1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
|
(* $Id$ *)
open Pp
open Util
open Names
open Univ
open Generic
open Term
open Declarations
open Sign
open Environ
open Reduction
open Inductive
open Type_errors
let make_judge v tj =
{ uj_val = v;
uj_type = tj }
let j_val_only j = j.uj_val
let typed_type_of_judgment env sigma j = j.uj_type
(* This should be a type intended to be assumed *)
let assumption_of_judgment env sigma j =
match whd_betadeltaiota env sigma (body_of_type j.uj_type) with
| DOP0(Sort s) -> make_typed j.uj_val s
| _ -> error_assumption CCI env j.uj_val
(* This should be a type (a priori without intension to be an assumption) *)
let type_judgment env sigma j =
match whd_betadeltaiota env sigma (body_of_type j.uj_type) with
| DOP0(Sort s) -> {utj_val = j.uj_val; utj_type = s }
| _ -> error_not_type CCI env j
let assumption_of_type_judgment j = make_typed j.utj_val j.utj_type
(* Type of a de Bruijn index. *)
let relative env sigma n =
try
let (_,typ) = lookup_rel n env in
{ uj_val = Rel n;
uj_type = typed_app (lift n) typ }
with Not_found ->
error_unbound_rel CCI env sigma n
(* Management of context of variables. *)
(* Checks if a context of variable is included in another one. *)
let rec hyps_inclusion env sigma sign1 sign2 =
if isnull_sign sign1 then true
else
let (id1,ty1) = hd_sign sign1 in
let rec search sign2 =
if isnull_sign sign2 then false
else
let (id2,ty2) = hd_sign sign2 in
if id1 = id2 then
(is_conv env sigma (body_of_type ty1) (body_of_type ty2))
&
hyps_inclusion env sigma (tl_sign sign1) (tl_sign sign2)
else
search (tl_sign sign2)
in
search sign2
(* Checks if the given context of variables [hyps] is included in the
current context of [env]. *)
let check_hyps id env sigma hyps =
let hyps' = var_context env in
if not (hyps_inclusion env sigma hyps hyps') then
error_reference_variables CCI env id
(* Instantiation of terms on real arguments. *)
let type_of_constant = Instantiate.constant_type
(* Inductive types. *)
(* Q: A faire disparaitre ??
let instantiate_arity mis =
let ids = ids_of_sign mis.mis_mib.mind_hyps in
let args = Array.to_list mis.mis_args in
let arity = mis.mis_mip.mind_arity in
{ body = instantiate_constr ids arity.body args;
typ = arity.typ }
*)
let instantiate_arity = mis_typed_arity
let type_of_inductive env sigma i =
(* TODO: check args *)
instantiate_arity (lookup_mind_specif i env)
(* Constructors. *)
let type_mconstruct env sigma i mind =
mis_type_mconstruct i (lookup_mind_specif mind env)
let type_of_constructor env sigma cstr =
type_mconstruct env sigma
(index_of_constructor cstr)
(inductive_of_constructor cstr)
let type_of_existential env sigma c =
Instantiate.existential_type sigma (destEvar c)
(* Case. *)
let rec mysort_of_arity env sigma c =
match whd_betadeltaiota env sigma c with
| DOP0(Sort(s)) -> s
| DOP2(Prod,_,DLAM(_,c2)) -> mysort_of_arity env sigma c2
| _ -> invalid_arg "mysort_of_arity"
let error_elim_expln env sigma kp ki =
if is_info_sort env sigma kp && not (is_info_sort env sigma ki) then
"non-informative objects may not construct informative ones."
else
match (kp,ki) with
| (DOP0(Sort (Type _)), DOP0(Sort (Prop _))) ->
"strong elimination on non-small inductive types leads to paradoxes."
