1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
|
(* $Id$ *)
open Pp
open Util
open Names
open Univ
(* open Generic *)
open Term
open Declarations
open Sign
open Environ
open Reduction
open Inductive
open Type_errors
let make_judge v tj =
{ uj_val = v;
uj_type = tj }
let j_val j = j.uj_val
(* This should be a type intended to be assumed *)
let assumption_of_judgment env sigma j =
match kind_of_term(whd_betadeltaiota env sigma (body_of_type j.uj_type)) with
| IsSort s -> j.uj_val
| _ -> error_assumption CCI env j.uj_val
(* This should be a type (a priori without intension to be an assumption) *)
let type_judgment env sigma j =
match kind_of_term(whd_betadeltaiota env sigma (body_of_type j.uj_type)) with
| IsSort s -> {utj_val = j.uj_val; utj_type = s }
| _ -> error_not_type CCI env j
(* Type of a de Bruijn index. *)
let relative env sigma n =
try
let (_,typ) = lookup_rel_type n env in
{ uj_val = mkRel n;
uj_type = type_app (lift n) typ }
with Not_found ->
error_unbound_rel CCI env sigma n
(* Management of context of variables. *)
(* Checks if a context of variable is included in another one. *)
(*
let rec hyps_inclusion env sigma sign1 sign2 =
if sign1 = empty_named_context then true
else
let (id1,ty1) = hd_sign sign1 in
let rec search sign2 =
if sign2 = empty_named_context then false
else
let (id2,ty2) = hd_sign sign2 in
if id1 = id2 then
(is_conv env sigma (body_of_type ty1) (body_of_type ty2))
&
hyps_inclusion env sigma (tl_sign sign1) (tl_sign sign2)
else
search (tl_sign sign2)
in
search sign2
*)
(* Checks if the given context of variables [hyps] is included in the
current context of [env]. *)
(*
let check_hyps id env sigma hyps =
let hyps' = named_context env in
if not (hyps_inclusion env sigma hyps hyps') then
error_reference_variables CCI env id
*)
(* Instantiation of terms on real arguments. *)
let type_of_constant = Instantiate.constant_type
(* Inductive types. *)
let instantiate_arity = mis_user_arity
let type_of_inductive env sigma i =
(* TODO: check args *)
instantiate_arity (lookup_mind_specif i env)
(* Constructors. *)
let type_mconstruct env sigma i mind =
mis_type_mconstruct i (lookup_mind_specif mind env)
let type_of_constructor env sigma cstr =
type_mconstruct env sigma
(index_of_constructor cstr)
(inductive_of_constructor cstr)
let type_of_existential env sigma c =
Instantiate.existential_type sigma (destEvar c)
(* Case. *)
let rec mysort_of_arity env sigma c =
match kind_of_term (whd_betadeltaiota env sigma c) with
| IsSort s -> s
| IsProd(_,_,c2) -> mysort_of_arity env sigma c2
| _ -> invalid_arg "mysort_of_arity"
let error_elim_expln env sigma kp ki =
if is_info_arity env sigma kp && not (is_info_arity env sigma ki) then
"non-informative objects may not construct informative ones."
else
match (kind_of_term kp,kind_of_term ki) with
| IsSort (Type _), IsSort (Prop _) ->
"strong elimination on non-small inductive types leads to paradoxes."
