1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Univ
(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Support for universe polymorphism by MS [2014] *)
(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu
Sozeau, Pierre-Marie Pédrot, Jacques-Henri Jourdan *)
let error_inconsistency o u v (p:explanation option) =
raise (UniverseInconsistency (o,Universe.make u,Universe.make v,p))
(* Universes are stratified by a partial ordering $\le$.
Let $\~{}$ be the associated equivalence. We also have a strict ordering
$<$ between equivalence classes, and we maintain that $<$ is acyclic,
and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.
At every moment, we have a finite number of universes, and we
maintain the ordering in the presence of assertions $U<V$ and $U\le V$.
The equivalence $\~{}$ is represented by a tree structure, as in the
union-find algorithm. The assertions $<$ and $\le$ are represented by
adjacency lists.
We use the algorithm described in the paper:
Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
new approach to incremental cycle detection and related
problems. arXiv preprint arXiv:1112.0784.
*)
open Universe
module UMap = LMap
type status = NoMark | Visited | WeakVisited | ToMerge
(* Comparison on this type is pointer equality *)
type canonical_node =
{ univ: Level.t;
ltle: bool UMap.t; (* true: strict (lt) constraint.
false: weak (le) constraint. *)
gtge: LSet.t;
rank : int;
klvl: int;
ilvl: int;
mutable status: status
}
let big_rank = 1000000
(* A Level.t is either an alias for another one, or a canonical one,
for which we know the universes that are above *)
type univ_entry =
Canonical of canonical_node
| Equiv of Level.t
type universes =
{ entries : univ_entry UMap.t;
index : int;
n_nodes : int; n_edges : int }
type t = universes
(** Used to cleanup universes if a traversal function is interrupted before it
has the opportunity to do it itself. *)
let unsafe_cleanup_universes g =
let iter _ n = match n with
| Equiv _ -> ()
| Canonical n -> n.status <- NoMark
in
UMap.iter iter g.entries
let rec cleanup_universes g =
try unsafe_cleanup_universes g
with e ->
(** The only way unsafe_cleanup_universes may raise an exception is when
a serious error (stack overflow, out of memory) occurs, or a signal is
sent. In this unlikely event, we relaunch the cleanup until we finally
succeed. *)
cleanup_universes g; raise e
(* Every Level.t has a unique canonical arc representative *)
(* Low-level function : makes u an alias for v.
Does not removes edges from n_edges, but decrements n_nodes.
u should be entered as canonical before. *)
let enter_equiv g u v =
{ entries =
UMap.modify u (fun _ a ->
match a with
| Canonical n ->
n.status <- NoMark;
Equiv v
| _ -> assert false) g.entries;
index = g.index;
n_nodes = g.n_nodes - 1;
n_edges = g.n_edges }
(* Low-level function : changes data associated with a canonical node.
Resets the mutable fields in the old record, in order to avoid breaking
invariants for other users of this record.
n.univ should already been inserted as a canonical node. *)
let change_node g n =
{ g with entries =
UMap.modify n.univ
(fun _ a ->
match a with
| Canonical n' ->
n'.status <- NoMark;
Canonical n
| _ -> assert false)
g.entries }
(* repr : universes -> Level.t -> canonical_node *)
(* canonical representative : we follow the Equiv links *)
let rec repr g u =
let a =
try UMap.find u g.entries
with Not_found -> CErrors.anomaly ~label:"Univ.repr"
(str"Universe " ++ Level.pr u ++ str" undefined.")