| _ -> "wrong arity"
exception Arity of (constr * constr * string) option
let is_correct_arity env sigma kelim (c,p) indf (pt,t) =
let rec srec (pt,t) =
match whd_betadeltaiota env sigma pt, whd_betadeltaiota env sigma t with
| DOP2(Prod,a1,DLAM(_,a2)), DOP2(Prod,a1',DLAM(_,a2')) ->
if is_conv env sigma a1 a1' then
srec (a2,a2')
else
raise (Arity None)
| DOP2(Prod,a1,DLAM(_,a2)), ki ->
let k = whd_betadeltaiota env sigma a2 in
let ksort = (match k with DOP0(Sort s) -> s
| _ -> raise (Arity None)) in
let ind = build_dependent_inductive indf in
if is_conv env sigma a1 ind then
if List.exists (base_sort_cmp CONV ksort) kelim then
(true,k)
else
raise (Arity (Some(k,ki,error_elim_expln env sigma k ki)))
else
raise (Arity None)
| k, DOP2(Prod,_,_) ->
raise (Arity None)
| k, ki ->
let ksort = (match k with DOP0(Sort s) -> s
| _ -> raise (Arity None)) in
if List.exists (base_sort_cmp CONV ksort) kelim then
false,k
else
raise (Arity (Some(k,ki,error_elim_expln env sigma k ki)))
in
try srec (pt,t)
with Arity kinds ->
let listarity =
(List.map (make_arity env true indf) kelim)
@(List.map (make_arity env false indf) kelim)
in
let ind = mis_inductive (fst (dest_ind_family indf)) in
error_elim_arity CCI env ind listarity c p pt kinds
let find_case_dep_nparams env sigma (c,p) (IndFamily (mis,_) as indf) typP =
let kelim = mis_kelim mis in
let arsign,s = get_arity indf in
let glob_t = prod_it (mkSort s) arsign in
let (dep,_) = is_correct_arity env sigma kelim (c,p) indf (typP,glob_t) in
dep
(* type_case_branches type un <p>Case c of ... end
ct = type de c, si inductif il a la forme APP(mI,largs), sinon raise Induc
pt = sorte de p
type_case_branches retourne (lb, lr); lb est le vecteur des types
attendus dans les branches du Case; lr est le type attendu du resultat
*)
let type_case_branches env sigma (IndType (indf,realargs)) pt p c =
let dep = find_case_dep_nparams env sigma (c,p) indf pt in
let constructs = get_constructors indf in
let lc = Array.map (build_branch_type env dep p) constructs in
if dep then
(lc, beta_applist (p,(realargs@[c])))
else
(lc, beta_applist (p,realargs))
let check_branches_message env sigma (c,ct) (explft,lft) =
let expn = Array.length explft and n = Array.length lft in
if n<>expn then error_number_branches CCI env c ct expn;
for i = 0 to n-1 do
if not (is_conv_leq env sigma lft.(i) (explft.(i))) then
error_ill_formed_branch CCI env c i (nf_betaiota env sigma lft.(i))
(nf_betaiota env sigma explft.(i))
done
let type_of_case env sigma ci pj cj lfj =
let lft = Array.map (fun j -> body_of_type j.uj_type) lfj in
let indspec =
try find_rectype env sigma (body_of_type cj.uj_type)
with Induc ->
error_case_not_inductive CCI env cj.uj_val (body_of_type cj.uj_type) in
let (bty,rslty) =
type_case_branches env sigma indspec (body_of_type pj.uj_type) pj.uj_val cj.uj_val in
let kind = mysort_of_arity env sigma (body_of_type pj.uj_type) in
check_branches_message env sigma (cj.uj_val,body_of_type cj.uj_type) (bty,lft);
{ uj_val = mkMutCaseA ci pj.uj_val cj.uj_val (Array.map j_val_only lfj);
uj_type = make_typed rslty kind }
(* Prop and Set *)
let judge_of_prop =
{ uj_val = DOP0(Sort prop);
uj_type = make_typed (DOP0(Sort type_0)) type_1 }
let judge_of_set =
{ uj_val = DOP0(Sort spec);
uj_type = make_typed (DOP0(Sort type_0)) type_1 }
let judge_of_prop_contents = function