| _ -> "wrong arity"
exception Arity of (constr * constr * string) option
let is_correct_arity env sigma kelim (c,p) indf (pt,t) =
let rec srec (pt,t) =
let pt' = whd_betadeltaiota env sigma pt in
let t' = whd_betadeltaiota env sigma t in
match kind_of_term pt', kind_of_term t' with
| IsProd (_,a1,a2), IsProd (_,a1',a2') ->
if is_conv env sigma a1 a1' then
srec (a2,a2')
else
raise (Arity None)
| IsProd (_,a1,a2), _ ->
let k = whd_betadeltaiota env sigma a2 in
let ksort = (match kind_of_term k with IsSort s -> s
| _ -> raise (Arity None)) in
let ind = build_dependent_inductive indf in
if is_conv env sigma a1 ind then
if List.exists (base_sort_cmp CONV ksort) kelim then
(true,k)
else
raise (Arity (Some(k,t',error_elim_expln env sigma k t')))
else
raise (Arity None)
| k, IsProd (_,_,_) ->
raise (Arity None)
| k, ki ->
let ksort = (match k with IsSort s -> s
| _ -> raise (Arity None)) in
if List.exists (base_sort_cmp CONV ksort) kelim then
false, pt'
else
raise (Arity (Some(pt',t',error_elim_expln env sigma pt' t')))
in
try srec (pt,t)
with Arity kinds ->
let listarity =
(List.map (make_arity env true indf) kelim)
@(List.map (make_arity env false indf) kelim)
in
let ind = mis_inductive (fst (dest_ind_family indf)) in
error_elim_arity CCI env ind listarity c p pt kinds
let find_case_dep_nparams env sigma (c,p) (IndFamily (mis,_) as indf) typP =
let kelim = mis_kelim mis in
let arsign,s = get_arity indf in
let glob_t = it_mkProd_or_LetIn (mkSort s) arsign in
let (dep,_) = is_correct_arity env sigma kelim (c,p) indf (typP,glob_t) in
dep
(* type_case_branches type un <p>Case c of ... end
ct = type de c, si inductif il a la forme APP(mI,largs), sinon raise Induc
pt = sorte de p
type_case_branches retourne (lb, lr); lb est le vecteur des types
attendus dans les branches du Case; lr est le type attendu du resultat
*)
let type_case_branches env sigma (IndType (indf,realargs)) pt p c =
let dep = find_case_dep_nparams env sigma (c,p) indf pt in
let constructs = get_constructors indf in
let lc = Array.map (build_branch_type env dep p) constructs in
if dep then
(lc, beta_applist (p,(realargs@[c])))
else
(lc, beta_applist (p,realargs))
let check_branches_message env sigma (c,ct) (explft,lft) =
let expn = Array.length explft and n = Array.length lft in
if n<>expn then error_number_branches CCI env c ct expn;
for i = 0 to n-1 do
if not (is_conv_leq env sigma lft.(i) (explft.(i))) then
error_ill_formed_branch CCI env c i (nf_betaiota env sigma lft.(i))
(nf_betaiota env sigma explft.(i))
done
let type_of_case env sigma ci pj cj lfj =
let lft = Array.map (fun j -> body_of_type j.uj_type) lfj in
let indspec =
try find_rectype env sigma (body_of_type cj.uj_type)
with Induc ->
error_case_not_inductive CCI env cj.uj_val (body_of_type cj.uj_type) in
let (bty,rslty) =
type_case_branches env sigma indspec (body_of_type pj.uj_type) pj.uj_val cj.uj_val in
let kind = mysort_of_arity env sigma (body_of_type pj.uj_type) in
check_branches_message env sigma (cj.uj_val,body_of_type cj.uj_type) (bty,lft);
{ uj_val = mkMutCase (ci, pj.uj_val, cj.uj_val, Array.map j_val lfj);
uj_type = rslty }
(* Prop and Set *)
let judge_of_prop =
{ uj_val = mkSort prop;
uj_type = mkSort type_0 }
let judge_of_set =
{ uj_val = mkSort spec;
uj_type = mkSort type_0 }
let judge_of_prop_contents = function
| Null -> judge_of_prop
| Pos -> judge_of_set
(* Type of Type(i). *)
let judge_of_type u =
let (uu,uuu,c) = super_super u in
{ uj_val = mkSort (Type u);
uj_type = mkSort (Type uu) },
c
let type_of_sort c =
match kind_of_term c with
| IsSort (Type u) -> let (uu,cst) = super u in Type uu, cst
| IsSort (Prop _) -> Type prop_univ, Constraint.empty
