1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Univ
open Term
open Declarations
open Sign
open Environ
open Entries
open Reduction
open Inductive
open Type_errors
let conv_leq l2r = default_conv CUMUL ~l2r
let conv_leq_vecti env v1 v2 =
array_fold_left2_i
(fun i c t1 t2 ->
let c' =
try default_conv CUMUL env t1 t2
with NotConvertible -> raise (NotConvertibleVect i) in
union_constraints c c')
empty_constraint
v1
v2
(* This should be a type (a priori without intension to be an assumption) *)
let type_judgment env j =
match kind_of_term(whd_betadeltaiota env j.uj_type) with
| Sort s -> {utj_val = j.uj_val; utj_type = s }
| _ -> error_not_type env j
(* This should be a type intended to be assumed. The error message is *)
(* not as useful as for [type_judgment]. *)
let assumption_of_judgment env j =
try (type_judgment env j).utj_val
with TypeError _ ->
error_assumption env j
(************************************************)
(* Incremental typing rules: builds a typing judgement given the *)
(* judgements for the subterms. *)
(*s Type of sorts *)
(* Prop and Set *)
let judge_of_prop =
{ uj_val = mkProp;
uj_type = mkSort type1_sort }
let judge_of_set =
{ uj_val = mkSet;
uj_type = mkSort type1_sort }
let judge_of_prop_contents = function
| Null -> judge_of_prop
| Pos -> judge_of_set
(* Type of Type(i). *)
let judge_of_type u =
let uu = super u in
{ uj_val = mkType u;
uj_type = mkType uu }
(*s Type of a de Bruijn index. *)
let judge_of_relative env n =
try
let (_,_,typ) = lookup_rel n env in
{ uj_val = mkRel n;
uj_type = lift n typ }
with Not_found ->
error_unbound_rel env n
(* Type of variables *)
let judge_of_variable env id =
try
let ty = named_type id env in
make_judge (mkVar id) ty
with Not_found ->
error_unbound_var env id
(* Management of context of variables. *)
(* Checks if a context of variable can be instantiated by the
variables of the current env *)
(* TODO: check order? *)
let rec check_hyps_inclusion env sign =
Sign.fold_named_context
(fun (id,_,ty1) () ->
let ty2 = named_type id env in
if not (eq_constr ty2 ty1) then
error "types do not match")
sign
~init:()
let check_args env c hyps =
try check_hyps_inclusion env hyps
with UserError _ | Not_found ->
error_reference_variables env c
(* Checks if the given context of variables [hyps] is included in the
current context of [env]. *)
(*
let check_hyps id env hyps =
let hyps' = named_context env in
if not (hyps_inclusion env hyps hyps') then
error_reference_variables env id
*)
(* Instantiation of terms on real arguments. *)
(* Make a type polymorphic if an arity *)
let extract_level env p =
let _,c = dest_prod_assum env p in
match kind_of_term c with Sort (Type u) -> Some u | _ -> None
let extract_context_levels env =
List.fold_left
(fun l (_,b,p) -> if b=None then extract_level env p::l else l) []
let make_polymorphic_if_constant_for_ind env {uj_val = c; uj_type = t} =
let params, ccl = dest_prod_assum env t in
match kind_of_term ccl with
| Sort (Type u) when isInd (fst (decompose_app (whd_betadeltaiota env c))) ->
let param_ccls = extract_context_levels env params in
let s = { poly_param_levels = param_ccls; poly_level = u} in
PolymorphicArity (params,s)
| _ ->
NonPolymorphicType t
(* Type of constants *)
let type_of_constant_knowing_parameters env t paramtyps =
match t with
| NonPolymorphicType t -> t
| PolymorphicArity (sign,ar) ->
let ctx = List.rev sign in
let ctx,s = instantiate_universes env ctx ar paramtyps in
mkArity (List.rev ctx,s)
let type_of_constant_type env t =
type_of_constant_knowing_parameters env t [||]
let type_of_constant env cst =
type_of_constant_type env (constant_type env cst)