| Null -> judge_of_prop
| Pos -> judge_of_set
(* Type of Type(i). *)
let judge_of_type u =
let (uu,uuu,c) = super_super u in
{ uj_val = DOP0 (Sort (Type u));
uj_type = make_typed (DOP0(Sort (Type uu))) (Type uuu) },
c
let type_of_sort c =
match c with
| DOP0 (Sort (Type u)) -> let (uu,cst) = super u in Type uu, cst
| DOP0 (Sort (Prop _)) -> Type prop_univ, Constraint.empty
| _ -> invalid_arg "type_of_sort"
(* Type of a lambda-abstraction. *)
let sort_of_product domsort rangsort g =
match rangsort with
(* Product rule (s,Prop,Prop) *)
| Prop _ -> rangsort, Constraint.empty
| Type u2 ->
(match domsort with
(* Product rule (Prop,Type_i,Type_i) *)
| Prop _ -> rangsort, Constraint.empty
(* Product rule (Type_i,Type_i,Type_i) *)
| Type u1 -> let (u12,cst) = sup u1 u2 g in Type u12, cst)
let sort_of_product_without_univ domsort rangsort =
match rangsort with
| Prop _ -> rangsort
| Type u2 ->
(match domsort with
| Prop _ -> rangsort
| Type u1 -> Type dummy_univ)
let typed_product_without_universes name var c =
typed_combine (mkProd name) sort_of_product_without_univ var c
let typed_product env name var c =
(* Gros hack ! *)
let rcst = ref Constraint.empty in
let hacked_sort_of_product s1 s2 =
let (s,cst) = sort_of_product s1 s2 (universes env) in (rcst:=cst; s) in
typed_combine (mkProd name) hacked_sort_of_product var c, !rcst
let abs_rel env sigma name var j =
let cvar = incast_type var in
let typ,cst = typed_product env name var j.uj_type in
{ uj_val = mkLambda name cvar j.uj_val;
uj_type = typ },
cst
(* Type of a product. *)
let gen_rel env sigma name varj j =
let var = assumption_of_type_judgment varj in
match whd_betadeltaiota env sigma (body_of_type j.uj_type) with
| DOP0(Sort s) ->
let (s',g) = sort_of_product varj.utj_type s (universes env) in
let res_type = mkSort s' in
let (res_kind,g') = type_of_sort res_type in
{ uj_val = mkProd name (incast_type var) j.uj_val;
uj_type = make_typed res_type res_kind },
g'
| _ ->
(* if is_small (level_of_type j.uj_type) then (* message historique ?? *)
error "Proof objects can only be abstracted"
else
*)
error_generalization CCI env sigma (name,var) j
(* Type of a cast. *)
let cast_rel env sigma cj tj =
let tj = assumption_of_judgment env sigma tj in
if is_conv_leq env sigma (body_of_type cj.uj_type) (body_of_type tj) then
{ uj_val = j_val_only cj;
uj_type = tj }
else
error_actual_type CCI env cj.uj_val (body_of_type cj.uj_type) (body_of_type tj)
(* Type of an application. *)
let apply_rel_list env sigma nocheck argjl funj =
let rec apply_rec n typ cst = function
| [] ->
{ uj_val = applist (j_val_only funj, List.map j_val_only argjl);
uj_type = typed_app (fun _ -> typ) funj.uj_type },
cst
| hj::restjl ->
match whd_betadeltaiota env sigma typ with
| DOP2(Prod,c1,DLAM(_,c2)) ->
if nocheck then
apply_rec (n+1) (subst1 hj.uj_val c2) cst restjl
else
(try
let c = conv_leq env sigma (body_of_type hj.uj_type) c1 in
let cst' = Constraint.union cst c in
apply_rec (n+1) (subst1 hj.uj_val c2) cst' restjl
with NotConvertible ->
error_cant_apply_bad_type CCI env sigma
(n,body_of_type hj.uj_type,c1)
funj argjl)
| _ ->
error_cant_apply_not_functional CCI env funj argjl
in
apply_rec 1 (body_of_type funj.uj_type) Constraint.empty argjl
(* Fixpoints. *)
(* Checking function for terms containing existential variables.