| _ -> invalid_arg "type_of_sort"
(* Type of a lambda-abstraction. *)
let sort_of_product domsort rangsort g =
match rangsort with
(* Product rule (s,Prop,Prop) *)
| Prop _ -> rangsort, Constraint.empty
| Type u2 ->
(match domsort with
(* Product rule (Prop,Type_i,Type_i) *)
| Prop _ -> rangsort, Constraint.empty
(* Product rule (Type_i,Type_i,Type_i) *)
| Type u1 -> let (u12,cst) = sup u1 u2 g in Type u12, cst)
(* [abs_rel env sigma name var j] implements the rule
env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s
-----------------------------------------------------------------------
env |- [name:typ]j.uj_val : (name:typ)j.uj_type
Since all products are defined in the Calculus of Inductive Constructions
and no upper constraint exists on the sort $s$, we don't need to compute $s$
*)
let abs_rel env sigma name var j =
{ uj_val = mkLambda (name, var, j.uj_val);
uj_type = mkProd (name, var, j.uj_type) },
Constraint.empty
(* [gen_rel env sigma name (typ1,s1) j] implements the rule
env |- typ1:s1 env, name:typ |- j.uj_val : j.uj_type
-------------------------------------------------------------------------
s' >= (s1,s2), env |- (name:typ)j.uj_val : s'
where j.uj_type is convertible to a sort s2
*)
let gen_rel env sigma name {utj_val = t1; utj_type = s1} j =
match kind_of_term (whd_betadeltaiota env sigma j.uj_type) with
| IsSort s ->
let (s',g) = sort_of_product s1 s (universes env) in
{ uj_val = mkProd (name, t1, j.uj_val);
uj_type = mkSort s' },
g
| _ ->
(* if is_small (level_of_type j.uj_type) then (* message historique ?? *)
error "Proof objects can only be abstracted"
else
*)
error_generalization CCI env sigma (name,t1) j
(* [cast_rel env sigma (typ1,s1) j] implements the rule
env, sigma |- cj.uj_val:cj.uj_type cst, env, sigma |- cj.uj_type = t
---------------------------------------------------------------------
cst, env, sigma |- cj.uj_val:t
*)
let cast_rel env sigma cj t =
try
let cst = conv_leq env sigma (body_of_type cj.uj_type) t in
{ uj_val = j_val cj;
uj_type = t },
cst
with NotConvertible ->
error_actual_type CCI env cj.uj_val (body_of_type cj.uj_type) t
(* Type of an application. *)
let apply_rel_list env sigma nocheck argjl funj =
let rec apply_rec n typ cst = function
| [] ->
{ uj_val = applist (j_val funj, List.map j_val argjl);
uj_type = type_app (fun _ -> typ) funj.uj_type },
cst
| hj::restjl ->
match kind_of_term (whd_betadeltaiota env sigma typ) with
| IsProd (_,c1,c2) ->
if nocheck then
apply_rec (n+1) (subst1 hj.uj_val c2) cst restjl
else
(try
let c = conv_leq env sigma (body_of_type hj.uj_type) c1 in
let cst' = Constraint.union cst c in
apply_rec (n+1) (subst1 hj.uj_val c2) cst' restjl
with NotConvertible ->
error_cant_apply_bad_type CCI env sigma
(n,c1,body_of_type hj.uj_type)
funj argjl)
| _ ->
error_cant_apply_not_functional CCI env funj argjl
in
apply_rec 1 (body_of_type funj.uj_type) Constraint.empty argjl
(* Fixpoints. *)
(* Check if t is a subterm of Rel n, and gives its specification,
assuming lst already gives index of
subterms with corresponding specifications of recursive arguments *)
(* A powerful notion of subterm *)
let find_sorted_assoc p =
let rec findrec = function
| (a,ta)::l ->
if a < p then findrec l else if a = p then ta else raise Not_found
| _ -> raise Not_found
in
findrec
let map_lift_fst_n m = List.map (function (n,t)->(n+m,t))
let map_lift_fst = map_lift_fst_n 1
let rec instantiate_recarg sp lrc ra =
match ra with
| Mrec(j) -> Imbr((sp,j),lrc)
| Imbr(ind_sp,l) -> Imbr(ind_sp, List.map (instantiate_recarg sp lrc) l)
| Norec -> Norec
| Param(k) -> List.nth lrc k
(* propagate checking for F,incorporating recursive arguments *)
