1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(*i*)
open Names
(*i*)
(*s The sorts of CCI. *)
type contents = Pos | Null
type sorts =
| Prop of contents (* Prop and Set *)
| Type of Univ.universe (* Type *)
val mk_Set : sorts
val mk_Prop : sorts
val type_0 : sorts
(*s The sorts family of CCI. *)
type sorts_family = InProp | InSet | InType
val family_of_sort : sorts -> sorts_family
(*s Useful types *)
(*s Existential variables *)
type existential_key = int
(*s Existential variables *)
type metavariable = int
(*s Case annotation *)
type pattern_source = DefaultPat of int | RegularPat
type case_style = LetStyle | IfStyle | MatchStyle | RegularStyle
type case_printing =
{ ind_nargs : int; (* number of real args of the inductive type *)
style : case_style;
source : pattern_source array }
(* the integer is the number of real args, needed for reduction *)
type case_info =
{ ci_ind : inductive;
ci_npar : int;
ci_cstr_nargs : int array; (* number of real args of each constructor *)
ci_pp_info : case_printing (* not interpreted by the kernel *)
}
(*s*******************************************************************)
(* The type of constructions *)
type constr
(* [eq_constr a b] is true if [a] equals [b] modulo alpha, casts,
and application grouping *)
val eq_constr : constr -> constr -> bool
(* [types] is the same as [constr] but is intended to be used where a
{\em type} in CCI sense is expected (Rem:plurial form since [type] is a
reserved ML keyword) *)
type types = constr
(*s Functions about [types] *)
val type_app : (constr -> constr) -> types -> types
val body_of_type : types -> constr
(*s Functions for dealing with constr terms.
The following functions are intended to simplify and to uniform the
manipulation of terms. Some of these functions may be overlapped with
previous ones. *)
(*s Term constructors. *)
(* Constructs a DeBrujin index (DB indices begin at 1) *)
val mkRel : int -> constr
(* Constructs a Variable *)
val mkVar : identifier -> constr
(* Constructs an patvar named "?n" *)
val mkMeta : metavariable -> constr
(* Constructs an existential variable *)
type existential = existential_key * constr array
val mkEvar : existential -> constr
(* Construct a sort *)
val mkSort : sorts -> types
val mkProp : types
val mkSet : types
val mkType : Univ.universe -> types
(* This defines the strategy to use for verifiying a Cast *)
type cast_kind = VMcast | DEFAULTcast
(* Constructs the term [t1::t2], i.e. the term $t_1$ casted with the
type $t_2$ (that means t2 is declared as the type of t1). *)
val mkCast : constr * cast_kind * constr -> constr
(* Constructs the product [(x:t1)t2] *)
val mkProd : name * types * types -> types
val mkNamedProd : identifier -> types -> types -> types
(* non-dependant product $t_1 \rightarrow t_2$, an alias for
[(_:t1)t2]. Beware $t_2$ is NOT lifted.
Eg: A |- A->A is built by [(mkArrow (mkRel 0) (mkRel 1))] *)
val mkArrow : types -> types -> constr
(* Constructs the abstraction $[x:t_1]t_2$ *)
val mkLambda : name * types * constr -> constr
val mkNamedLambda : identifier -> types -> constr -> constr
(* Constructs the product [let x = t1 : t2 in t3] *)
val mkLetIn : name * constr * types * constr -> constr
val mkNamedLetIn : identifier -> constr -> types -> constr -> constr
(* [mkApp (f,[| t_1; ...; t_n |]] constructs the application
$(f~t_1~\dots~t_n)$. *)
val mkApp : constr * constr array -> constr
(* Constructs a constant *)
(* The array of terms correspond to the variables introduced in the section *)
val mkConst : constant -> constr
(* Inductive types *)
(* Constructs the ith (co)inductive type of the block named kn *)
(* The array of terms correspond to the variables introduced in the section *)
val mkInd : inductive -> constr
(* Constructs the jth constructor of the ith (co)inductive type of the
block named kn. The array of terms correspond to the variables
introduced in the section *)
val mkConstruct : constructor -> constr
(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
val mkCase : case_info * constr * constr * constr array -> constr
(* If [recindxs = [|i1,...in|]]
[funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [|b1,.....bn|]]
then [ mkFix ((recindxs,i), funnames, typarray, bodies) ]
constructs the $i$th function of the block (counting from 0)
[Fixpoint f1 [ctx1] = b1
with f2 [ctx2] = b2
...
with fn [ctxn] = bn.]
