1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
(** {5 Redeclaration of types from module Constr and Sorts}
This reexports constructors of inductive types defined in module [Constr],
for compatibility purposes. Refer to this module for further info.
*)
type contents = Sorts.contents = Pos | Null
type sorts = Sorts.t =
| Prop of contents (** Prop and Set *)
| Type of Univ.universe (** Type *)
type sorts_family = Sorts.family = InProp | InSet | InType
type 'a puniverses = 'a Univ.puniverses
(** Simply type aliases *)
type pconstant = constant puniverses
type pinductive = inductive puniverses
type pconstructor = constructor puniverses
type constr = Constr.constr
(** Alias types, for compatibility. *)
type types = Constr.types
(** Same as [constr], for documentation purposes. *)
type existential_key = Constr.existential_key
type existential = Constr.existential
type metavariable = Constr.metavariable
type case_style = Constr.case_style =
LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle
type case_printing = Constr.case_printing =
{ ind_tags : bool list; cstr_tags : bool list array; style : case_style }
type case_info = Constr.case_info =
{ ci_ind : inductive;
ci_npar : int;
ci_cstr_ndecls : int array;
ci_cstr_nargs : int array;
ci_pp_info : case_printing
}
type cast_kind = Constr.cast_kind =
VMcast | NATIVEcast | DEFAULTcast | REVERTcast
type rec_declaration = Constr.rec_declaration
type fixpoint = Constr.fixpoint
type cofixpoint = Constr.cofixpoint
type 'constr pexistential = 'constr Constr.pexistential
type ('constr, 'types) prec_declaration =
('constr, 'types) Constr.prec_declaration
type ('constr, 'types) pfixpoint = ('constr, 'types) Constr.pfixpoint
type ('constr, 'types) pcofixpoint = ('constr, 'types) Constr.pcofixpoint
type ('constr, 'types, 'sort, 'univs) kind_of_term =
('constr, 'types, 'sort, 'univs) Constr.kind_of_term =
| Rel of int
| Var of Id.t
| Meta of metavariable
| Evar of 'constr pexistential
| Sort of 'sort
| Cast of 'constr * cast_kind * 'types
| Prod of Name.t * 'types * 'types
| Lambda of Name.t * 'types * 'constr
| LetIn of Name.t * 'constr * 'types * 'constr
| App of 'constr * 'constr array
| Const of (constant * 'univs)
| Ind of (inductive * 'univs)
| Construct of (constructor * 'univs)
| Case of case_info * 'constr * 'constr * 'constr array
| Fix of ('constr, 'types) pfixpoint
| CoFix of ('constr, 'types) pcofixpoint
| Proj of projection * 'constr
type values = Constr.values
(** {5 Simple term case analysis. } *)
val isRel : constr -> bool
val isRelN : int -> constr -> bool
val isVar : constr -> bool
val isVarId : Id.t -> constr -> bool
val isInd : constr -> bool
val isEvar : constr -> bool
val isMeta : constr -> bool
val isEvar_or_Meta : constr -> bool
val isSort : constr -> bool
val isCast : constr -> bool
val isApp : constr -> bool
val isLambda : constr -> bool
val isLetIn : constr -> bool
val isProd : constr -> bool
val isConst : constr -> bool
val isConstruct : constr -> bool
val isFix : constr -> bool
val isCoFix : constr -> bool
val isCase : constr -> bool
val isProj : constr -> bool
val is_Prop : constr -> bool
val is_Set : constr -> bool
val isprop : constr -> bool
val is_Type : constr -> bool
val iskind : constr -> bool
val is_small : sorts -> bool
(** {5 Term destructors } *)
(** Destructor operations are partial functions and
@raise DestKO if the term has not the expected form. *)
exception DestKO
(** Destructs a de Bruijn index *)
val destRel : constr -> int
(** Destructs an existential variable *)
val destMeta : constr -> metavariable
(** Destructs a variable *)
val destVar : constr -> Id.t
(** Destructs a sort. [is_Prop] recognizes the sort {% \textsf{%}Prop{% }%}, whether
[isprop] recognizes both {% \textsf{%}Prop{% }%} and {% \textsf{%}Set{% }%}. *)
