1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
(* $Id$ *)
(*i*)
open Pp
open Names
open Generic
(*i*)
(*s The operators of the Calculus of Inductive Constructions.
['a] is the type of sorts. ([XTRA] is an extra slot, for putting in
whatever sort of operator we need for whatever sort of application.) *)
type existential_key = int
type 'a oper =
| Meta of int
| Sort of 'a
| Cast | Prod | Lambda
| AppL | Const of section_path | Abst of section_path
| Evar of existential_key
| MutInd of inductive_path
| MutConstruct of constructor_path
| MutCase of case_info
| Fix of int array * int
| CoFix of int
| XTRA of string
and case_info = inductive_path option
(*s The sorts of CCI. *)
type contents = Pos | Null
val str_of_contents : contents -> string
val contents_of_str : string -> contents
type sorts =
| Prop of contents (* Prop and Set *)
| Type of Univ.universe (* Type *)
val mk_Set : sorts
val mk_Prop : sorts
val print_sort : sorts -> std_ppcmds
(*s The type [constr] of the terms of CCI
is obtained by instanciating the generic terms (type [term],
see \refsec{generic_terms}) on the above operators, themselves instanciated
on the above sorts. *)
type constr = sorts oper term
type 'a judge = { body : constr; typ : 'a }
type typed_type = sorts judge
type typed_term = typed_type judge
val make_typed : constr -> sorts -> typed_type
val typed_app : (constr -> constr) -> typed_type -> typed_type
val body_of_type : typed_type -> constr
val level_of_type : typed_type -> sorts
val incast_type : typed_type -> constr
val outcast_type : constr -> typed_type
(*s Functions for dealing with constr terms.
The following functions are intended to simplify and to uniform the
manipulation of terms. Some of these functions may be overlapped with
previous ones. *)
(* Concrete type for making pattern-matching. *)
type kindOfTerm =
| IsRel of int
| IsMeta of int
| IsVar of identifier
| IsXtra of string
| IsSort of sorts
| IsCast of constr * constr
| IsProd of name * constr * constr
| IsLambda of name * constr * constr
| IsAppL of constr * constr list
| IsConst of section_path * constr array
| IsAbst of section_path * constr array
| IsEvar of int * constr array
| IsMutInd of section_path * int * constr array
| IsMutConstruct of section_path * int * int * constr array
| IsMutCase of case_info * constr * constr * constr array
| IsFix of int array * int * constr array * name list * constr array
| IsCoFix of int * constr array * name list * constr array
(* Discriminates which kind of term is it.
Note that there is no cases for [DLAM] and [DLAMV]. These terms do not
make sense alone, but they must be preceeded by the application of
an operator. *)
val kind_of_term : constr -> kindOfTerm
(*s Term constructors. *)
(* Constructs a DeBrujin index *)
val mkRel : int -> constr
(* Constructs an existential variable named "?" *)
val mkExistential : constr
(* Constructs an existential variable named "?n" *)
val mkMeta : int -> constr
(* Constructs a Variable *)
val mkVar : identifier -> constr
(* Construct an [XTRA] term. *)
val mkXtra : string -> constr
(* Construct a type *)
val mkSort : sorts -> constr
val mkProp : constr
val mkSet : constr
val mkType : Univ.universe -> constr
val prop : sorts
val spec : sorts
val types : sorts
val type_0 : sorts
val type_1 : sorts
(* Construct an implicit (see implicit arguments in the RefMan).
Used for extraction *)
val mkImplicit : constr
val implicit_sort : sorts
(* Constructs the term $t_1::t2$, i.e. the term $t_1$ casted with the
type $t_2$ (that means t2 is declared as the type of t1). *)
val mkCast : constr -> constr -> constr
(* Constructs the product $(x:t_1)t_2$. $x$ may be anonymous. *)
val mkProd : name -> constr -> constr -> constr
(* non-dependant product $t_1 \rightarrow t_2$ *)
val mkArrow : constr -> constr -> constr
(* named product *)
val mkNamedProd : identifier -> constr -> constr -> constr
(* Constructs the abstraction $[x:t_1]t_2$ *)
val mkLambda : name -> constr -> constr -> constr
val mkNamedLambda : identifier -> constr -> constr -> constr
(* If $a = [| t_1; \dots; t_n |]$, constructs the application
$(t_1~\dots~t_n)$. *)
val mkAppL : constr array -> constr
val mkAppList : constr -> constr list -> constr
(* Constructs a constant *)
(* The array of terms correspond to the variables introduced in the section *)
val mkConst : section_path -> constr array -> constr
(* Constructs an existential variable *)
val mkEvar : int -> constr array -> constr
(* Constructs an abstract object *)
val mkAbst : section_path -> constr array -> constr
(* Constructs the ith (co)inductive type of the block named sp *)
(* The array of terms correspond to the variables introduced in the section *)
val mkMutInd : section_path -> int -> constr array -> constr
(* Constructs the jth constructor of the ith (co)inductive type of the
block named sp. The array of terms correspond to the variables
introduced in the section *)
val mkMutConstruct : section_path -> int -> int -> constr array -> constr
(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
val mkMutCase : case_info -> constr -> constr -> constr list -> constr
val mkMutCaseA : case_info -> constr -> constr -> constr array -> constr
(* If [recindxs = [|i1,...in|]]
[typarray = [|t1,...tn|]]
[funnames = [f1,.....fn]]
[bodies = [b1,.....bn]]
then [ mkFix recindxs i typarray funnames bodies]
constructs the $i$th function of the block
[Fixpoint f1 [ctx1] = b1
with f2 [ctx2] = b2
...