in
match a with
| Equiv v -> repr g v
| Canonical arc -> arc
let get_set_arc g = repr g Level.set
let is_set_arc u = Level.is_set u.univ
let is_prop_arc u = Level.is_prop u.univ
exception AlreadyDeclared
(* Reindexes the given universe, using the next available index. *)
let use_index g u =
let u = repr g u in
let g = change_node g { u with ilvl = g.index } in
assert (g.index > min_int);
{ g with index = g.index - 1 }
(* [safe_repr] is like [repr] but if the graph doesn't contain the
searched universe, we add it. *)
let safe_repr g u =
let rec safe_repr_rec entries u =
match UMap.find u entries with
| Equiv v -> safe_repr_rec entries v
| Canonical arc -> arc
in
try g, safe_repr_rec g.entries u
with Not_found ->
let can =
{ univ = u;
ltle = UMap.empty; gtge = LSet.empty;
rank = if Level.is_small u then big_rank else 0;
klvl = 0; ilvl = 0;
status = NoMark }
in
let g = { g with
entries = UMap.add u (Canonical can) g.entries;
n_nodes = g.n_nodes + 1 }
in
let g = use_index g u in
g, repr g u
(* Returns 1 if u is higher than v in topological order.
-1 lower
0 if u = v *)
let topo_compare u v =
if u.klvl > v.klvl then 1
else if u.klvl < v.klvl then -1
else if u.ilvl > v.ilvl then 1
else if u.ilvl < v.ilvl then -1
else (assert (u==v); 0)
(* Checks most of the invariants of the graph. For debugging purposes. *)
let check_universes_invariants g =
let n_edges = ref 0 in
let n_nodes = ref 0 in
UMap.iter (fun l u ->
match u with
| Canonical u ->
UMap.iter (fun v strict ->
incr n_edges;
let v = repr g v in
assert (topo_compare u v = -1);
if u.klvl = v.klvl then
assert (LSet.mem u.univ v.gtge ||
LSet.exists (fun l -> u == repr g l) v.gtge))
u.ltle;
LSet.iter (fun v ->
let v = repr g v in
assert (v.klvl = u.klvl &&
(UMap.mem u.univ v.ltle ||
UMap.exists (fun l _ -> u == repr g l) v.ltle))
) u.gtge;
assert (u.status = NoMark);
assert (Level.equal l u.univ);
assert (u.ilvl > g.index);
assert (not (UMap.mem u.univ u.ltle));
incr n_nodes
| Equiv _ -> assert (not (Level.is_small l)))
g.entries;
assert (!n_edges = g.n_edges);
assert (!n_nodes = g.n_nodes)
let clean_ltle g ltle =
UMap.fold (fun u strict acc ->
let uu = (repr g u).univ in
if Level.equal uu u then acc
else (
let acc = UMap.remove u (fst acc) in
if not strict && UMap.mem uu acc then (acc, true)
else (UMap.add uu strict acc, true)))
ltle (ltle, false)
let clean_gtge g gtge =
LSet.fold (fun u acc ->
let uu = (repr g u).univ in
if Level.equal uu u then acc
else LSet.add uu (LSet.remove u (fst acc)), true)
gtge (gtge, false)
(* [get_ltle] and [get_gtge] return ltle and gtge arcs.
Moreover, if one of these lists is dirty (e.g. points to a
non-canonical node), these functions clean this node in the
graph by removing some duplicate edges *)
let get_ltle g u =
let ltle, chgt_ltle = clean_ltle g u.ltle in
if not chgt_ltle then u.ltle, u, g
else
let sz = UMap.cardinal u.ltle in
let sz2 = UMap.cardinal ltle in
let u = { u with ltle } in
let g = change_node g u in
let g = { g with n_edges = g.n_edges + sz2 - sz } in
u.ltle, u, g
let get_gtge g u =
let gtge, chgt_gtge = clean_gtge g u.gtge in
if not chgt_gtge then u.gtge, u, g
else
let u = { u with gtge } in
let g = change_node g u in
u.gtge, u, g
(* [revert_graph] rollbacks the changes made to mutable fields in
nodes in the graph.
[to_revert] contains the touched nodes. *)
let revert_graph to_revert g =
List.iter (fun t ->
match UMap.find t g.entries with
| Equiv _ -> ()
| Canonical t ->
t.status <- NoMark) to_revert
exception AbortBackward of universes
exception CycleDetected
(* Implementation of the algorithm described in § 5.1 of the following paper:
Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
new approach to incremental cycle detection and related
problems. arXiv preprint arXiv:1112.0784.