val destSort : constr -> sorts
(** Destructs a casted term *)
val destCast : constr -> constr * cast_kind * constr
(** Destructs the product {% $ %}(x:t_1)t_2{% $ %} *)
val destProd : types -> Name.t * types * types
(** Destructs the abstraction {% $ %}[x:t_1]t_2{% $ %} *)
val destLambda : constr -> Name.t * types * constr
(** Destructs the let {% $ %}[x:=b:t_1]t_2{% $ %} *)
val destLetIn : constr -> Name.t * constr * types * constr
(** Destructs an application *)
val destApp : constr -> constr * constr array
(** Obsolete synonym of destApp *)
val destApplication : constr -> constr * constr array
(** Decompose any term as an applicative term; the list of args can be empty *)
val decompose_app : constr -> constr * constr list
(** Same as [decompose_app], but returns an array. *)
val decompose_appvect : constr -> constr * constr array
(** Destructs a constant *)
val destConst : constr -> constant puniverses
(** Destructs an existential variable *)
val destEvar : constr -> existential
(** Destructs a (co)inductive type *)
val destInd : constr -> inductive puniverses
(** Destructs a constructor *)
val destConstruct : constr -> constructor puniverses
(** Destructs a [match c as x in I args return P with ... |
Ci(...yij...) => ti | ... end] (or [let (..y1i..) := c as x in I args
return P in t1], or [if c then t1 else t2])
@return [(info,c,fun args x => P,[|...|fun yij => ti| ...|])]
where [info] is pretty-printing information *)
val destCase : constr -> case_info * constr * constr * constr array
(** Destructs a projection *)
val destProj : constr -> projection * constr
(** Destructs the {% $ %}i{% $ %}th function of the block
[Fixpoint f{_ 1} ctx{_ 1} = b{_ 1}
with f{_ 2} ctx{_ 2} = b{_ 2}
...
with f{_ n} ctx{_ n} = b{_ n}],
where the length of the {% $ %}j{% $ %}th context is {% $ %}ij{% $ %}.
*)
val destFix : constr -> fixpoint
val destCoFix : constr -> cofixpoint
(** {5 Derived constructors} *)
(** non-dependent product [t1 -> t2], an alias for
[forall (_:t1), t2]. Beware [t_2] is NOT lifted.
Eg: in context [A:Prop], [A->A] is built by [(mkArrow (mkRel 1) (mkRel 2))]
*)
val mkArrow : types -> types -> constr
(** Named version of the functions from [Term]. *)
val mkNamedLambda : Id.t -> types -> constr -> constr
val mkNamedLetIn : Id.t -> constr -> types -> constr -> constr
val mkNamedProd : Id.t -> types -> types -> types
(** Constructs either [(x:t)c] or [[x=b:t]c] *)
val mkProd_or_LetIn : Context.Rel.Declaration.t -> types -> types
val mkProd_wo_LetIn : Context.Rel.Declaration.t -> types -> types
val mkNamedProd_or_LetIn : Context.Named.Declaration.t -> types -> types
val mkNamedProd_wo_LetIn : Context.Named.Declaration.t -> types -> types
(** Constructs either [[x:t]c] or [[x=b:t]c] *)
val mkLambda_or_LetIn : Context.Rel.Declaration.t -> constr -> constr
val mkNamedLambda_or_LetIn : Context.Named.Declaration.t -> constr -> constr
(** {5 Other term constructors. } *)
(** [applist (f,args)] and its variants work as [mkApp] *)
val applist : constr * constr list -> constr
val applistc : constr -> constr list -> constr
val appvect : constr * constr array -> constr
val appvectc : constr -> constr array -> constr
(** [prodn n l b] = [forall (x_1:T_1)...(x_n:T_n), b]
where [l] is [(x_n,T_n)...(x_1,T_1)...]. *)
val prodn : int -> (Name.t * constr) list -> constr -> constr
(** [compose_prod l b]
@return [forall (x_1:T_1)...(x_n:T_n), b]
where [l] is [(x_n,T_n)...(x_1,T_1)].
Inverse of [decompose_prod]. *)
val compose_prod : (Name.t * constr) list -> constr -> constr
(** [lamn n l b]
@return [fun (x_1:T_1)...(x_n:T_n) => b]
where [l] is [(x_n,T_n)...(x_1,T_1)...]. *)
val lamn : int -> (Name.t * constr) list -> constr -> constr
(** [compose_lam l b]
@return [fun (x_1:T_1)...(x_n:T_n) => b]
where [l] is [(x_n,T_n)...(x_1,T_1)].
