1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of
the Coq module system *)
(* This module provides the main entry points for type-checking basic
declarations *)
open CErrors
open Util
open Names
open Constr
open Declarations
open Environ
open Entries
open Typeops
module NamedDecl = Context.Named.Declaration
(* Insertion of constants and parameters in environment. *)
let equal_eff e1 e2 =
let open Entries in
match e1, e2 with
| { eff = SEsubproof (c1,_,_) }, { eff = SEsubproof (c2,_,_) } ->
Names.Constant.equal c1 c2
| { eff = SEscheme (cl1,_) }, { eff = SEscheme (cl2,_) } ->
CList.for_all2eq
(fun (_,c1,_,_) (_,c2,_,_) -> Names.Constant.equal c1 c2)
cl1 cl2
| _ -> false
module SideEffects :
sig
type t
val repr : t -> side_effect list
val empty : t
val add : side_effect -> t -> t
val concat : t -> t -> t
end =
struct
let compare_seff e1 e2 = match e1, e2 with
| SEsubproof (c1, _, _), SEsubproof (c2, _, _) -> Constant.CanOrd.compare c1 c2
| SEscheme (cl1, _), SEscheme (cl2, _) ->
let cmp (_, c1, _, _) (_, c2, _, _) = Constant.CanOrd.compare c1 c2 in
CList.compare cmp cl1 cl2
| SEsubproof _, SEscheme _ -> -1
| SEscheme _, SEsubproof _ -> 1
module SeffOrd = struct
type t = side_effect
let compare e1 e2 = compare_seff e1.eff e2.eff
end
module SeffSet = Set.Make(SeffOrd)
type t = { seff : side_effect list; elts : SeffSet.t }
(** Invariant: [seff] is a permutation of the elements of [elts] *)
let repr eff = eff.seff
let empty = { seff = []; elts = SeffSet.empty }
let add x es =
if SeffSet.mem x es.elts then es
else { seff = x :: es.seff; elts = SeffSet.add x es.elts }
let concat xes yes =
List.fold_right add xes.seff yes
end
type side_effects = SideEffects.t
type _ trust =
| Pure : unit trust
| SideEffects : structure_body -> side_effects trust
let uniq_seff_rev = SideEffects.repr
let uniq_seff l = List.rev (SideEffects.repr l)
let empty_seff = SideEffects.empty
let add_seff = SideEffects.add
let concat_seff = SideEffects.concat
let mk_pure_proof c = (c, Univ.ContextSet.empty), empty_seff
let inline_side_effects env body ctx side_eff =
(** First step: remove the constants that are still in the environment *)
let filter { eff = se; from_env = mb } =
let cbl = match se with
| SEsubproof (c, cb, b) -> [c, cb, b]
| SEscheme (cl,_) ->
List.map (fun (_, c, cb, b) -> c, cb, b) cl
in
let not_exists (c,_,_) =
try ignore(Environ.lookup_constant c env); false
with Not_found -> true in
let cbl = List.filter not_exists cbl in
(cbl, mb)
in
(* CAVEAT: we assure that most recent effects come first *)
let side_eff = List.map filter (uniq_seff_rev side_eff) in
let sigs = List.rev_map (fun (cbl, mb) -> mb, List.length cbl) side_eff in
let side_eff = List.fold_left (fun accu (cbl, _) -> cbl @ accu) [] side_eff in
let side_eff = List.rev side_eff in
(** Most recent side-effects first in side_eff *)
if List.is_empty side_eff then (body, ctx, sigs)
else
(** Second step: compute the lifts and substitutions to apply *)
let cname c =
let name = Constant.to_string c in
let map c = if c == '.' || c == '#' then '_' else c in
let name = String.map map name in
Name (Id.of_string name)
in
let fold (subst, var, ctx, args) (c, cb, b) =
let (b, opaque) = match cb.const_body, b with
| Def b, _ -> (Mod_subst.force_constr b, false)
| OpaqueDef _, `Opaque (b,_) -> (b, true)
| _ -> assert false
in
match cb.const_universes with
| Monomorphic_const univs ->
(** Abstract over the term at the top of the proof *)
let ty = cb.const_type in
let subst = Cmap_env.add c (Inr var) subst in
let ctx = Univ.ContextSet.union ctx univs in
(subst, var + 1, ctx, (cname c, b, ty, opaque) :: args)
| Polymorphic_const auctx ->
(** Inline the term to emulate universe polymorphism *)
let subst = Cmap_env.add c (Inl b) subst in