The "STEP X" comments contained in this file refers to the
corresponding step numbers of the algorithm described in Section
5.1 of this paper. *)
(* [delta] is the timeout for backward search. It might be
useful to tune a multiplicative constant. *)
let get_delta g =
int_of_float
(min (float_of_int g.n_edges ** 0.5)
(float_of_int g.n_nodes ** (2./.3.)))
let rec backward_traverse to_revert b_traversed count g x =
let x = repr g x in
let count = count - 1 in
if count < 0 then begin
revert_graph to_revert g;
raise (AbortBackward g)
end;
if x.status = NoMark then begin
x.status <- Visited;
let to_revert = x.univ::to_revert in
let gtge, x, g = get_gtge g x in
let to_revert, b_traversed, count, g =
LSet.fold (fun y (to_revert, b_traversed, count, g) ->
backward_traverse to_revert b_traversed count g y)
gtge (to_revert, b_traversed, count, g)
in
to_revert, x.univ::b_traversed, count, g
end
else to_revert, b_traversed, count, g
let rec forward_traverse f_traversed g v_klvl x y =
let y = repr g y in
if y.klvl < v_klvl then begin
let y = { y with klvl = v_klvl;
gtge = if x == y then LSet.empty
else LSet.singleton x.univ }
in
let g = change_node g y in
let ltle, y, g = get_ltle g y in
let f_traversed, g =
UMap.fold (fun z _ (f_traversed, g) ->
forward_traverse f_traversed g v_klvl y z)
ltle (f_traversed, g)
in
y.univ::f_traversed, g
end else if y.klvl = v_klvl && x != y then
let g = change_node g
{ y with gtge = LSet.add x.univ y.gtge } in
f_traversed, g
else f_traversed, g
let rec find_to_merge to_revert g x v =
let x = repr g x in
match x.status with
| Visited -> false, to_revert | ToMerge -> true, to_revert
| NoMark ->
let to_revert = x::to_revert in
if Level.equal x.univ v then
begin x.status <- ToMerge; true, to_revert end
else
begin
let merge, to_revert = LSet.fold
(fun y (merge, to_revert) ->
let merge', to_revert = find_to_merge to_revert g y v in
merge' || merge, to_revert) x.gtge (false, to_revert)
in
x.status <- if merge then ToMerge else Visited;
merge, to_revert
end
| _ -> assert false
let get_new_edges g to_merge =
(* Computing edge sets. *)
let to_merge_lvl =
List.fold_left (fun acc u -> UMap.add u.univ u acc)
UMap.empty to_merge
in
let ltle =
let fold _ n acc =
let fold u strict acc =
if strict then UMap.add u strict acc
else if UMap.mem u acc then acc
else UMap.add u false acc
in
UMap.fold fold n.ltle acc
in
UMap.fold fold to_merge_lvl UMap.empty
in
let ltle, _ = clean_ltle g ltle in
let ltle =
UMap.merge (fun _ a strict ->
match a, strict with
| Some _, Some true ->
(* There is a lt edge inside the new component. This is a
"bad cycle". *)
raise CycleDetected
| Some _, Some false -> None
| _, _ -> strict
) to_merge_lvl ltle
in
let gtge =
UMap.fold (fun _ n acc -> LSet.union acc n.gtge)
to_merge_lvl LSet.empty
in
let gtge, _ = clean_gtge g gtge in
let gtge = LSet.diff gtge (UMap.domain to_merge_lvl) in
(ltle, gtge)
let reorder g u v =
(* STEP 2: backward search in the k-level of u. *)
let delta = get_delta g in
(* [v_klvl] is the chosen future level for u, v and all
traversed nodes. *)
let b_traversed, v_klvl, g =
try
let to_revert, b_traversed, _, g = backward_traverse [] [] delta g u in
revert_graph to_revert g;
let v_klvl = (repr g u).klvl in
b_traversed, v_klvl, g
with AbortBackward g ->
(* Backward search was too long, use the next k-level. *)
let v_klvl = (repr g u).klvl + 1 in
[], v_klvl, g
in
let f_traversed, g =
(* STEP 3: forward search. Contrary to what is described in
the paper, we do not test whether v_klvl = u.klvl nor we assign
v_klvl to v.klvl. Indeed, the first call to forward_traverse
will do all that. *)
forward_traverse [] g v_klvl (repr g v) v
in
(* STEP 4: merge nodes if needed. *)
let to_merge, b_reindex, f_reindex =
if (repr g u).klvl = v_klvl then
begin