let judge_of_constant_knowing_parameters env cst jl =
let c = mkConst cst in
let cb = lookup_constant cst env in
let _ = check_args env c cb.const_hyps in
let paramstyp = Array.map (fun j -> j.uj_type) jl in
let t = type_of_constant_knowing_parameters env cb.const_type paramstyp in
make_judge c t
let judge_of_constant env cst =
judge_of_constant_knowing_parameters env cst [||]
(* Type of a lambda-abstraction. *)
(* [judge_of_abstraction env name var j] implements the rule
env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s
-----------------------------------------------------------------------
env |- [name:typ]j.uj_val : (name:typ)j.uj_type
Since all products are defined in the Calculus of Inductive Constructions
and no upper constraint exists on the sort $s$, we don't need to compute $s$
*)
let judge_of_abstraction env name var j =
{ uj_val = mkLambda (name, var.utj_val, j.uj_val);
uj_type = mkProd (name, var.utj_val, j.uj_type) }
(* Type of let-in. *)
let judge_of_letin env name defj typj j =
{ uj_val = mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val) ;
uj_type = subst1 defj.uj_val j.uj_type }
(* Type of an application. *)
let judge_of_apply env funj argjv =
let rec apply_rec n typ cst = function
| [] ->
{ uj_val = mkApp (j_val funj, Array.map j_val argjv);
uj_type = typ },
cst
| hj::restjl ->
(match kind_of_term (whd_betadeltaiota env typ) with
| Prod (_,c1,c2) ->
(try
let c = conv_leq false env hj.uj_type c1 in
let cst' = union_constraints cst c in
apply_rec (n+1) (subst1 hj.uj_val c2) cst' restjl
with NotConvertible ->
error_cant_apply_bad_type env
(n,c1, hj.uj_type)
funj argjv)
| _ ->
error_cant_apply_not_functional env funj argjv)
in
apply_rec 1
funj.uj_type
empty_constraint
(Array.to_list argjv)
(* Type of product *)
let sort_of_product env domsort rangsort =
match (domsort, rangsort) with
(* Product rule (s,Prop,Prop) *)
| (_, Prop Null) -> rangsort
(* Product rule (Prop/Set,Set,Set) *)
| (Prop _, Prop Pos) -> rangsort
(* Product rule (Type,Set,?) *)
| (Type u1, Prop Pos) ->
if engagement env = Some ImpredicativeSet then
(* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
rangsort
else
(* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
Type (sup u1 type0_univ)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Pos, Type u2) -> Type (sup type0_univ u2)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Null, Type _) -> rangsort
(* Product rule (Type_i,Type_i,Type_i) *)
| (Type u1, Type u2) -> Type (sup u1 u2)
(* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule
env |- typ1:s1 env, name:typ1 |- typ2 : s2
-------------------------------------------------------------------------
s' >= (s1,s2), env |- (name:typ)j.uj_val : s'
where j.uj_type is convertible to a sort s2
*)
let judge_of_product env name t1 t2 =
let s = sort_of_product env t1.utj_type t2.utj_type in
{ uj_val = mkProd (name, t1.utj_val, t2.utj_val);
uj_type = mkSort s }
(* Type of a type cast *)
(* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule
env |- c:typ1 env |- typ2:s env |- typ1 <= typ2
---------------------------------------------------------------------
env |- c:typ2
*)
let judge_of_cast env cj k tj =
let expected_type = tj.utj_val in
try
let c, cst =
match k with
| VMcast ->
mkCast (cj.uj_val, k, expected_type),
vm_conv CUMUL env cj.uj_type expected_type
| DEFAULTcast ->
mkCast (cj.uj_val, k, expected_type),
conv_leq false env cj.uj_type expected_type
| REVERTcast ->
cj.uj_val,
conv_leq true env cj.uj_type expected_type in
{ uj_val = c;
uj_type = expected_type },
cst
with NotConvertible ->
error_actual_type env cj expected_type