(subst, var, ctx, args)
in
let (subst, len, ctx, args) = List.fold_left fold (Cmap_env.empty, 1, ctx, []) side_eff in
(** Third step: inline the definitions *)
let rec subst_const i k t = match Constr.kind t with
| Const (c, u) ->
let data = try Some (Cmap_env.find c subst) with Not_found -> None in
begin match data with
| None -> t
| Some (Inl b) ->
(** [b] is closed but may refer to other constants *)
subst_const i k (Vars.subst_instance_constr u b)
| Some (Inr n) ->
mkRel (k + n - i)
end
| Rel n ->
(** Lift free rel variables *)
if n <= k then t
else mkRel (n + len - i - 1)
| _ -> Constr.map_with_binders ((+) 1) (fun k t -> subst_const i k t) k t
in
let map_args i (na, b, ty, opaque) =
(** Both the type and the body may mention other constants *)
let ty = subst_const (len - i - 1) 0 ty in
let b = subst_const (len - i - 1) 0 b in
(na, b, ty, opaque)
in
let args = List.mapi map_args args in
let body = subst_const 0 0 body in
let fold_arg (na, b, ty, opaque) accu =
if opaque then mkApp (mkLambda (na, ty, accu), [|b|])
else mkLetIn (na, b, ty, accu)
in
let body = List.fold_right fold_arg args body in
(body, ctx, sigs)
let rec is_nth_suffix n l suf =
if Int.equal n 0 then l == suf
else match l with
| [] -> false
| _ :: l -> is_nth_suffix (pred n) l suf
(* Given the list of signatures of side effects, checks if they match.
* I.e. if they are ordered descendants of the current revstruct *)
let check_signatures curmb sl =
let is_direct_ancestor (sl, curmb) (mb, how_many) =
match curmb with
| None -> None, None
| Some curmb ->
try
let mb = CEphemeron.get mb in
match sl with
| None -> sl, None
| Some n ->
if is_nth_suffix how_many mb curmb
then Some (n + how_many), Some mb
else None, None
with CEphemeron.InvalidKey -> None, None in
let sl, _ = List.fold_left is_direct_ancestor (Some 0,Some curmb) sl in
sl
let skip_trusted_seff sl b e =
let rec aux sl b e acc =
let open Context.Rel.Declaration in
match sl, kind b with
| (None|Some 0), _ -> b, e, acc
| Some sl, LetIn (n,c,ty,bo) ->
aux (Some (sl-1)) bo
(Environ.push_rel (LocalDef (n,c,ty)) e) (`Let(n,c,ty)::acc)
| Some sl, App(hd,arg) ->
begin match kind hd with
| Lambda (n,ty,bo) ->
aux (Some (sl-1)) bo
(Environ.push_rel (LocalAssum (n,ty)) e) (`Cut(n,ty,arg)::acc)
| _ -> assert false
end
| _ -> assert false
in
aux sl b e []
let rec unzip ctx j =
match ctx with
| [] -> j
| `Let (n,c,ty) :: ctx ->
unzip ctx { j with uj_val = mkLetIn (n,c,ty,j.uj_val) }
| `Cut (n,ty,arg) :: ctx ->
unzip ctx { j with uj_val = mkApp (mkLambda (n,ty,j.uj_val),arg) }
let feedback_completion_typecheck =
Option.iter (fun state_id ->
Feedback.feedback ~id:state_id Feedback.Complete)
let abstract_constant_universes = function
| Monomorphic_const_entry uctx ->
Univ.empty_level_subst, Monomorphic_const uctx
| Polymorphic_const_entry uctx ->
let sbst, auctx = Univ.abstract_universes uctx in
let sbst = Univ.make_instance_subst sbst in
sbst, Polymorphic_const auctx
let infer_declaration (type a) ~(trust : a trust) env (dcl : a constant_entry) =
match dcl with
| ParameterEntry (ctx,(t,uctx),nl) ->
let env = match uctx with
| Monomorphic_const_entry uctx -> push_context_set ~strict:true uctx env
| Polymorphic_const_entry uctx -> push_context ~strict:false uctx env
in
let j = infer env t in
let usubst, univs = abstract_constant_universes uctx in
let c = Typeops.assumption_of_judgment env j in
let t = Constr.hcons (Vars.subst_univs_level_constr usubst c) in
{
Cooking.cook_body = Undef nl;
cook_type = t;
cook_proj = None;
cook_universes = univs;
cook_inline = false;
cook_context = ctx;
}
(** Definition [c] is opaque (Qed), non polymorphic and with a specified type,
so we delay the typing and hash consing of its body.