let check_term env mind_recvec f =
let rec crec env n l (lrec,c) =
match lrec, kind_of_term (strip_outer_cast c) with
| (Param(_)::lr, IsLambda (x,a,b)) ->
let l' = map_lift_fst l in
crec (push_rel_assum (x,a) env) (n+1) l' (lr,b)
| (Norec::lr, IsLambda (x,a,b)) ->
let l' = map_lift_fst l in
crec (push_rel_assum (x,a) env) (n+1) l' (lr,b)
| (Mrec(i)::lr, IsLambda (x,a,b)) ->
let l' = map_lift_fst l in
crec (push_rel_assum (x, a) env) (n+1)
((1,mind_recvec.(i))::l') (lr,b)
| (Imbr((sp,i) as ind_sp,lrc)::lr, IsLambda (x,a,b)) ->
let l' = map_lift_fst l in
let sprecargs =
mis_recargs (lookup_mind_specif (ind_sp,[||]) env) in
let lc =
Array.map (List.map (instantiate_recarg sp lrc)) sprecargs.(i)
in
crec (push_rel_assum (x, a) env) (n+1) ((1,lc)::l') (lr,b)
| _,_ -> f env n l (strip_outer_cast c)
in
crec env
let is_inst_var env sigma k c =
match kind_of_term (fst (whd_betadeltaiota_stack env sigma c)) with
| IsRel n -> n=k
| _ -> false
let is_subterm_specif env sigma lcx mind_recvec =
let rec crec env n lst c =
let f,l = whd_betadeltaiota_stack env sigma c in
match kind_of_term f with
| IsRel k -> find_sorted_assoc k lst
| IsMutCase ( _,_,c,br) ->
if Array.length br = 0 then
[||]
else
let lcv =
(try
if is_inst_var env sigma n c then lcx else crec env n lst c
with Not_found -> (Array.create (Array.length br) []))
in
assert (Array.length br = Array.length lcv);
let stl =
array_map2
(fun lc a ->
check_term env mind_recvec crec n lst (lc,a)) lcv br
in
stl.(0)
| IsFix ((recindxs,i),(typarray,funnames,bodies as recdef)) ->
let nbfix = List.length funnames in
let decrArg = recindxs.(i) in
let theBody = bodies.(i) in
let sign,strippedBody = decompose_lam_n_assum (decrArg+1) theBody in
let nbOfAbst = nbfix+decrArg+1 in
let newlst =
if List.length l < (decrArg+1) then
((nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst))
else
let theDecrArg = List.nth l decrArg in
let recArgsDecrArg =
try (crec env n lst theDecrArg)
with Not_found -> Array.create 0 []
in
if (Array.length recArgsDecrArg)=0 then
(nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst)
else
(1,recArgsDecrArg) ::
(nbOfAbst,lcx) ::
(map_lift_fst_n nbOfAbst lst)
in
let env' = push_rec_types recdef env in
let env'' = push_rels sign env' in
crec env'' (n+nbOfAbst) newlst strippedBody
| IsLambda (x,a,b) when l=[] ->
let lst' = map_lift_fst lst in
crec (push_rel_assum (x, a) env) (n+1) lst' b
(*** Experimental change *************************)
| IsMeta _ -> [||]
| _ -> raise Not_found
in
crec env
let is_subterm env sigma lcx mind_recvec n lst c =
try
let _ = is_subterm_specif env sigma lcx mind_recvec n lst c in true
with Not_found ->
false
exception FixGuardError of guard_error
(* Auxiliary function: it checks a condition f depending on a deBrujin
index for a certain number of abstractions *)
let rec check_subterm_rec_meta env sigma vectn k def =
(* If k<0, it is a general fixpoint *)
(k < 0) or
(let nfi = Array.length vectn in
(* check fi does not appear in the k+1 first abstractions,
gives the type of the k+1-eme abstraction *)
let rec check_occur env n def =
match kind_of_term (strip_outer_cast def) with
| IsLambda (x,a,b) ->
if noccur_with_meta n nfi a then
let env' = push_rel_assum (x, a) env in
if n = k+1 then (env',a,b)
else check_occur env' (n+1) b
else
anomaly "check_subterm_rec_meta: Bad occurrence of recursive call"
| _ -> raise (FixGuardError NotEnoughAbstractionInFixBody) in
let (env',c,d) = check_occur env 1 def in
let ((sp,tyi),_ as mind, largs) =
try find_inductive env' sigma c
with Induc -> raise (FixGuardError RecursionNotOnInductiveType) in