The function [noccur_with_meta] considers the fact that
each existential variable (as well as each isevar)
in the term appears applied to its local context,
which may contain the CoFix variables. These occurrences of CoFix variables
are not considered *)
exception Occur
let noccur_with_meta n m term =
let rec occur_rec n = function
| Rel p -> if n<=p & p<n+m then raise Occur
| VAR _ -> ()
| DOPN(AppL,cl) ->
(match strip_outer_cast cl.(0) with
| DOP0 (Meta _) -> ()
| _ -> Array.iter (occur_rec n) cl)
| DOPN(Evar _, _) -> ()
| DOPN(op,cl) -> Array.iter (occur_rec n) cl
| DOPL(_,cl) -> List.iter (occur_rec n) cl
| DOP0(_) -> ()
| DOP1(_,c) -> occur_rec n c
| DOP2(_,c1,c2) -> occur_rec n c1; occur_rec n c2
| DLAM(_,c) -> occur_rec (n+1) c
| DLAMV(_,v) -> Array.iter (occur_rec (n+1)) v
in
try (occur_rec n term; true) with Occur -> false
(* Check if t is a subterm of Rel n, and gives its specification,
assuming lst already gives index of
subterms with corresponding specifications of recursive arguments *)
(* A powerful notion of subterm *)
let find_sorted_assoc p =
let rec findrec = function
| (a,ta)::l ->
if a < p then findrec l else if a = p then ta else raise Not_found
| _ -> raise Not_found
in
findrec
let map_lift_fst_n m = List.map (function (n,t)->(n+m,t))
let map_lift_fst = map_lift_fst_n 1
let rec instantiate_recarg sp lrc ra =
match ra with
| Mrec(j) -> Imbr((sp,j),lrc)
| Imbr(ind_sp,l) -> Imbr(ind_sp, List.map (instantiate_recarg sp lrc) l)
| Norec -> Norec
| Param(k) -> List.nth lrc k
(* propagate checking for F,incorporating recursive arguments *)
let check_term env mind_recvec f =
let rec crec n l (lrec,c) =
match (lrec,strip_outer_cast c) with
| (Param(_)::lr,DOP2(Lambda,_,DLAM(_,b))) ->
let l' = map_lift_fst l in
crec (n+1) l' (lr,b)
| (Norec::lr,DOP2(Lambda,_,DLAM(_,b))) ->
let l' = map_lift_fst l in
crec (n+1) l' (lr,b)
| (Mrec(i)::lr,DOP2(Lambda,_,DLAM(_,b))) ->
let l' = map_lift_fst l in
crec (n+1) ((1,mind_recvec.(i))::l') (lr,b)
| (Imbr((sp,i) as ind_sp,lrc)::lr,DOP2(Lambda,_,DLAM(_,b))) ->
let l' = map_lift_fst l in
let sprecargs =
mis_recargs (lookup_mind_specif (ind_sp,[||]) env) in
let lc =
Array.map (List.map (instantiate_recarg sp lrc)) sprecargs.(i)
in
crec (n+1) ((1,lc)::l') (lr,b)
| _,f_0 -> f n l f_0
in
crec
let is_inst_var env sigma k c =
match whd_betadeltaiota_stack env sigma c [] with
| (Rel n,_) -> n=k
| _ -> false
let is_subterm_specif env sigma lcx mind_recvec =
let rec crec n lst c =
match whd_betadeltaiota_stack env sigma c [] with
| ((Rel k),_) -> find_sorted_assoc k lst
| (DOPN(MutCase _,_) as x,_) ->
let ( _,_,c,br) = destCase x in
if Array.length br = 0 then
[||]
else
let lcv =
(try
if is_inst_var env sigma n c then lcx else (crec n lst c)
with Not_found -> (Array.create (Array.length br) []))
in
assert (Array.length br = Array.length lcv);
let stl =
array_map2
(fun lc a ->
check_term env mind_recvec crec n lst (lc,a)) lcv br
in
stl.(0)
| (DOPN(Fix(_),la) as mc,l) ->
let (recindxs,i,typarray,funnames,bodies) = destUntypedFix mc in
let nbfix = List.length funnames in
let decrArg = recindxs.(i) in
let theBody = bodies.(i) in
let (gamma,strippedBody) = decompose_lam_n (decrArg+1) theBody in
let absTypes = List.map snd gamma in
let nbOfAbst = nbfix+decrArg+1 in
let newlst =
if List.length l < (decrArg+1) then
((nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst))
else
let theDecrArg = List.nth l decrArg in
let recArgsDecrArg =
try (crec n lst theDecrArg)
with Not_found -> Array.create 0 []
in
if (Array.length recArgsDecrArg)=0 then
(nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst)
else
(1,recArgsDecrArg) ::
(nbOfAbst,lcx) ::