\noindent where the length of the $j$th context is $ij$.
*)
type rec_declaration = name array * types array * constr array
type fixpoint = (int array * int) * rec_declaration
val mkFix : fixpoint -> constr
(* If [funnames = [|f1,.....fn|]]
[typarray = [|t1,...tn|]]
[bodies = [b1,.....bn]] \par\noindent
then [mkCoFix (i, (typsarray, funnames, bodies))]
constructs the ith function of the block
[CoFixpoint f1 = b1
with f2 = b2
...
with fn = bn.]
*)
type cofixpoint = int * rec_declaration
val mkCoFix : cofixpoint -> constr
(*s Concrete type for making pattern-matching. *)
(* [constr array] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
type 'constr pexistential = existential_key * 'constr array
type ('constr, 'types) prec_declaration =
name array * 'types array * 'constr array
type ('constr, 'types) pfixpoint =
(int array * int) * ('constr, 'types) prec_declaration
type ('constr, 'types) pcofixpoint =
int * ('constr, 'types) prec_declaration
type ('constr, 'types) kind_of_term =
| Rel of int
| Var of identifier
| Meta of metavariable
| Evar of 'constr pexistential
| Sort of sorts
| Cast of 'constr * cast_kind * 'types
| Prod of name * 'types * 'types
| Lambda of name * 'types * 'constr
| LetIn of name * 'constr * 'types * 'constr
| App of 'constr * 'constr array
| Const of constant
| Ind of inductive
| Construct of constructor
| Case of case_info * 'constr * 'constr * 'constr array
| Fix of ('constr, 'types) pfixpoint
| CoFix of ('constr, 'types) pcofixpoint
(* User view of [constr]. For [App], it is ensured there is at
least one argument and the function is not itself an applicative
term *)
val kind_of_term : constr -> (constr, types) kind_of_term
(* Experimental *)
type ('constr, 'types) kind_of_type =
| SortType of sorts
| CastType of 'types * 'types
| ProdType of name * 'types * 'types
| LetInType of name * 'constr * 'types * 'types
| AtomicType of 'constr * 'constr array
val kind_of_type : types -> (constr, types) kind_of_type
(*s Simple term case analysis. *)
val isRel : constr -> bool
val isVar : constr -> bool
val isInd : constr -> bool
val isEvar : constr -> bool
val isMeta : constr -> bool
val isSort : constr -> bool
val isCast : constr -> bool
val isApp : constr -> bool
val isProd : constr -> bool
val isConst : constr -> bool
val isConstruct : constr -> bool
val is_Prop : constr -> bool
val is_Set : constr -> bool
val isprop : constr -> bool
val is_Type : constr -> bool
val iskind : constr -> bool
val is_small : sorts -> bool
(*s Term destructors.
Destructor operations are partial functions and
raise [invalid_arg "dest*"] if the term has not the expected form. *)
(* Destructs a DeBrujin index *)
val destRel : constr -> int
(* Destructs an existential variable *)
val destMeta : constr -> metavariable
(* Destructs a variable *)
val destVar : constr -> identifier
(* Destructs a sort. [is_Prop] recognizes the sort \textsf{Prop}, whether
[isprop] recognizes both \textsf{Prop} and \textsf{Set}. *)
val destSort : constr -> sorts
(* Destructs a casted term *)
val destCast : constr -> constr * cast_kind * constr
(* Destructs the product $(x:t_1)t_2$ *)
val destProd : types -> name * types * types
(* Destructs the abstraction $[x:t_1]t_2$ *)
val destLambda : constr -> name * types * constr
(* Destructs the let $[x:=b:t_1]t_2$ *)
val destLetIn : constr -> name * constr * types * constr
(* Destructs an application *)
val destApp : constr -> constr * constr array
(* Obsolete synonym of destApp *)
val destApplication : constr -> constr * constr array
(* Decompose any term as an applicative term; the list of args can be empty *)
val decompose_app : constr -> constr * constr list
(* Destructs a constant *)
val destConst : constr -> constant
(* Destructs an existential variable *)
val destEvar : constr -> existential
(* Destructs a (co)inductive type *)
val destInd : constr -> inductive
(* Destructs a constructor *)
val destConstruct : constr -> constructor
(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
val destCase : constr -> case_info * constr * constr * constr array
(* Destructs the $i$th function of the block
$\mathit{Fixpoint} ~ f_1 ~ [ctx_1] = b_1
\mathit{with} ~ f_2 ~ [ctx_2] = b_2
\dots
\mathit{with} ~ f_n ~ [ctx_n] = b_n$,
where the lenght of the $j$th context is $ij$.