let merge, to_revert = find_to_merge [] g u v in
let r =
if merge then
List.filter (fun u -> u.status = ToMerge) to_revert,
List.filter (fun u -> (repr g u).status <> ToMerge) b_traversed,
List.filter (fun u -> (repr g u).status <> ToMerge) f_traversed
else [], b_traversed, f_traversed
in
List.iter (fun u -> u.status <- NoMark) to_revert;
r
end
else [], b_traversed, f_traversed
in
let to_reindex, g =
match to_merge with
| [] -> List.rev_append f_reindex b_reindex, g
| n0::q0 ->
(* Computing new root. *)
let root, rank_rest =
List.fold_left (fun ((best, rank_rest) as acc) n ->
if n.rank >= best.rank then n, best.rank else acc)
(n0, min_int) q0
in
let ltle, gtge = get_new_edges g to_merge in
(* Inserting the new root. *)
let g = change_node g
{ root with ltle; gtge;
rank = max root.rank (rank_rest + 1); }
in
(* Inserting shortcuts for old nodes. *)
let g = List.fold_left (fun g n ->
if Level.equal n.univ root.univ then g else enter_equiv g n.univ root.univ)
g to_merge
in
(* Updating g.n_edges *)
let oldsz =
List.fold_left (fun sz u -> sz+UMap.cardinal u.ltle)
0 to_merge
in
let sz = UMap.cardinal ltle in
let g = { g with n_edges = g.n_edges + sz - oldsz } in
(* Not clear in the paper: we have to put the newly
created component just between B and F. *)
List.rev_append f_reindex (root.univ::b_reindex), g
in
(* STEP 5: reindex traversed nodes. *)
List.fold_left use_index g to_reindex
(* Assumes [u] and [v] are already in the graph. *)
(* Does NOT assume that ucan != vcan. *)
let insert_edge strict ucan vcan g =
try
let u = ucan.univ and v = vcan.univ in
(* STEP 1: do we need to reorder nodes ? *)
let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in
(* STEP 6: insert the new edge in the graph. *)
let u = repr g u in
let v = repr g v in
if u == v then
if strict then raise CycleDetected else g
else
let g =
try let oldstrict = UMap.find v.univ u.ltle in
if strict && not oldstrict then
change_node g { u with ltle = UMap.add v.univ true u.ltle }
else g
with Not_found ->
{ (change_node g { u with ltle = UMap.add v.univ strict u.ltle })
with n_edges = g.n_edges + 1 }
in
if u.klvl <> v.klvl || LSet.mem u.univ v.gtge then g
else
let v = { v with gtge = LSet.add u.univ v.gtge } in
change_node g v
with
| CycleDetected as e -> raise e
| e ->
(** Unlikely event: fatal error or signal *)
let () = cleanup_universes g in
raise e
let add_universe vlev strict g =
try
let _arcv = UMap.find vlev g.entries in
raise AlreadyDeclared
with Not_found ->
assert (g.index > min_int);
let v = {
univ = vlev;
ltle = LMap.empty;
gtge = LSet.empty;
rank = 0;
klvl = 0;
ilvl = g.index;
status = NoMark;
}
in
let entries = UMap.add vlev (Canonical v) g.entries in
let g = { entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges } in
insert_edge strict (get_set_arc g) v g
exception Found_explanation of explanation
let get_explanation strict u v g =
let v = repr g v in
let visited_strict = ref UMap.empty in
let rec traverse strict u =
if u == v then
if strict then None else Some []
else if topo_compare u v = 1 then None
else
let visited =
try not (UMap.find u.univ !visited_strict) || strict
with Not_found -> false
in
if visited then None
else begin
visited_strict := UMap.add u.univ strict !visited_strict;
try
UMap.iter (fun u' strictu' ->
match traverse (strict && not strictu') (repr g u') with
| None -> ()
| Some exp ->
let typ = if strictu' then Lt else Le in
raise (Found_explanation ((typ, make u') :: exp)))
u.ltle;
None
with Found_explanation exp -> Some exp
end
in
let u = repr g u in
if u == v then [(Eq, make v.univ)]
else match traverse strict u with Some exp -> exp | None -> assert false
let get_explanation strict u v g =
if !Flags.univ_print then Some (get_explanation strict u v g)
else None
(* To compare two nodes, we simply do a forward search.