(map_lift_fst_n nbOfAbst lst)
in
crec (n+nbOfAbst) newlst strippedBody
| (DOP2(Lambda,_,DLAM(_,b)),[]) ->
let lst' = map_lift_fst lst in
crec (n+1) lst' b
(*** Experimental change *************************)
| (DOP0(Meta _),_) -> [||]
| _ -> raise Not_found
in
crec
let is_subterm env sigma lcx mind_recvec n lst c =
try
let _ = is_subterm_specif env sigma lcx mind_recvec n lst c in true
with Not_found ->
false
(* Auxiliary function: it checks a condition f depending on a deBrujin
index for a certain number of abstractions *)
let rec check_subterm_rec_meta env sigma vectn k def =
(k < 0) or
(let nfi = Array.length vectn in
(* check fi does not appear in the k+1 first abstractions,
gives the type of the k+1-eme abstraction *)
let rec check_occur n def =
(match strip_outer_cast def with
| DOP2(Lambda,a,DLAM(_,b)) ->
if noccur_with_meta n nfi a then
if n = k+1 then (a,b) else check_occur (n+1) b
else
error "Bad occurrence of recursive call"
| _ -> error "Not enough abstractions in the definition") in
let (c,d) = check_occur 1 def in
let ((sp,tyi),_ as mind, largs) =
(try find_minductype env sigma c
with Induc -> error "Recursive definition on a non inductive type") in
let mind_recvec = mis_recargs (lookup_mind_specif mind env) in
let lcx = mind_recvec.(tyi) in
(* n = decreasing argument in the definition;
lst = a mapping var |-> recargs
t = the term to be checked
*)
let rec check_rec_call n lst t =
(* n gives the index of the recursive variable *)
(noccur_with_meta (n+k+1) nfi t) or
(* no recursive call in the term *)
(match whd_betadeltaiota_stack env sigma t [] with
| (Rel p,l) ->
if n+k+1 <= p & p < n+k+nfi+1 then
(* recursive call *)
let glob = nfi+n+k-p in (* the index of the recursive call *)
let np = vectn.(glob) in (* the decreasing arg of the rec call *)
if List.length l > np then
(match list_chop np l with
(la,(z::lrest)) ->
if (is_subterm env sigma lcx mind_recvec n lst z)
then List.for_all (check_rec_call n lst) (la@lrest)
else error "Recursive call applied to an illegal term"
| _ -> assert false)
else error "Not enough arguments for the recursive call"
else List.for_all (check_rec_call n lst) l
| (DOPN(MutCase _,_) as mc,l) ->
let (ci,p,c_0,lrest) = destCase mc in
let lc =
(try
if is_inst_var env sigma n c_0 then
lcx
else
is_subterm_specif env sigma lcx mind_recvec n lst c_0
with Not_found ->
Array.create (Array.length lrest) [])
in
(array_for_all2
(fun c_0 a ->
check_term env mind_recvec (check_rec_call) n lst (c_0,a))
lc lrest)
&& (List.for_all (check_rec_call n lst) (c_0::p::l))
(* Enables to traverse Fixpoint definitions in a more intelligent
way, ie, the rule :
if - g = Fix g/1 := [y1:T1]...[yp:Tp]e &
- f is guarded with respect to the set of pattern variables S
in a1 ... am &
- f is guarded with respect to the set of pattern variables S
in T1 ... Tp &
- ap is a sub-term of the formal argument of f &
- f is guarded with respect to the set of pattern variables S+{yp}
in e
then f is guarded with respect to S in (g a1 ... am).
Eduardo 7/9/98 *)
| (DOPN(Fix(_),la) as mc,l) ->
(List.for_all (check_rec_call n lst) l) &&
let (recindxs,i,typarray,funnames,bodies) = destUntypedFix mc in
let nbfix = List.length funnames in
let decrArg = recindxs.(i) in
if (List.length l < (decrArg+1)) then
(array_for_all (check_rec_call n lst) la)
else
let theDecrArg = List.nth l decrArg in
let recArgsDecrArg =
try
is_subterm_specif env sigma lcx mind_recvec n lst theDecrArg
with Not_found ->
Array.create 0 []
in
if (Array.length recArgsDecrArg)=0 then
array_for_all (check_rec_call n lst) la
else
let theBody = bodies.(i) in
let (gamma,strippedBody) =
decompose_lam_n (decrArg+1) theBody in