*)
val destFix : constr -> fixpoint
val destCoFix : constr -> cofixpoint
(*s A {\em declaration} has the form (name,body,type). It is either an
{\em assumption} if [body=None] or a {\em definition} if
[body=Some actualbody]. It is referred by {\em name} if [na] is an
identifier or by {\em relative index} if [na] is not an identifier
(in the latter case, [na] is of type [name] but just for printing
purpose *)
type named_declaration = identifier * constr option * types
type rel_declaration = name * constr option * types
val map_named_declaration :
(constr -> constr) -> named_declaration -> named_declaration
val map_rel_declaration :
(constr -> constr) -> rel_declaration -> rel_declaration
(* Constructs either [(x:t)c] or [[x=b:t]c] *)
val mkProd_or_LetIn : rel_declaration -> types -> types
val mkNamedProd_or_LetIn : named_declaration -> types -> types
val mkNamedProd_wo_LetIn : named_declaration -> types -> types
(* Constructs either [[x:t]c] or [[x=b:t]c] *)
val mkLambda_or_LetIn : rel_declaration -> constr -> constr
val mkNamedLambda_or_LetIn : named_declaration -> constr -> constr
(*s Other term constructors. *)
val abs_implicit : constr -> constr
val lambda_implicit : constr -> constr
val lambda_implicit_lift : int -> constr -> constr
(* [applist (f,args)] and co work as [mkApp] *)
val applist : constr * constr list -> constr
val applistc : constr -> constr list -> constr
val appvect : constr * constr array -> constr
val appvectc : constr -> constr array -> constr
(* [prodn n l b] = $(x_1:T_1)..(x_n:T_n)b$
where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
val prodn : int -> (name * constr) list -> constr -> constr
(* [compose_prod l b] = $(x_1:T_1)..(x_n:T_n)b$
where $l = [(x_n,T_n);\dots;(x_1,T_1)]$.
Inverse of [decompose_prod]. *)
val compose_prod : (name * constr) list -> constr -> constr
(* [lamn n l b] = $[x_1:T_1]..[x_n:T_n]b$
where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
val lamn : int -> (name * constr) list -> constr -> constr
(* [compose_lam l b] = $[x_1:T_1]..[x_n:T_n]b$
where $l = [(x_n,T_n);\dots;(x_1,T_1)]$.
Inverse of [decompose_lam] *)
val compose_lam : (name * constr) list -> constr -> constr
(* [to_lambda n l]
= $[x_1:T_1]...[x_n:T_n]T$
where $l = (x_1:T_1)...(x_n:T_n)T$ *)
val to_lambda : int -> constr -> constr
(* [to_prod n l]
= $(x_1:T_1)...(x_n:T_n)T$
where $l = [x_1:T_1]...[x_n:T_n]T$ *)
val to_prod : int -> constr -> constr
(* pseudo-reduction rule *)
(* [prod_appvect] $(x1:B1;...;xn:Bn)B a1...an \rightarrow B[a1...an]$ *)
val prod_appvect : constr -> constr array -> constr
val prod_applist : constr -> constr list -> constr
(*s Other term destructors. *)
(* Transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair
$([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a product.