(* Inductive types. *)
(* The type is parametric over the uniform parameters whose conclusion
is in Type; to enforce the internal constraints between the
parameters and the instances of Type occurring in the type of the
constructors, we use the level variables _statically_ assigned to
the conclusions of the parameters as mediators: e.g. if a parameter
has conclusion Type(alpha), static constraints of the form alpha<=v
exist between alpha and the Type's occurring in the constructor
types; when the parameters is finally instantiated by a term of
conclusion Type(u), then the constraints u<=alpha is computed in
the App case of execute; from this constraints, the expected
dynamic constraints of the form u<=v are enforced *)
let judge_of_inductive_knowing_parameters env ind jl =
let c = mkInd ind in
let (mib,mip) = lookup_mind_specif env ind in
check_args env c mib.mind_hyps;
let paramstyp = Array.map (fun j -> j.uj_type) jl in
let t = Inductive.type_of_inductive_knowing_parameters env mip paramstyp in
make_judge c t
let judge_of_inductive env ind =
judge_of_inductive_knowing_parameters env ind [||]
(* Constructors. *)
let judge_of_constructor env c =
let constr = mkConstruct c in
let _ =
let ((kn,_),_) = c in
let mib = lookup_mind kn env in
check_args env constr mib.mind_hyps in
let specif = lookup_mind_specif env (inductive_of_constructor c) in
make_judge constr (type_of_constructor c specif)
(* Case. *)
let check_branch_types env ind cj (lfj,explft) =
try conv_leq_vecti env (Array.map j_type lfj) explft
with
NotConvertibleVect i ->
error_ill_formed_branch env cj.uj_val (ind,i+1) lfj.(i).uj_type explft.(i)
| Invalid_argument _ ->
error_number_branches env cj (Array.length explft)
let judge_of_case env ci pj cj lfj =
let indspec =
try find_rectype env cj.uj_type
with Not_found -> error_case_not_inductive env cj in
let _ = check_case_info env (fst indspec) ci in
let (bty,rslty,univ) =
type_case_branches env indspec pj cj.uj_val in
let univ' = check_branch_types env (fst indspec) cj (lfj,bty) in
({ uj_val = mkCase (ci, (*nf_betaiota*) pj.uj_val, cj.uj_val,
Array.map j_val lfj);
uj_type = rslty },
union_constraints univ univ')
(* Fixpoints. *)
(* Checks the type of a general (co)fixpoint, i.e. without checking *)
(* the specific guard condition. *)
let type_fixpoint env lna lar vdefj =
let lt = Array.length vdefj in
assert (Array.length lar = lt);
try
conv_leq_vecti env (Array.map j_type vdefj) (Array.map (fun ty -> lift lt ty) lar)
with NotConvertibleVect i ->
error_ill_typed_rec_body env i lna vdefj lar
(************************************************************************)
(************************************************************************)
(* This combinator adds the universe constraints both in the local
graph and in the universes of the environment. This is to ensure
that the infered local graph is satisfiable. *)
let univ_combinator (cst,univ) (j,c') =
(j,(union_constraints cst c', merge_constraints c' univ))
(* The typing machine. *)
(* ATTENTION : faudra faire le typage du contexte des Const,
Ind et Constructsi un jour cela devient des constructions
arbitraires et non plus des variables *)
let rec execute env cstr cu =
match kind_of_term cstr with
(* Atomic terms *)
| Sort (Prop c) ->
(judge_of_prop_contents c, cu)
| Sort (Type u) ->
(judge_of_type u, cu)
| Rel n ->
(judge_of_relative env n, cu)
| Var id ->
(judge_of_variable env id, cu)
| Const c ->
(judge_of_constant env c, cu)
(* Lambda calculus operators *)
| App (f,args) ->
let (jl,cu1) = execute_array env args cu in
let (j,cu2) =
match kind_of_term f with
| Ind ind ->
(* Sort-polymorphism of inductive types *)