let absTypes = List.map snd gamma in
let nbOfAbst = nbfix+decrArg+1 in
let newlst =
((1,recArgsDecrArg)::(map_lift_fst_n nbOfAbst lst))
in
((array_for_all
(fun t -> check_rec_call n lst t)
typarray) &&
(list_for_all_i (fun n -> check_rec_call n lst) n absTypes) &
(check_rec_call (n+nbOfAbst) newlst strippedBody))
| (DOP2(_,a,b),l) ->
(check_rec_call n lst a) &&
(check_rec_call n lst b) &&
(List.for_all (check_rec_call n lst) l)
| (DOPN(_,la),l) ->
(array_for_all (check_rec_call n lst) la) &&
(List.for_all (check_rec_call n lst) l)
| (DOP0 (Meta _),l) -> true
| (DLAM(_,t),l) ->
(check_rec_call (n+1) (map_lift_fst lst) t) &&
(List.for_all (check_rec_call n lst) l)
| (DLAMV(_,vt),l) ->
(array_for_all (check_rec_call (n+1) (map_lift_fst lst)) vt) &&
(List.for_all (check_rec_call n lst) l)
| (_,l) -> List.for_all (check_rec_call n lst) l
)
in
check_rec_call 1 [] d)
(* vargs is supposed to be built from A1;..Ak;[f1]..[fk][|d1;..;dk|]
and vdeft is [|t1;..;tk|] such that f1:A1,..,fk:Ak |- di:ti
nvect is [|n1;..;nk|] which gives for each recursive definition
the inductive-decreasing index
the function checks the convertibility of ti with Ai *)
let check_fix env sigma ((nvect,bodynum),(types,names,bodies)) =
let nbfix = Array.length bodies in
if nbfix = 0
or Array.length nvect <> nbfix
or Array.length types <> nbfix
or List.length names <> nbfix
then error "Ill-formed fix term";
for i = 0 to nbfix - 1 do
try
let _ = check_subterm_rec_meta env sigma nvect nvect.(i) bodies.(i) in ()
with UserError (s,str) ->
error_ill_formed_rec_body CCI env str (List.rev names) i bodies
done
(* Co-fixpoints. *)
let check_guard_rec_meta env sigma nbfix def deftype =
let rec codomain_is_coind c =
match whd_betadeltaiota env sigma (strip_outer_cast c) with
| DOP2(Prod,a,DLAM(_,b)) -> codomain_is_coind b
| b ->
(try find_mcoinductype env sigma b
with
| Induc -> error "The codomain is not a coinductive type"
(* | _ -> error "Type of Cofix function not as expected") ??? *) )
in
let (mind, _) = codomain_is_coind deftype in
let ((sp,tyi),_) = mind in
let lvlra = (mis_recargs (lookup_mind_specif mind env)) in
let vlra = lvlra.(tyi) in
let rec check_rec_call alreadygrd n vlra t =
if noccur_with_meta n nbfix t then
true
else
match whd_betadeltaiota_stack env sigma t [] with
| (DOP0 (Meta _), l) -> true
| (Rel p,l) ->
if n <= p && p < n+nbfix then
(* recursive call *)
if alreadygrd then
if List.for_all (noccur_with_meta n nbfix) l then
true
else
error "Nested recursive occurrences"
else
error "Unguarded recursive call"
else
error "check_guard_rec_meta: ???"
| (DOPN (MutConstruct(_,i as cstr_sp),l), args) ->
let lra =vlra.(i-1) in
let mI = inductive_of_constructor (cstr_sp,l) in
let mis = lookup_mind_specif mI env in
let _,realargs = list_chop (mis_nparams mis) args in
let rec process_args_of_constr l lra =
match l with
| [] -> true
| t::lr ->
(match lra with
| [] ->
anomalylabstrm "check_guard_rec_meta"
[< 'sTR "a constructor with an empty list";
'sTR "of recargs is being applied" >]
| (Mrec i)::lrar ->
let newvlra = lvlra.(i) in
(check_rec_call true n newvlra t) &&
(process_args_of_constr lr lrar)
| (Imbr((sp,i) as ind_sp,lrc)::lrar) ->
let mis =
lookup_mind_specif (ind_sp,[||]) env in
let sprecargs = mis_recargs mis in
let lc = (Array.map
(List.map
(instantiate_recarg sp lrc))
sprecargs.(i))
in (check_rec_call true n lc t) &
(process_args_of_constr lr lrar)
| _::lrar ->
if (noccur_with_meta n nbfix t)
then (process_args_of_constr lr lrar)
else error "Recursive call inside a non-recursive argument of constructor")
in (process_args_of_constr realargs lra)
| (DOP2(Lambda,a,DLAM(_,b)),[]) ->
if (noccur_with_meta n nbfix a) then