We implement two improvements:
- we ignore nodes that are higher than the destination;
- we do a BFS rather than a DFS because we expect to have a short
path (typically, the shortest path has length 1)
*)
exception Found of canonical_node list
let search_path strict u v g =
let rec loop to_revert todo next_todo =
match todo, next_todo with
| [], [] -> to_revert (* No path found *)
| [], _ -> loop to_revert next_todo []
| (u, strict)::todo, _ ->
if u.status = Visited || (u.status = WeakVisited && strict)
then loop to_revert todo next_todo
else
let to_revert =
if u.status = NoMark then u::to_revert else to_revert
in
u.status <- if strict then WeakVisited else Visited;
if try UMap.find v.univ u.ltle || not strict
with Not_found -> false
then raise (Found to_revert)
else
begin
let next_todo =
UMap.fold (fun u strictu next_todo ->
let strict = not strictu && strict in
let u = repr g u in
if u == v && not strict then raise (Found to_revert)
else if topo_compare u v = 1 then next_todo
else (u, strict)::next_todo)
u.ltle next_todo
in
loop to_revert todo next_todo
end
in
if u == v then not strict
else
try
let res, to_revert =
try false, loop [] [u, strict] []
with Found to_revert -> true, to_revert
in
List.iter (fun u -> u.status <- NoMark) to_revert;
res
with e ->
(** Unlikely event: fatal error or signal *)
let () = cleanup_universes g in
raise e
(** Uncomment to debug the cycle detection algorithm. *)
(*let insert_edge strict ucan vcan g =
check_universes_invariants g;
let g = insert_edge strict ucan vcan g in
check_universes_invariants g;
let ucan = repr g ucan.univ in
let vcan = repr g vcan.univ in
assert (search_path strict ucan vcan g);
g*)
(** First, checks on universe levels *)
let check_equal g u v =
let arcu = repr g u and arcv = repr g v in
arcu == arcv
let check_eq_level g u v = u == v || check_equal g u v
let check_smaller g strict u v =
let arcu = repr g u and arcv = repr g v in
if strict then
search_path true arcu arcv g
else
is_prop_arc arcu
|| (is_set_arc arcu && not (is_prop_arc arcv))
|| search_path false arcu arcv g
(** Then, checks on universes *)
type 'a check_function = universes -> 'a -> 'a -> bool
let check_smaller_expr g (u,n) (v,m) =
let diff = n - m in
match diff with
| 0 -> check_smaller g false u v
| 1 -> check_smaller g true u v
| x when x < 0 -> check_smaller g false u v
| _ -> false
let exists_bigger g ul l =
Universe.exists (fun ul' ->
check_smaller_expr g ul ul') l
let real_check_leq g u v =
Universe.for_all (fun ul -> exists_bigger g ul v) u
let check_leq g u v =
Universe.equal u v ||
is_type0m_univ u ||
real_check_leq g u v
let check_eq_univs g l1 l2 =
real_check_leq g l1 l2 && real_check_leq g l2 l1
let check_eq g u v =
Universe.equal u v || check_eq_univs g u v
(* enforce_univ_eq g u v will force u=v if possible, will fail otherwise *)
let rec enforce_univ_eq u v g =
let ucan = repr g u in
let vcan = repr g v in
if topo_compare ucan vcan = 1 then enforce_univ_eq v u g
else
let g = insert_edge false ucan vcan g in (* Cannot fail *)