let mind_recvec = mis_recargs (lookup_mind_specif mind env') in
let lcx = mind_recvec.(tyi) in
(* n = decreasing argument in the definition;
lst = a mapping var |-> recargs
t = the term to be checked
*)
let rec check_rec_call env n lst t =
(* n gives the index of the recursive variable *)
(noccur_with_meta (n+k+1) nfi t) or
(* no recursive call in the term *)
(let f,l = whd_betadeltaiota_stack env sigma t in
match kind_of_term f with
| IsRel p ->
if n+k+1 <= p & p < n+k+nfi+1 then
(* recursive call *)
let glob = nfi+n+k-p in (* the index of the recursive call *)
let np = vectn.(glob) in (* the decreasing arg of the rec call *)
if List.length l > np then
(match list_chop np l with
(la,(z::lrest)) ->
if (is_subterm env sigma lcx mind_recvec n lst z)
then List.for_all (check_rec_call env n lst) (la@lrest)
else raise (FixGuardError RecursionOnIllegalTerm)
| _ -> assert false)
else raise (FixGuardError NotEnoughArgumentsForFixCall)
else List.for_all (check_rec_call env n lst) l
| IsMutCase (ci,p,c_0,lrest) ->
let lc =
(try
if is_inst_var env sigma n c_0 then
lcx
else
is_subterm_specif env sigma lcx mind_recvec n lst c_0
with Not_found ->
Array.create (Array.length lrest) [])
in
(array_for_all2
(fun c0 a ->
check_term env mind_recvec check_rec_call n lst (c0,a))
lc lrest)
&& (List.for_all (check_rec_call env n lst) (c_0::p::l))
(* Enables to traverse Fixpoint definitions in a more intelligent
way, ie, the rule :
if - g = Fix g/1 := [y1:T1]...[yp:Tp]e &
- f is guarded with respect to the set of pattern variables S
in a1 ... am &
- f is guarded with respect to the set of pattern variables S
in T1 ... Tp &
- ap is a sub-term of the formal argument of f &
- f is guarded with respect to the set of pattern variables S+{yp}
in e
then f is guarded with respect to S in (g a1 ... am).
Eduardo 7/9/98 *)
| IsFix ((recindxs,i),(typarray,funnames,bodies as recdef)) ->
(List.for_all (check_rec_call env n lst) l) &&
let nbfix = List.length funnames in
let decrArg = recindxs.(i) in
if (List.length l < (decrArg+1)) then
(array_for_all (check_rec_call env n lst) typarray)
&&
(array_for_all
(check_rec_call env (n+nbfix) (map_lift_fst_n nbfix lst))
bodies)
else
let theDecrArg = List.nth l decrArg in
let recArgsDecrArg =
try
is_subterm_specif env sigma lcx mind_recvec n lst theDecrArg
with Not_found ->
Array.create 0 []
in
if (Array.length recArgsDecrArg)=0 then
(array_for_all (check_rec_call env n lst) typarray)
&&
(array_for_all
(check_rec_call env (n+nbfix) (map_lift_fst_n nbfix lst))
bodies)
else
let theBody = bodies.(i) in
let env' = push_rec_types recdef env in
(array_for_all
(fun t -> check_rec_call env n lst t) typarray) &&
(check_rec_call_fix_body env' (n+nbfix)
(map_lift_fst_n nbfix lst) (decrArg+1) recArgsDecrArg
theBody)
| IsCast (a,b) ->
(check_rec_call env n lst a) &&
(check_rec_call env n lst b) &&
(List.for_all (check_rec_call env n lst) l)
| IsLambda (x,a,b) ->
(check_rec_call env n lst a) &&
(check_rec_call (push_rel_assum (x, a) env)
(n+1) (map_lift_fst lst) b) &&
(List.for_all (check_rec_call env n lst) l)
| IsProd (x,a,b) ->
(check_rec_call env n lst a) &&
(check_rec_call (push_rel_assum (x, a) env)
(n+1) (map_lift_fst lst) b) &&
(List.for_all (check_rec_call env n lst) l)
| IsLetIn (x,a,b,c) ->
(check_rec_call env n lst a) &&
(check_rec_call env n lst b) &&
(check_rec_call (push_rel_def (x,a, b) env)
(n+1) (map_lift_fst lst) c) &&
(List.for_all (check_rec_call env n lst) l)
| IsMutInd (_,la) ->
(array_for_all (check_rec_call env n lst) la) &&
(List.for_all (check_rec_call env n lst) l)
| IsMutConstruct (_,la) ->
(array_for_all (check_rec_call env n lst) la) &&
(List.for_all (check_rec_call env n lst) l)