It includes also local definitions *)
val decompose_prod : constr -> (name*constr) list * constr
(* Transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair
$([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a lambda. *)
val decompose_lam : constr -> (name*constr) list * constr
(* Given a positive integer n, transforms a product term
$(x_1:T_1)..(x_n:T_n)T$
into the pair $([(xn,Tn);...;(x1,T1)],T)$. *)
val decompose_prod_n : int -> constr -> (name * constr) list * constr
(* Given a positive integer $n$, transforms a lambda term
$[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$ *)
val decompose_lam_n : int -> constr -> (name * constr) list * constr
(* [nb_lam] $[x_1:T_1]...[x_n:T_n]c$ where $c$ is not an abstraction
gives $n$ (casts are ignored) *)
val nb_lam : constr -> int
(* similar to [nb_lam], but gives the number of products instead *)
val nb_prod : constr -> int
(* flattens application lists *)
val collapse_appl : constr -> constr
(* Removes recursively the casts around a term i.e.
[strip_outer_cast] (Cast (Cast ... (Cast c, t) ... ))] is [c]. *)
val strip_outer_cast : constr -> constr
(* Apply a function letting Casted types in place *)
val under_casts : (constr -> constr) -> constr -> constr
(* Apply a function under components of Cast if any *)
val under_outer_cast : (constr -> constr) -> constr -> constr
(*s Occur checks *)
(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
val closed0 : constr -> bool
(* [noccurn n M] returns true iff [Rel n] does NOT occur in term [M] *)
val noccurn : int -> constr -> bool
(* [noccur_between n m M] returns true iff [Rel p] does NOT occur in term [M]
for n <= p < n+m *)
val noccur_between : int -> int -> constr -> bool
(* Checking function for terms containing existential- or
meta-variables. The function [noccur_with_meta] considers only
meta-variable applied to some terms (intented to be its local
context) (for existential variables, it is necessarily the case) *)
val noccur_with_meta : int -> int -> constr -> bool
(*s Relocation and substitution *)
(* [exliftn el c] lifts [c] with lifting [el] *)
val exliftn : Esubst.lift -> constr -> constr
(* [liftn n k c] lifts by [n] indexes above [k] in [c] *)
val liftn : int -> int -> constr -> constr
(* [lift n c] lifts by [n] the positive indexes in [c] *)
val lift : int -> constr -> constr
(* [substnl [a1;...;an] k c] substitutes in parallel [a1],...,[an]
for respectively [Rel(k+1)],...,[Rel(k+n)] in [c]; it relocates
accordingly indexes in [a1],...,[an] *)
val substnl : constr list -> int -> constr -> constr
val substl : constr list -> constr -> constr
val subst1 : constr -> constr -> constr
val substl_decl : constr list -> named_declaration -> named_declaration
val subst1_decl : constr -> named_declaration -> named_declaration
val replace_vars : (identifier * constr) list -> constr -> constr
val subst_var : identifier -> constr -> constr
(* [subst_vars [id1;...;idn] t] substitute [VAR idj] by [Rel j] in [t]
if two names are identical, the one of least indice is keeped *)
val subst_vars : identifier list -> constr -> constr
(* [substn_vars n [id1;...;idn] t] substitute [VAR idj] by [Rel j+n-1] in [t]
if two names are identical, the one of least indice is keeped *)
val substn_vars : int -> identifier list -> constr -> constr
(*s Functionals working on the immediate subterm of a construction *)
(* [fold_constr f acc c] folds [f] on the immediate subterms of [c]
starting from [acc] and proceeding from left to right according to
the usual representation of the constructions; it is not recursive *)
val fold_constr : ('a -> constr -> 'a) -> 'a -> constr -> 'a
(* [map_constr f c] maps [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val map_constr : (constr -> constr) -> constr -> constr
(* [map_constr_with_binders g f n c] maps [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val map_constr_with_binders :
('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr
(* [iter_constr f c] iters [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
val iter_constr : (constr -> unit) -> constr -> unit
(* [iter_constr_with_binders g f n c] iters [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
val iter_constr_with_binders :
('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit
(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed; Cast's, binders
name and Cases annotations are not taken into account *)
val compare_constr : (constr -> constr -> bool) -> constr -> constr -> bool
(*********************************************************************)
val hcons_constr:
(constant -> constant) *
(kernel_name -> kernel_name) *
(dir_path -> dir_path) *
(name -> name) *
(identifier -> identifier) *
(string -> string)
->
(constr -> constr) *
(types -> types)
val hcons1_constr : constr -> constr
val hcons1_types : types -> types
(**************************************)
type values
|