try insert_edge false vcan ucan g
with CycleDetected ->
error_inconsistency Eq v u (get_explanation true u v g)
(* enforce_univ_leq g u v will force u<=v if possible, will fail otherwise *)
let enforce_univ_leq u v g =
let ucan = repr g u in
let vcan = repr g v in
try insert_edge false ucan vcan g
with CycleDetected ->
error_inconsistency Le u v (get_explanation true v u g)
(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
let enforce_univ_lt u v g =
let ucan = repr g u in
let vcan = repr g v in
try insert_edge true ucan vcan g
with CycleDetected ->
error_inconsistency Lt u v (get_explanation false v u g)
let empty_universes =
let set_arc = Canonical {
univ = Level.set;
ltle = LMap.empty;
gtge = LSet.empty;
rank = big_rank;
klvl = 0;
ilvl = (-1);
status = NoMark;
} in
let prop_arc = Canonical {
univ = Level.prop;
ltle = LMap.empty;
gtge = LSet.empty;
rank = big_rank;
klvl = 0;
ilvl = 0;
status = NoMark;
} in
let entries = UMap.add Level.set set_arc (UMap.singleton Level.prop prop_arc) in
let empty = { entries; index = (-2); n_nodes = 2; n_edges = 0 } in
enforce_univ_lt Level.prop Level.set empty
(* Prop = Set is forbidden here. *)
let initial_universes = empty_universes
let is_initial_universes g = UMap.equal (==) g.entries initial_universes.entries
let enforce_constraint cst g =
match cst with
| (u,Lt,v) -> enforce_univ_lt u v g
| (u,Le,v) -> enforce_univ_leq u v g
| (u,Eq,v) -> enforce_univ_eq u v g
let merge_constraints c g =
Constraint.fold enforce_constraint c g
let check_constraint g (l,d,r) =
match d with
| Eq -> check_equal g l r
| Le -> check_smaller g false l r
| Lt -> check_smaller g true l r
let check_constraints c g =
Constraint.for_all (check_constraint g) c
(* Normalization *)
(** [normalize_universes g] returns a graph where all edges point
directly to the canonical representent of their target. The output
graph should be equivalent to the input graph from a logical point
of view, but optimized. We maintain the invariant that the key of
a [Canonical] element is its own name, by keeping [Equiv] edges. *)
let normalize_universes g =
let g =
{ g with
entries = UMap.map (fun entry ->
match entry with
| Equiv u -> Equiv ((repr g u).univ)
| Canonical ucan -> Canonical { ucan with rank = 1 })
g.entries }
in
UMap.fold (fun _ u g ->
match u with
| Equiv u -> g
| Canonical u ->
let _, u, g = get_ltle g u in
let _, _, g = get_gtge g u in
g)
g.entries g
let constraints_of_universes g =
let constraints_of u v acc =
match v with
| Canonical {univ=u; ltle} ->
UMap.fold (fun v strict acc->
let typ = if strict then Lt else Le in
Constraint.add (u,typ,v) acc) ltle acc
| Equiv v -> Constraint.add (u,Eq,v) acc
in
UMap.fold constraints_of g.entries Constraint.empty
let constraints_of_universes g =
constraints_of_universes (normalize_universes g)
(** [sort_universes g] builds a totally ordered universe graph. The
output graph should imply the input graph (and the implication
will be strict most of the time), but is not necessarily minimal.