| IsConst (_,la) ->
(array_for_all (check_rec_call env n lst) la) &&
(List.for_all (check_rec_call env n lst) l)
| IsApp (f,la) ->
(check_rec_call env n lst f) &&
(array_for_all (check_rec_call env n lst) la) &&
(List.for_all (check_rec_call env n lst) l)
| IsCoFix (i,(typarray,funnames,bodies as recdef)) ->
let nbfix = Array.length bodies in
let env' = push_rec_types recdef env in
(array_for_all (check_rec_call env n lst) typarray) &&
(List.for_all (check_rec_call env n lst) l) &&
(array_for_all
(check_rec_call env' (n+nbfix) (map_lift_fst_n nbfix lst))
bodies)
| IsEvar (_,la) ->
(array_for_all (check_rec_call env n lst) la) &&
(List.for_all (check_rec_call env n lst) l)
| IsMeta _ -> true
| IsVar _ | IsSort _ -> List.for_all (check_rec_call env n lst) l
| IsXtra _ -> List.for_all (check_rec_call env n lst) l
)
and check_rec_call_fix_body env n lst decr recArgsDecrArg body =
if decr = 0 then
check_rec_call env n ((1,recArgsDecrArg)::lst) body
else
match kind_of_term body with
| IsLambda (x,a,b) ->
(check_rec_call env n lst a) &
(check_rec_call_fix_body
(push_rel_assum (x, a) env) (n+1)
(map_lift_fst lst) (decr-1) recArgsDecrArg b)
| _ -> anomaly "Not enough abstractions in fix body"
in
check_rec_call env' 1 [] d)
(* vargs is supposed to be built from A1;..Ak;[f1]..[fk][|d1;..;dk|]
and vdeft is [|t1;..;tk|] such that f1:A1,..,fk:Ak |- di:ti
nvect is [|n1;..;nk|] which gives for each recursive definition
the inductive-decreasing index
the function checks the convertibility of ti with Ai *)
let check_fix env sigma ((nvect,bodynum),(types,names,bodies as recdef)) =
let nbfix = Array.length bodies in
if nbfix = 0
or Array.length nvect <> nbfix
or Array.length types <> nbfix
or List.length names <> nbfix
or bodynum < 0
or bodynum >= nbfix
then anomaly "Ill-formed fix term";
for i = 0 to nbfix - 1 do
try
let fixenv = push_rec_types recdef env in
let _ = check_subterm_rec_meta fixenv sigma nvect nvect.(i) bodies.(i)
in ()
with FixGuardError err ->
error_ill_formed_rec_body CCI env err (List.rev names) i bodies
done
(* Co-fixpoints. *)
exception CoFixGuardError of guard_error
let check_guard_rec_meta env sigma nbfix def deftype =
let rec codomain_is_coind env c =
let b = whd_betadeltaiota env sigma (strip_outer_cast c) in
match kind_of_term b with
| IsProd (x,a,b) ->
codomain_is_coind (push_rel_assum (x, a) env) b
| _ ->
try
find_coinductive env sigma b
with Induc ->
raise (CoFixGuardError (CodomainNotInductiveType b))
in
let (mind, _) = codomain_is_coind env deftype in
let ((sp,tyi),_) = mind in
let lvlra = mis_recargs (lookup_mind_specif mind env) in
let vlra = lvlra.(tyi) in
let rec check_rec_call env alreadygrd n vlra t =
if noccur_with_meta n nbfix t then
true
else
let c,args = whd_betadeltaiota_stack env sigma t in
match kind_of_term c with
| IsMeta _ -> true
| IsRel p ->
if n <= p && p < n+nbfix then
(* recursive call *)
if alreadygrd then
if List.for_all (noccur_with_meta n nbfix) args then
true
else
raise (CoFixGuardError NestedRecursiveOccurrences)
else
raise (CoFixGuardError (UnguardedRecursiveCall t))
else
error "check_guard_rec_meta: ???" (* ??? *)
| IsMutConstruct ((_,i as cstr_sp),l) ->
let lra =vlra.(i-1) in
let mI = inductive_of_constructor (cstr_sp,l) in
let mis = lookup_mind_specif mI env in
let _,realargs = list_chop (mis_nparams mis) args in
let rec process_args_of_constr l lra =
match l with
| [] -> true
| t::lr ->
(match lra with
| [] ->
anomalylabstrm "check_guard_rec_meta"
[< 'sTR "a constructor with an empty list";
'sTR "of recargs is being applied" >]
| (Mrec i)::lrar ->
let newvlra = lvlra.(i) in
(check_rec_call env true n newvlra t) &&