Remark: when the universe quantification is given explicitly, we could
delay even in the polymorphic case. *)
| DefinitionEntry ({ const_entry_type = Some typ;
const_entry_opaque = true;
const_entry_universes = Monomorphic_const_entry univs } as c) ->
let env = push_context_set ~strict:true univs env in
let { const_entry_body = body; const_entry_feedback = feedback_id } = c in
let tyj = infer_type env typ in
let proofterm =
Future.chain body (fun ((body,uctx),side_eff) ->
let j, uctx = match trust with
| Pure ->
let env = push_context_set uctx env in
let j = infer env body in
let _ = judge_of_cast env j DEFAULTcast tyj in
j, uctx
| SideEffects mb ->
let (body, uctx, signatures) = inline_side_effects env body uctx side_eff in
let valid_signatures = check_signatures mb signatures in
let env = push_context_set uctx env in
let body,env,ectx = skip_trusted_seff valid_signatures body env in
let j = infer env body in
let j = unzip ectx j in
let _ = judge_of_cast env j DEFAULTcast tyj in
j, uctx
in
let c = Constr.hcons j.uj_val in
feedback_completion_typecheck feedback_id;
c, uctx) in
let def = OpaqueDef (Opaqueproof.create proofterm) in
{
Cooking.cook_body = def;
cook_type = typ;
cook_proj = None;
cook_universes = Monomorphic_const univs;
cook_inline = c.const_entry_inline_code;
cook_context = c.const_entry_secctx;
}
(** Other definitions have to be processed immediately. *)
| DefinitionEntry c ->
let { const_entry_type = typ; const_entry_opaque = opaque } = c in
let { const_entry_body = body; const_entry_feedback = feedback_id } = c in
let (body, ctx), side_eff = Future.join body in
let body, ctx, _ = match trust with
| Pure -> body, ctx, []
| SideEffects _ -> inline_side_effects env body ctx side_eff
in
let env, usubst, univs = match c.const_entry_universes with
| Monomorphic_const_entry univs ->
let ctx = Univ.ContextSet.union univs ctx in
let env = push_context_set ~strict:true ctx env in
env, Univ.empty_level_subst, Monomorphic_const ctx
| Polymorphic_const_entry uctx ->
(** Ensure not to generate internal constraints in polymorphic mode.