Moreover, it adds levels [Type.n] to identify universes at level
n. An artificial constraint Set < Type.2 is added to ensure that
Type.n and small universes are not merged. Note: the result is
unspecified if the input graph already contains [Type.n] nodes
(calling a module Type is probably a bad idea anyway). *)
let sort_universes g =
let cans =
UMap.fold (fun _ u l ->
match u with
| Equiv _ -> l
| Canonical can -> can :: l
) g.entries []
in
let cans = List.sort topo_compare cans in
let lowest_levels =
UMap.mapi (fun u _ -> if Level.is_small u then 0 else 2)
(UMap.filter
(fun _ u -> match u with Equiv _ -> false | Canonical _ -> true)
g.entries)
in
let lowest_levels =
List.fold_left (fun lowest_levels can ->
let lvl = UMap.find can.univ lowest_levels in
UMap.fold (fun u' strict lowest_levels ->
let cost = if strict then 1 else 0 in
let u' = (repr g u').univ in
UMap.modify u' (fun _ lvl0 -> max lvl0 (lvl+cost)) lowest_levels)
can.ltle lowest_levels)
lowest_levels cans
in
let max_lvl = UMap.fold (fun _ a b -> max a b) lowest_levels 0 in
let mp = Names.DirPath.make [Names.Id.of_string "Type"] in
let types = Array.init (max_lvl + 1) (function
| 0 -> Level.prop
| 1 -> Level.set
| n -> Level.make mp (n-2))
in
let g = Array.fold_left (fun g u ->
let g, u = safe_repr g u in
change_node g { u with rank = big_rank }) g types
in
let g = if max_lvl >= 2 then enforce_univ_lt Level.set types.(2) g else g in
let g =
UMap.fold (fun u lvl g -> enforce_univ_eq u (types.(lvl)) g)
lowest_levels g
in
normalize_universes g
(** Instances *)
let check_eq_instances g t1 t2 =
let t1 = Instance.to_array t1 in
let t2 = Instance.to_array t2 in
t1 == t2 ||
(Int.equal (Array.length t1) (Array.length t2) &&
let rec aux i =
(Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
in aux 0)
(** Pretty-printing *)
let pr_arc prl = function
| _, Canonical {univ=u; ltle} ->
if UMap.is_empty ltle then mt ()
else
prl u ++ str " " ++
v 0
(pr_sequence (fun (v, strict) ->
(if strict then str "< " else str "<= ") ++ prl v)
(UMap.bindings ltle)) ++
fnl ()
| u, Equiv v ->
prl u ++ str " = " ++ prl v ++ fnl ()
let pr_universes prl g =
let graph = UMap.fold (fun u a l -> (u,a)::l) g.entries [] in
prlist (pr_arc prl) graph
(* Dumping constraints to a file *)
let dump_universes output g =
let dump_arc u = function
| Canonical {univ=u; ltle} ->
let u_str = Level.to_string u in
UMap.iter (fun v strict ->
let typ = if strict then Lt else Le in
output typ u_str (Level.to_string v)) ltle;
| Equiv v ->
output Eq (Level.to_string u) (Level.to_string v)
in
UMap.iter dump_arc g.entries
(** Profiling *)
let merge_constraints =
if Flags.profile then
let key = Profile.declare_profile "merge_constraints" in
Profile.profile2 key merge_constraints
else merge_constraints
let check_constraints =
if Flags.profile then
let key = Profile.declare_profile "check_constraints" in
Profile.profile2 key check_constraints
else check_constraints
let check_eq =
if Flags.profile then
let check_eq_key = Profile.declare_profile "check_eq" in
Profile.profile3 check_eq_key check_eq
else check_eq
let check_leq =
if Flags.profile then
let check_leq_key = Profile.declare_profile "check_leq" in
Profile.profile3 check_leq_key check_leq
else check_leq
|