(process_args_of_constr lr lrar)
| (Imbr((sp,i) as ind_sp,lrc)::lrar) ->
let mis =
lookup_mind_specif (ind_sp,[||]) env in
let sprecargs = mis_recargs mis in
let lc = (Array.map
(List.map
(instantiate_recarg sp lrc))
sprecargs.(i))
in (check_rec_call env true n lc t) &
(process_args_of_constr lr lrar)
| _::lrar ->
if (noccur_with_meta n nbfix t)
then (process_args_of_constr lr lrar)
else raise (CoFixGuardError
(RecCallInNonRecArgOfConstructor t)))
in (process_args_of_constr realargs lra)
| IsLambda (x,a,b) ->
assert (args = []);
if (noccur_with_meta n nbfix a) then
check_rec_call (push_rel_assum (x, a) env)
alreadygrd (n+1) vlra b
else
raise (CoFixGuardError (RecCallInTypeOfAbstraction t))
| IsCoFix (j,(varit,lna,vdefs as recdef)) ->
if (List.for_all (noccur_with_meta n nbfix) args)
then
let nbfix = Array.length vdefs in
if (array_for_all (noccur_with_meta n nbfix) varit) then
let env' = push_rec_types recdef env in
(array_for_all
(check_rec_call env' alreadygrd (n+1) vlra) vdefs)
&&
(List.for_all (check_rec_call env alreadygrd (n+1) vlra) args)
else
raise (CoFixGuardError (RecCallInTypeOfDef c))
else
raise (CoFixGuardError (UnguardedRecursiveCall c))
| IsMutCase (_,p,tm,vrest) ->
if (noccur_with_meta n nbfix p) then
if (noccur_with_meta n nbfix tm) then
if (List.for_all (noccur_with_meta n nbfix) args) then
(array_for_all (check_rec_call env alreadygrd n vlra) vrest)
else
raise (CoFixGuardError (RecCallInCaseFun c))
else
raise (CoFixGuardError (RecCallInCaseArg c))
else
raise (CoFixGuardError (RecCallInCasePred c))
| _ -> raise (CoFixGuardError NotGuardedForm)
in
check_rec_call env false 1 vlra def
(* The function which checks that the whole block of definitions
satisfies the guarded condition *)
let check_cofix env sigma (bodynum,(types,names,bodies as recdef)) =
let nbfix = Array.length bodies in
for i = 0 to nbfix-1 do
try
let fixenv = push_rec_types recdef env in
let _ = check_guard_rec_meta fixenv sigma nbfix bodies.(i) types.(i)
in ()
with CoFixGuardError err ->
error_ill_formed_rec_body CCI env err (List.rev names) i bodies
done
(* Checks the type of a (co)fixpoint.
Fix and CoFix are typed the same way; only the guard condition differs. *)
exception IllBranch of int
let type_fixpoint env sigma lna lar vdefj =
let lt = Array.length vdefj in
assert (Array.length lar = lt);
try
conv_forall2_i
(fun i env sigma def ar ->
try conv_leq env sigma def (lift lt ar)
with NotConvertible -> raise (IllBranch i))
env sigma
(Array.map (fun j -> body_of_type j.uj_type) vdefj) (Array.map body_of_type lar)
with IllBranch i ->
error_ill_typed_rec_body CCI env i lna vdefj lar
(* A function which checks that a term well typed verifies both
syntaxic conditions *)
let control_only_guard env sigma =
let rec control_rec c = match kind_of_term c with
| IsRel _ | IsVar _ -> ()
| IsSort _ | IsMeta _ | IsXtra _ -> ()
| IsCoFix (_,(tys,_,bds) as cofix) ->
check_cofix env sigma cofix;
Array.iter control_rec tys;
Array.iter control_rec bds;
| IsFix (_,(tys,_,bds) as fix) ->
check_fix env sigma fix;
Array.iter control_rec tys;
Array.iter control_rec bds;
| IsMutCase(_,p,c,b) ->control_rec p;control_rec c;Array.iter control_rec b
| IsMutInd (_,cl) -> Array.iter control_rec cl
| IsMutConstruct (_,cl) -> Array.iter control_rec cl
| IsConst (_,cl) -> Array.iter control_rec cl
| IsEvar (_,cl) -> Array.iter control_rec cl
| IsApp (_,cl) -> Array.iter control_rec cl
| IsCast (c1,c2) -> control_rec c1; control_rec c2
| IsProd (_,c1,c2) -> control_rec c1; control_rec c2
| IsLambda (_,c1,c2) -> control_rec c1; control_rec c2
| IsLetIn (_,c1,c2,c3) -> control_rec c1; control_rec c2; control_rec c3
in
control_rec
|