The only way for this to happen would be that either the body
contained deferred universes, or that it contains monomorphic
side-effects. The first property is ruled out by upper layers,
and the second one is ensured by the fact we currently
unconditionally export side-effects from polymorphic definitions,
i.e. [trust] is always [Pure]. *)
let () = assert (Univ.ContextSet.is_empty ctx) in
let env = push_context ~strict:false uctx env in
let sbst, auctx = Univ.abstract_universes uctx in
let sbst = Univ.make_instance_subst sbst in
env, sbst, Polymorphic_const auctx
in
let j = infer env body in
let typ = match typ with
| None ->
Vars.subst_univs_level_constr usubst j.uj_type
| Some t ->
let tj = infer_type env t in
let _ = judge_of_cast env j DEFAULTcast tj in
Vars.subst_univs_level_constr usubst t
in
let def = Constr.hcons (Vars.subst_univs_level_constr usubst j.uj_val) in
let def =
if opaque then OpaqueDef (Opaqueproof.create (Future.from_val (def, Univ.ContextSet.empty)))
else Def (Mod_subst.from_val def)
in
feedback_completion_typecheck feedback_id;
{
Cooking.cook_body = def;
cook_type = typ;
cook_proj = None;
cook_universes = univs;
cook_inline = c.const_entry_inline_code;
cook_context = c.const_entry_secctx;
}
| ProjectionEntry {proj_entry_ind = ind; proj_entry_arg = i} ->
let mib, _ = Inductive.lookup_mind_specif env (ind,0) in
let kn, pb =
match mib.mind_record with
| Some (Some (id, kns, pbs)) ->
if i < Array.length pbs then
kns.(i), pbs.(i)
else assert false
| _ -> assert false
in
let univs =
match mib.mind_universes with
| Monomorphic_ind ctx -> Monomorphic_const ctx
| Polymorphic_ind auctx -> Polymorphic_const auctx
| Cumulative_ind acumi ->
Polymorphic_const (Univ.ACumulativityInfo.univ_context acumi)
in
let term, typ = pb.proj_eta in
{
Cooking.cook_body = Def (Mod_subst.from_val (Constr.hcons term));
cook_type = typ;
cook_proj = Some pb;
cook_universes = univs;
cook_inline = false;
cook_context = None;
}
let record_aux env s_ty s_bo =
let in_ty = keep_hyps env s_ty in
let v =
String.concat " "
(CList.map_filter (fun decl ->
let id = NamedDecl.get_id decl in
if List.exists (NamedDecl.get_id %> Id.equal id) in_ty then None
else Some (Id.to_string id))
(keep_hyps env s_bo)) in
Aux_file.record_in_aux "context_used" v
let build_constant_declaration kn env result =
let open Cooking in
let typ = result.cook_type in
let check declared inferred =
let mk_set l = List.fold_right Id.Set.add (List.map NamedDecl.get_id l) Id.Set.empty in
let inferred_set, declared_set = mk_set inferred, mk_set declared in
if not (Id.Set.subset inferred_set declared_set) then
let l = Id.Set.elements (Id.Set.diff inferred_set declared_set) in
let n = List.length l in
let declared_vars = Pp.pr_sequence Id.print (Id.Set.elements declared_set) in
let inferred_vars = Pp.pr_sequence Id.print (Id.Set.elements inferred_set) in
let missing_vars = Pp.pr_sequence Id.print (List.rev l) in
user_err Pp.(prlist str
["The following section "; (String.plural n "variable"); " ";
(String.conjugate_verb_to_be n); " used but not declared:"] ++ fnl () ++
missing_vars ++ str "." ++ fnl () ++ fnl () ++
str "You can either update your proof to not depend on " ++ missing_vars ++
str ", or you can update your Proof line from" ++ fnl () ++
str "Proof using " ++ declared_vars ++ fnl () ++
str "to" ++ fnl () ++
str "Proof using " ++ inferred_vars) in
let sort evn l =
List.filter (fun decl ->
let id = NamedDecl.get_id decl in
List.exists (NamedDecl.get_id %> Names.Id.equal id) l)
(named_context env) in
(* We try to postpone the computation of used section variables *)
let hyps, def =
let context_ids = List.map NamedDecl.get_id (named_context env) in
let def = result.cook_body in
match result.cook_context with
| None when not (List.is_empty context_ids) ->
(* No declared section vars, and non-empty section context:
we must look at the body NOW, if any *)
let ids_typ = global_vars_set env typ in
