
create_trivial_subtyping inst freshunivs))
let subtyping_susbst (univcst, subtypcst) =
let (ctx, ctx') = (halve_context (UContext.instance subtypcst))in
Array.fold_left2 (fun subst l1 l2 -> LMap.add l1 l2 subst) LMap.empty ctx ctx'
end
type cumulativity_info = CumulativityInfo.t
let hcons_cumulativity_info = CumulativityInfo.hcons
module ACumulativityInfo = CumulativityInfo
type abstract_cumulativity_info = ACumulativityInfo.t
let hcons_abstract_cumulativity_info = ACumulativityInfo.hcons
(** A set of universes with universe constraints.
We linearize the set to a list after typechecking.
Beware, representation could change.
*)
module ContextSet =
struct
type t = universe_set constrained
let empty = (LSet.empty, Constraint.empty)
let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst
let equal (univs, cst as x) (univs', cst' as y) =
x == y || (LSet.equal univs univs' && Constraint.equal cst cst')
let of_set s = (s, Constraint.empty)
let singleton l = of_set (LSet.singleton l)
let of_instance i = of_set (Instance.levels i)
let union (univs, cst as x) (univs', cst' as y) =
if x == y then x
else LSet.union univs univs', Constraint.union cst cst'
let append (univs, cst) (univs', cst') =
let univs = LSet.fold LSet.add univs univs' in
let cst = Constraint.fold Constraint.add cst cst' in
(univs, cst)
let diff (univs, cst) (univs', cst') =
LSet.diff univs univs', Constraint.diff cst cst'
let add_universe u (univs, cst) =
LSet.add u univs, cst
let add_constraints cst' (univs, cst) =
univs, Constraint.union cst cst'
let add_instance inst (univs, cst) =
let v = Instance.to_array inst in
let fold accu u = LSet.add u accu in
let univs = Array.fold_left fold univs v in
(univs, cst)
let sort_levels a =
Array.sort Level.natural_compare a; a
let to_context (ctx, cst) =
(Instance.of_array (sort_levels (Array.of_list (LSet.elements ctx))), cst)
let of_context (ctx, cst) =
(Instance.levels ctx, cst)
let pr prl (univs, cst as ctx) =
if is_empty ctx then mt() else
h 0 (LSet.pr prl univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst))
let constraints (univs, cst) = cst
let levels (univs, cst) = univs
end
type universe_context_set = ContextSet.t
(** A value in a universe context (resp. context set). *)
type 'a in_universe_context = 'a * universe_context
type 'a in_universe_context_set = 'a * universe_context_set
(** Substitutions. *)
let empty_subst = LMap.empty
let is_empty_subst = LMap.is_empty
let empty_level_subst = LMap.empty
let is_empty_level_subst = LMap.is_empty
(** Substitution functions *)
(** With level to level substitutions. *)
let subst_univs_level_level subst l =
try LMap.find l subst
with Not_found -> l
let subst_univs_level_universe subst u =
let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in
let u' = Universe.smartmap f u in
if u == u' then u
else Universe.sort u'
let subst_univs_level_instance subst i =
let i' = Instance.subst_fn (subst_univs_level_level subst) i in
if i == i' then i
else i'
let subst_univs_level_constraint subst (u,d,v) =
let u' = subst_univs_level_level subst u
and v' = subst_univs_level_level subst v in
if d != Lt && Level.equal u' v' then None
else Some (u',d,v')
let subst_univs_level_constraints subst csts =
Constraint.fold
(fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c))
csts Constraint.empty
let subst_univs_level_abstract_universe_context subst (inst, csts) =
inst, subst_univs_level_constraints subst csts
(** With level to universe substitutions. *)
type universe_subst_fn = universe_level -> universe
let make_subst subst = fun l -> LMap.find l subst
let subst_univs_expr_opt fn (l,n) =
Universe.addn n (fn l)
let subst_univs_universe fn ul =
let subst, nosubst =
Universe.Huniv.fold (fun u (subst,nosubst) ->
try let a' = subst_univs_expr_opt fn u in
(a' :: subst, nosubst)
with Not_found -> (subst, u :: nosubst))
ul ([], [])
in
if CList.is_empty subst then ul
else
let substs =
List.fold_left Universe.merge_univs Universe.empty subst
in
List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.Huniv.tip u))
substs nosubst
let subst_univs_level fn l =
try Some (fn l)
with Not_found -> None
let subst_univs_constraint fn (u,d,v as c) cstrs =
let u' = subst_univs_level fn u in
let v' = subst_univs_level fn v in
match u', v' with
| None, None -> Constraint.add c cstrs
| Some u, None -> enforce_univ_constraint (u,d,make v) cstrs
| None, Some v -> enforce_univ_constraint (make u,d,v) cstrs
| Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs
let subst_univs_constraints subst csts =
Constraint.fold
(fun c cstrs -> subst_univs_constraint subst c cstrs)
csts Constraint.empty
let make_instance_subst i =
let arr = Instance.to_array i in
Array.fold_left_i (fun i acc l ->
LMap.add l (Level.var i) acc)
LMap.empty arr
let make_inverse_instance_subst i =
let arr = Instance.to_array i in
Array.fold_left_i (fun i acc l ->
LMap.add (Level.var i) l acc)
LMap.empty arr
let make_abstract_instance (ctx, _) =
Array.mapi (fun i l -> Level.var i) ctx
let abstract_universes ctx =
let instance = UContext.instance ctx in
let subst = make_instance_subst instance in
let cstrs = subst_univs_level_constraints subst
(UContext.constraints ctx)
in
let ctx = UContext.make (instance, cstrs) in
subst, ctx
let abstract_cumulativity_info (univcst, substcst) =
let instance, univcst = abstract_universes univcst in
let _, substcst = abstract_universes substcst in
(instance, (univcst, substcst))
(** Pretty-printing *)
let pr_constraints prl = Constraint.pr prl
let pr_universe_context = UContext.pr
let pr_cumulativity_info = CumulativityInfo.pr
let pr_abstract_universe_context = AUContext.pr
let pr_abstract_cumulativity_info = ACumulativityInfo.pr
let pr_universe_context_set = ContextSet.pr
let pr_universe_subst =
LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ())
let pr_universe_level_subst =
LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ())
module Huniverse_set =
Hashcons.Make(
struct
type t = universe_set
type u = universe_level -> universe_level
let hashcons huc s =
LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty
let eq s s' =
LSet.equal s s'
let hash = Hashtbl.hash
end)
let hcons_universe_set =
Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons
let hcons_universe_context_set (v, c) =
(hcons_universe_set v, hcons_constraints c)
let hcons_univ x = Universe.hcons x
let explain_universe_inconsistency prl (o,u,v,p) =
let pr_uni = Universe.pr_with prl in
let pr_rel = function
| Eq -> str"=" | Lt -> str"<" | Le -> str"<="
in
let reason = match p with
| None | Some [] -> mt()
| Some p ->
str " because" ++ spc() ++ pr_uni v ++
prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ pr_uni v)
p ++
(if Universe.equal (snd (List.last p)) u then mt() else
(spc() ++ str "= " ++ pr_uni u))
in
str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++
pr_rel o ++ spc() ++ pr_uni v ++ reason
let compare_levels = Level.compare
let eq_levels = Level.equal
let equal_universes = Universe.equal
|