Inverse of [it_destLam] *)
val compose_lam : (Name.t * constr) list -> constr -> constr
(** [to_lambda n l]
@return [fun (x_1:T_1)...(x_n:T_n) => T]
where [l] is [forall (x_1:T_1)...(x_n:T_n), T] *)
val to_lambda : int -> constr -> constr
(** [to_prod n l]
@return [forall (x_1:T_1)...(x_n:T_n), T]
where [l] is [fun (x_1:T_1)...(x_n:T_n) => T] *)
val to_prod : int -> constr -> constr
val it_mkLambda_or_LetIn : constr -> Context.Rel.t -> constr
val it_mkProd_or_LetIn : types -> Context.Rel.t -> types
(** In [lambda_applist c args], [c] is supposed to have the form
[λΓ.c] with [Γ] without let-in; it returns [c] with the variables
of [Γ] instantiated by [args]. *)
val lambda_applist : constr -> constr list -> constr
val lambda_appvect : constr -> constr array -> constr
(** In [lambda_applist_assum n c args], [c] is supposed to have the
form [λΓ.c] with [Γ] of length [m] and possibly with let-ins; it
returns [c] with the assumptions of [Γ] instantiated by [args] and
the local definitions of [Γ] expanded. *)
val lambda_applist_assum : int -> constr -> constr list -> constr
val lambda_appvect_assum : int -> constr -> constr array -> constr
(** pseudo-reduction rule *)
(** [prod_appvect] [forall (x1:B1;...;xn:Bn), B] [a1...an] @return [B[a1...an]] *)
val prod_appvect : constr -> constr array -> constr
val prod_applist : constr -> constr list -> constr
(** In [prod_appvect_assum n c args], [c] is supposed to have the
form [∀Γ.c] with [Γ] of length [m] and possibly with let-ins; it
returns [c] with the assumptions of [Γ] instantiated by [args] and
the local definitions of [Γ] expanded. *)
val prod_appvect_assum : int -> constr -> constr array -> constr
val prod_applist_assum : int -> constr -> constr list -> constr
(** {5 Other term destructors. } *)
(** Transforms a product term {% $ %}(x_1:T_1)..(x_n:T_n)T{% $ %} into the pair
{% $ %}([(x_n,T_n);...;(x_1,T_1)],T){% $ %}, where {% $ %}T{% $ %} is not a product. *)
val decompose_prod : constr -> (Name.t*constr) list * constr
(** Transforms a lambda term {% $ %}[x_1:T_1]..[x_n:T_n]T{% $ %} into the pair
{% $ %}([(x_n,T_n);...;(x_1,T_1)],T){% $ %}, where {% $ %}T{% $ %} is not a lambda. *)
val decompose_lam : constr -> (Name.t*constr) list * constr
(** Given a positive integer n, decompose a product term
{% $ %}(x_1:T_1)..(x_n:T_n)T{% $ %}
into the pair {% $ %}([(xn,Tn);...;(x1,T1)],T){% $ %}.
Raise a user error if not enough products. *)
val decompose_prod_n : int -> constr -> (Name.t * constr) list * constr
(** Given a positive integer {% $ %}n{% $ %}, decompose a lambda term
{% $ %}[x_1:T_1]..[x_n:T_n]T{% $ %} into the pair {% $ %}([(x_n,T_n);...;(x_1,T_1)],T){% $ %}.
Raise a user error if not enough lambdas. *)
val decompose_lam_n : int -> constr -> (Name.t * constr) list * constr
(** Extract the premisses and the conclusion of a term of the form
"(xi:Ti) ... (xj:=cj:Tj) ..., T" where T is not a product nor a let *)
val decompose_prod_assum : types -> Context.Rel.t * types
(** Idem with lambda's and let's *)
val decompose_lam_assum : constr -> Context.Rel.t * constr
(** Idem but extract the first [n] premisses, counting let-ins. *)
val decompose_prod_n_assum : int -> types -> Context.Rel.t * types
(** Idem for lambdas, _not_ counting let-ins *)
val decompose_lam_n_assum : int -> constr -> Context.Rel.t * constr
(** Idem, counting let-ins *)
val decompose_lam_n_decls : int -> constr -> Context.Rel.t * constr
(** Return the premisses/parameters of a type/term (let-in included) *)
val prod_assum : types -> Context.Rel.t
val lam_assum : constr -> Context.Rel.t
(** Return the first n-th premisses/parameters of a type (let included and counted) *)
val prod_n_assum : int -> types -> Context.Rel.t
(** Return the first n-th premisses/parameters of a term (let included but not counted) *)
val lam_n_assum : int -> constr -> Context.Rel.t
(** Remove the premisses/parameters of a type/term *)
val strip_prod : types -> types
val strip_lam : constr -> constr
(** Remove the first n-th premisses/parameters of a type/term *)
val strip_prod_n : int -> types -> types
val strip_lam_n : int -> constr -> constr
(** Remove the premisses/parameters of a type/term (including let-in) *)
val strip_prod_assum : types -> types
val strip_lam_assum : constr -> constr
(** {5 ... } *)
(** An "arity" is a term of the form [[x1:T1]...[xn:Tn]s] with [s] a sort.