let ids_def = match def with
| Undef _ -> Id.Set.empty
| Def cs -> global_vars_set env (Mod_subst.force_constr cs)
| OpaqueDef lc ->
let vars =
global_vars_set env
(Opaqueproof.force_proof (opaque_tables env) lc) in
(* we force so that cst are added to the env immediately after *)
ignore(Opaqueproof.force_constraints (opaque_tables env) lc);
if !Flags.record_aux_file then record_aux env ids_typ vars;
vars
in
keep_hyps env (Id.Set.union ids_typ ids_def), def
| None ->
if !Flags.record_aux_file then
record_aux env Id.Set.empty Id.Set.empty;
[], def (* Empty section context: no need to check *)
| Some declared ->
(* We use the declared set and chain a check of correctness *)
sort env declared,
match def with
| Undef _ as x -> x (* nothing to check *)
| Def cs as x ->
let ids_typ = global_vars_set env typ in
let ids_def = global_vars_set env (Mod_subst.force_constr cs) in
let inferred = keep_hyps env (Id.Set.union ids_typ ids_def) in
check declared inferred;
x
| OpaqueDef lc -> (* In this case we can postpone the check *)
OpaqueDef (Opaqueproof.iter_direct_opaque (fun c ->
let ids_typ = global_vars_set env typ in
let ids_def = global_vars_set env c in
let inferred = keep_hyps env (Id.Set.union ids_typ ids_def) in
check declared inferred) lc) in
let univs = result.cook_universes in
let tps =
let res =
match result.cook_proj with
| None -> compile_constant_body env univs def
| Some pb ->
(* The compilation of primitive projections is a bit tricky, because
they refer to themselves (the body of p looks like fun c =>
Proj(p,c)). We break the cycle by building an ad-hoc compilation
environment. A cleaner solution would be that kernel projections are
simply Proj(i,c) with i an int and c a constr, but we would have to
get rid of the compatibility layer. *)
let cb =
{ const_hyps = hyps;
const_body = def;
const_type = typ;
const_proj = result.cook_proj;
const_body_code = None;
const_universes = univs;
const_inline_code = result.cook_inline;
const_typing_flags = Environ.typing_flags env;
}
in
let env = add_constant kn cb env in
compile_constant_body env univs def
in Option.map Cemitcodes.from_val res
in
{ const_hyps = hyps;
const_body = def;
const_type = typ;
const_proj = result.cook_proj;
const_body_code = tps;
const_universes = univs;
const_inline_code = result.cook_inline;
const_typing_flags = Environ.typing_flags env }
(*s Global and local constant declaration. *)
let translate_constant mb env kn ce =
build_constant_declaration kn env
(infer_declaration ~trust:mb env ce)
let constant_entry_of_side_effect cb u =
let univs =
match cb.const_universes with
| Monomorphic_const uctx ->
Monomorphic_const_entry uctx
| Polymorphic_const auctx ->
Polymorphic_const_entry (Univ.AUContext.repr auctx)
in
let pt =
match cb.const_body, u with
| OpaqueDef _, `Opaque (b, c) -> b, c
| Def b, `Nothing -> Mod_subst.force_constr b, Univ.ContextSet.empty
| _ -> assert false in
DefinitionEntry {
const_entry_body = Future.from_val (pt, ());
const_entry_secctx = None;
const_entry_feedback = None;
const_entry_type = Some cb.const_type;
const_entry_universes = univs;
const_entry_opaque = Declareops.is_opaque cb;
const_entry_inline_code = cb.const_inline_code }
;;
let turn_direct (kn,cb,u,r as orig) =
match cb.const_body, u with
| OpaqueDef _, `Opaque (b,c) ->
let pt = Future.from_val (b,c) in
kn, { cb with const_body = OpaqueDef (Opaqueproof.create pt) }, u, r
| _ -> orig
;;
type side_effect_role =
| Subproof
| Schema of inductive * string
type exported_side_effect =
Constant.t * constant_body * side_effect_role
let export_side_effects mb env c =
let { const_entry_body = body } = c in
let _, eff = Future.force body in
let ce = { c with
const_entry_body = Future.chain body
(fun (b_ctx, _) -> b_ctx, ()) } in
let not_exists (c,_,_,_) =
try ignore(Environ.lookup_constant c env); false
with Not_found -> true in
let aux (acc,sl) { eff = se; from_env = mb } =
let cbl = match se with