judge_of_inductive_knowing_parameters env ind jl, cu1
| Const cst ->
(* Sort-polymorphism of constant *)
judge_of_constant_knowing_parameters env cst jl, cu1
| _ ->
(* No sort-polymorphism *)
execute env f cu1
in
univ_combinator cu2 (judge_of_apply env j jl)
| Lambda (name,c1,c2) ->
let (varj,cu1) = execute_type env c1 cu in
let env1 = push_rel (name,None,varj.utj_val) env in
let (j',cu2) = execute env1 c2 cu1 in
(judge_of_abstraction env name varj j', cu2)
| Prod (name,c1,c2) ->
let (varj,cu1) = execute_type env c1 cu in
let env1 = push_rel (name,None,varj.utj_val) env in
let (varj',cu2) = execute_type env1 c2 cu1 in
(judge_of_product env name varj varj', cu2)
| LetIn (name,c1,c2,c3) ->
let (j1,cu1) = execute env c1 cu in
let (j2,cu2) = execute_type env c2 cu1 in
let (_,cu3) =
univ_combinator cu2 (judge_of_cast env j1 DEFAULTcast j2) in
let env1 = push_rel (name,Some j1.uj_val,j2.utj_val) env in
let (j',cu4) = execute env1 c3 cu3 in
(judge_of_letin env name j1 j2 j', cu4)
| Cast (c,k, t) ->
let (cj,cu1) = execute env c cu in
let (tj,cu2) = execute_type env t cu1 in
univ_combinator cu2
(judge_of_cast env cj k tj)
(* Inductive types *)
| Ind ind ->
(judge_of_inductive env ind, cu)
| Construct c ->
(judge_of_constructor env c, cu)
| Case (ci,p,c,lf) ->
let (cj,cu1) = execute env c cu in
let (pj,cu2) = execute env p cu1 in
let (lfj,cu3) = execute_array env lf cu2 in
univ_combinator cu3
(judge_of_case env ci pj cj lfj)
| Fix ((vn,i as vni),recdef) ->
let ((fix_ty,recdef'),cu1) = execute_recdef env recdef i cu in
let fix = (vni,recdef') in
check_fix env fix;
(make_judge (mkFix fix) fix_ty, cu1)
| CoFix (i,recdef) ->
let ((fix_ty,recdef'),cu1) = execute_recdef env recdef i cu in
let cofix = (i,recdef') in
check_cofix env cofix;
(make_judge (mkCoFix cofix) fix_ty, cu1)
(* Partial proofs: unsupported by the kernel *)
| Meta _ ->
anomaly "the kernel does not support metavariables"
| Evar _ ->
anomaly "the kernel does not support existential variables"
and execute_type env constr cu =
let (j,cu1) = execute env constr cu in
(type_judgment env j, cu1)
and execute_recdef env (names,lar,vdef) i cu =
let (larj,cu1) = execute_array env lar cu in
let lara = Array.map (assumption_of_judgment env) larj in
let env1 = push_rec_types (names,lara,vdef) env in
let (vdefj,cu2) = execute_array env1 vdef cu1 in
let vdefv = Array.map j_val vdefj in
let cst = type_fixpoint env1 names lara vdefj in
univ_combinator cu2
((lara.(i),(names,lara,vdefv)),cst)
and execute_array env = array_fold_map' (execute env)
(* Derived functions *)
let infer env constr =
let (j,(cst,_)) =
execute env constr (empty_constraint, universes env) in
assert (eq_constr j.uj_val constr);
({ j with uj_val = constr }, cst)
let infer_type env constr =
let (j,(cst,_)) =
execute_type env constr (empty_constraint, universes env) in
(j, cst)
let infer_v env cv =
let (jv,(cst,_)) =
execute_array env cv (empty_constraint, universes env) in
(jv, cst)
(* Typing of several terms. *)
let infer_local_decl env id = function
| LocalDef c ->
let (j,cst) = infer env c in
(Name id, Some j.uj_val, j.uj_type), cst
| LocalAssum c ->
let (j,cst) = infer env c in
(Name id, None, assumption_of_judgment env j), cst
let infer_local_decls env decls =
let rec inferec env = function
| (id, d) :: l ->
let env, l, cst1 = inferec env l in
let d, cst2 = infer_local_decl env id d in
push_rel d env, add_rel_decl d l, union_constraints cst1 cst2
| [] -> env, empty_rel_context, empty_constraint in
inferec env decls
(* Exported typing functions *)
let typing env c =
let (j,cst) = infer env c in
let _ = add_constraints cst env in
j
|