Such a term can canonically be seen as the pair of a context of types
and of a sort *)
type arity = Context.Rel.t * sorts
(** Build an "arity" from its canonical form *)
val mkArity : arity -> types
(** Destruct an "arity" into its canonical form *)
val destArity : types -> arity
(** Tell if a term has the form of an arity *)
val isArity : types -> bool
(** {5 Kind of type} *)
type ('constr, 'types) kind_of_type =
| SortType of sorts
| CastType of 'types * 'types
| ProdType of Name.t * 'types * 'types
| LetInType of Name.t * 'constr * 'types * 'types
| AtomicType of 'constr * 'constr array
val kind_of_type : types -> (constr, types) kind_of_type
(** {5 Redeclaration of stuff from module [Sorts]} *)
val set_sort : sorts
(** Alias for Sorts.set *)
val prop_sort : sorts
(** Alias for Sorts.prop *)
val type1_sort : sorts
(** Alias for Sorts.type1 *)
val sorts_ord : sorts -> sorts -> int
(** Alias for Sorts.compare *)
val is_prop_sort : sorts -> bool
(** Alias for Sorts.is_prop *)
val family_of_sort : sorts -> sorts_family
(** Alias for Sorts.family *)
(** {5 Redeclaration of stuff from module [Constr]}
See module [Constr] for further info. *)
(** {6 Term constructors. } *)
val mkRel : int -> constr
val mkVar : Id.t -> constr
val mkMeta : metavariable -> constr
val mkEvar : existential -> constr
val mkSort : sorts -> types
val mkProp : types
val mkSet : types
val mkType : Univ.universe -> types
val mkCast : constr * cast_kind * constr -> constr
val mkProd : Name.t * types * types -> types
val mkLambda : Name.t * types * constr -> constr
val mkLetIn : Name.t * constr * types * constr -> constr
val mkApp : constr * constr array -> constr
val mkConst : constant -> constr
val mkProj : projection * constr -> constr
val mkInd : inductive -> constr
val mkConstruct : constructor -> constr
val mkConstU : constant puniverses -> constr
val mkIndU : inductive puniverses -> constr
val mkConstructU : constructor puniverses -> constr
val mkConstructUi : (pinductive * int) -> constr
val mkCase : case_info * constr * constr * constr array -> constr
val mkFix : fixpoint -> constr
val mkCoFix : cofixpoint -> constr
(** {6 Aliases} *)
val eq_constr : constr -> constr -> bool
(** Alias for [Constr.equal] *)
(** [eq_constr_univs u a b] is [true] if [a] equals [b] modulo alpha, casts,
application grouping and the universe constraints in [u]. *)
val eq_constr_univs : constr UGraph.check_function
(** [leq_constr_univs u a b] is [true] if [a] is convertible to [b] modulo
alpha, casts, application grouping and the universe constraints in [u]. *)
val leq_constr_univs : constr UGraph.check_function
(** [eq_constr_univs a b] [true, c] if [a] equals [b] modulo alpha, casts,
application grouping and ignoring universe instances. *)
val eq_constr_nounivs : constr -> constr -> bool
val kind_of_term : constr -> (constr, types, Sorts.t, Univ.Instance.t) kind_of_term
(** Alias for [Constr.kind] *)
val compare : constr -> constr -> int
(** Alias for [Constr.compare] *)
val constr_ord : constr -> constr -> int
(** Alias for [Term.compare] *)
val fold_constr : ('a -> constr -> 'a) -> 'a -> constr -> 'a
(** Alias for [Constr.fold] *)
val map_constr : (constr -> constr) -> constr -> constr
(** Alias for [Constr.map] *)
val map_constr_with_binders :
('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr
(** Alias for [Constr.map_with_binders] *)
val map_puniverses : ('a -> 'b) -> 'a puniverses -> 'b puniverses
val univ_of_sort : sorts -> Univ.universe
val sort_of_univ : Univ.universe -> sorts
val iter_constr : (constr -> unit) -> constr -> unit
(** Alias for [Constr.iter] *)
val iter_constr_with_binders :
('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit
(** Alias for [Constr.iter_with_binders] *)
val compare_constr : (constr -> constr -> bool) -> constr -> constr -> bool
(** Alias for [Constr.compare_head] *)
val hash_constr : constr -> int
(** Alias for [Constr.hash] *)
(*********************************************************************)
val hcons_sorts : sorts -> sorts
(** Alias for [Constr.hashcons_sorts] *)
val hcons_constr : constr -> constr
(** Alias for [Constr.hashcons] *)
val hcons_types : types -> types
(** Alias for [Constr.hashcons] *)
|