| SEsubproof (c,cb,b) -> [c,cb,b,Subproof]
| SEscheme (cl,k) ->
List.map (fun (i,c,cb,b) -> c,cb,b,Schema(i,k)) cl in
let cbl = List.filter not_exists cbl in
if cbl = [] then acc, sl
else cbl :: acc, (mb,List.length cbl) :: sl in
let seff, signatures = List.fold_left aux ([],[]) (uniq_seff_rev eff) in
let trusted = check_signatures mb signatures in
let push_seff env = function
| kn, cb, `Nothing, _ ->
begin
let env = Environ.add_constant kn cb env in
match cb.const_universes with
| Monomorphic_const ctx ->
Environ.push_context_set ~strict:true ctx env
| Polymorphic_const _ -> env
end
| kn, cb, `Opaque(_, ctx), _ ->
begin
let env = Environ.add_constant kn cb env in
match cb.const_universes with
| Monomorphic_const cstctx ->
let env = Environ.push_context_set ~strict:true cstctx env in
Environ.push_context_set ~strict:true ctx env
| Polymorphic_const _ -> env
end
in
let rec translate_seff sl seff acc env =
match sl, seff with
| _, [] -> List.rev acc, ce
| (None | Some 0), cbs :: rest ->
let env, cbs =
List.fold_left (fun (env,cbs) (kn, ocb, u, r) ->
let ce = constant_entry_of_side_effect ocb u in
let cb = translate_constant Pure env kn ce in
(push_seff env (kn, cb,`Nothing, Subproof),(kn,cb,r) :: cbs))
(env,[]) cbs in
translate_seff sl rest (cbs @ acc) env
| Some sl, cbs :: rest ->
let cbs_len = List.length cbs in
let cbs = List.map turn_direct cbs in
let env = List.fold_left push_seff env cbs in
let ecbs = List.map (fun (kn,cb,u,r) ->
kn, cb, r) cbs in
translate_seff (Some (sl-cbs_len)) rest (ecbs @ acc) env
in
translate_seff trusted seff [] env
;;
let translate_local_assum env t =
let j = infer env t in
let t = Typeops.assumption_of_judgment env j in
t
let translate_recipe env kn r =
(** We only hashcons the term when outside of a section, otherwise this would
be useless. It is detected by the dirpath of the constant being empty. *)
let (_, dir, _) = Constant.repr3 kn in
let hcons = DirPath.is_empty dir in
build_constant_declaration kn env (Cooking.cook_constant ~hcons env r)
let translate_local_def env id centry =
let open Cooking in
let body = Future.from_val ((centry.secdef_body, Univ.ContextSet.empty), ()) in
let centry = {
const_entry_body = body;
const_entry_secctx = centry.secdef_secctx;
const_entry_feedback = centry.secdef_feedback;
const_entry_type = centry.secdef_type;
const_entry_universes = Monomorphic_const_entry Univ.ContextSet.empty;
const_entry_opaque = false;
const_entry_inline_code = false;
} in
let decl = infer_declaration ~trust:Pure env (DefinitionEntry centry) in
let typ = decl.cook_type in
if Option.is_empty decl.cook_context && !Flags.record_aux_file then begin
match decl.cook_body with
| Undef _ -> ()
| Def _ -> ()
| OpaqueDef lc ->
let ids_typ = global_vars_set env typ in
let ids_def = global_vars_set env
(Opaqueproof.force_proof (opaque_tables env) lc) in
record_aux env ids_typ ids_def
end;
let () = match decl.cook_universes with
| Monomorphic_const ctx -> assert (Univ.ContextSet.is_empty ctx)
| Polymorphic_const _ -> assert false
in
let c = match decl.cook_body with
| Def c -> Mod_subst.force_constr c
| OpaqueDef o ->
let p = Opaqueproof.force_proof (Environ.opaque_tables env) o in
let cst = Opaqueproof.force_constraints (Environ.opaque_tables env) o in
(** Let definitions are ensured to have no extra constraints coming from
the body by virtue of the typing of [Entries.section_def_entry]. *)
let () = assert (Univ.ContextSet.is_empty cst) in
p
| Undef _ -> assert false
in
c, typ
(* Insertion of inductive types. *)
let translate_mind env kn mie = Indtypes.check_inductive env kn mie
let inline_entry_side_effects env ce = { ce with
const_entry_body = Future.chain
ce.const_entry_body (fun ((body, ctx), side_eff) ->
let body, ctx',_ = inline_side_effects env body ctx side_eff in
(body, ctx'), ());
}
let inline_side_effects env body side_eff =
pi1 (inline_side_effects env body Univ.ContextSet.empty side_eff)
|