check_rec_call alreadygrd (n+1) vlra b
else
error "Recursive call in the type of an abstraction"
| (DOPN(CoFix(j),vargs) as cofix,l) ->
if (List.for_all (noccur_with_meta n nbfix) l)
then
let (j,(varit,lna,vdefs)) = destFix cofix in
let nbfix = Array.length vdefs in
if (array_for_all (noccur_with_meta n nbfix) varit) then
(array_for_all (check_rec_call alreadygrd (n+1) vlra) vdefs)
&&
(List.for_all (check_rec_call alreadygrd (n+1) vlra) l)
else
error "Recursive call in the type of a declaration"
else error "Unguarded recursive call"
| (DOPN(MutCase _,_) as mc,l) ->
let (_,p,c,vrest) = destCase mc in
if (noccur_with_meta n nbfix p) then
if (noccur_with_meta n nbfix c) then
if (List.for_all (noccur_with_meta n nbfix) l) then
(array_for_all (check_rec_call alreadygrd n vlra) vrest)
else
error "Recursive call in the argument of a function defined by cases"
else
error "Recursive call in the argument of a case expression"
else
error "Recursive call in the type of a Case expression"
| _ -> error "Definition not in guarded form"
in
check_rec_call false 1 vlra def
(* The function which checks that the whole block of definitions
satisfies the guarded condition *)
let check_cofix env sigma (bodynum,(types,names,bodies)) =
let nbfix = Array.length bodies in
for i = 0 to nbfix-1 do
try
let _ =
check_guard_rec_meta env sigma nbfix bodies.(i) types.(i) in
()
with UserError (s,str) ->
error_ill_formed_rec_body CCI env str (List.rev names) i bodies
done
(*
let check_cofix env sigma f =
match f with
| DOPN(CoFix(j),vargs) ->
let nbfix = let nv = Array.length vargs in
if nv < 2 then
error "Ill-formed recursive definition"
else
nv-1
in
let varit = Array.sub vargs 0 nbfix in
let ldef = array_last vargs in
let la = Array.length varit in
let (lna,vdefs) = decomp_DLAMV_name la ldef in
let vlna = Array.of_list lna in
let check_type i =
try
let _ =
check_guard_rec_meta env sigma nbfix vdefs.(i) varit.(i) in
()
with UserError (s,str) ->
error_ill_formed_rec_body CCI env str lna i vdefs
in
for i = 0 to nbfix-1 do check_type i done
| _ -> assert false
*)
(* Checks the type of a (co)fixpoint.
Fix and CoFix are typed the same way; only the guard condition differs. *)
exception IllBranch of int
let type_fixpoint env sigma lna lar vdefj =
let lt = Array.length vdefj in
assert (Array.length lar = lt);
try
conv_forall2_i
(fun i env sigma def ar ->
try conv_leq env sigma def (lift lt ar)
with NotConvertible -> raise (IllBranch i))
env sigma
(Array.map (fun j -> body_of_type j.uj_type) vdefj) (Array.map body_of_type lar)
with IllBranch i ->
error_ill_typed_rec_body CCI env i lna vdefj lar
(* A function which checks that a term well typed verifies both
syntaxic conditions *)
let control_only_guard env sigma =
let rec control_rec = function
| Rel(p) -> ()
| VAR _ -> ()
| DOP0(_) -> ()
| DOPN(CoFix(_),cl) as cofix ->
check_cofix env sigma (destCoFix cofix);
Array.iter control_rec cl
| DOPN(Fix(_),cl) as fix ->
check_fix env sigma (destFix fix);
Array.iter control_rec cl
| DOPN(_,cl) -> Array.iter control_rec cl
| DOPL(_,cl) -> List.iter control_rec cl
| DOP1(_,c) -> control_rec c
| DOP2(_,c1,c2) -> control_rec c1; control_rec c2
| DLAM(_,c) -> control_rec c
| DLAMV(_,v) -> Array.iter control_rec v
in
control_rec
(* [keep_hyps sign ids] keeps the part of the signature [sign] which
contains the variables of the set [ids], and recursively the variables
contained in the types of the needed variables. *)
let keep_hyps sign needed =
rev_sign
(fst (it_sign
(fun ((hyps,globs) as sofar) id a ->
if Idset.mem id globs then
(add_sign (id,a) hyps,
Idset.union (global_vars_set (body_of_type a)) globs)
else
sofar)
(nil_sign,needed) sign))
|