with fn [ctxn] = bn.]
\noindent where the lenght of the $j$th context is $ij$.
*)
val mkFix : int array -> int -> typed_type array -> name list
-> constr array -> constr
(* Similarly, but we assume the body already constructed *)
val mkFixDlam : int array -> int -> typed_type array
-> constr array -> constr
(* If [typarray = [|t1,...tn|]]
[funnames = [f1,.....fn]]
[bodies = [b1,.....bn]] \par\noindent
then [mkCoFix i typsarray funnames bodies]
constructs the ith function of the block
[CoFixpoint f1 = b1
with f2 = b2
...
with fn = bn.]
*)
val mkCoFix : int -> typed_type array -> name list
-> constr array -> constr
(* Similarly, but we assume the body already constructed *)
val mkCoFixDlam : int -> typed_type array -> constr array -> constr
(*s Term destructors.
Destructor operations are partial functions and
raise [invalid_arg "dest*"] if the term has not the expected form. *)
(* Destructs a DeBrujin index *)
val destRel : constr -> int
(* Destructs an existential variable *)
val destMeta : constr -> int
val isMETA : constr -> bool
(* Destructs a variable *)
val destVar : constr -> identifier
(* Destructs an XTRA *)
val destXtra : constr -> string
(* Destructs a sort. [is_Prop] recognizes the sort \textsf{Prop}, whether
[isprop] recognizes both \textsf{Prop} and \textsf{Set}. *)
val destSort : constr -> sorts
val contents_of_kind : constr -> contents
val is_Prop : constr -> bool
val is_Set : constr -> bool
val isprop : constr -> bool
val is_Type : constr -> bool
val iskind : constr -> bool
val is_existential_oper : sorts oper -> bool
val isType : sorts -> bool
val is_small : sorts -> bool (* true for \textsf{Prop} and \textsf{Set} *)
(* Destructs a casted term *)
val destCast : constr -> constr * constr
val cast_type : constr -> constr (* 2nd proj *)
val cast_term : constr -> constr (* 1st proj *)
val isCast : constr -> bool
(* Removes recursively the casts around a term i.e.
[strip_outer_cast] (Cast (Cast ... (Cast c, t) ... ))] is [c]. *)
val strip_outer_cast : constr -> constr
(* Special function, which keep the key casts under Fix and MutCase. *)
val strip_all_casts : constr -> constr
(* Destructs the product $(x:t_1)t_2$ *)
val destProd : constr -> name * constr * constr
val hd_of_prod : constr -> constr
val hd_is_constructor : constr -> bool
(* Destructs the abstraction $[x:t_1]t_2$ *)
val destLambda : constr -> name * constr * constr
(* Destructs an application *)
val destAppL : constr -> constr array
val isAppL : constr -> bool
val hd_app : constr -> constr
val args_app : constr -> constr array
(* Destructs a constant *)
val destConst : constr -> section_path * constr array
val path_of_const : constr -> section_path
val args_of_const : constr -> constr array
(* Destructs an existential variable *)
val destEvar : constr -> int * constr array
(* Destrucy an abstract term *)
val destAbst : constr -> section_path * constr array
val path_of_abst : constr -> section_path
val args_of_abst : constr -> constr array
(* Destructs a (co)inductive type *)
val destMutInd : constr -> section_path * int * constr array
val op_of_mind : constr -> inductive_path
val args_of_mind : constr -> constr array
val ci_of_mind : constr -> case_info
(* Destructs a constructor *)
val destMutConstruct : constr -> section_path * int * int * constr array
val op_of_mconstr : constr -> constructor_path
val args_of_mconstr : constr -> constr array
(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
val destCase : constr -> case_info * constr * constr * constr array
(* Destructs the $i$th function of the block
$\mathit{Fixpoint} ~ f_1 ~ [ctx_1] = b_1
\mathit{with} ~ f_2 ~ [ctx_2] = b_2
\dots
\mathit{with} ~ f_n ~ [ctx_n] = b_n$,
where the lenght of the $j$th context is $ij$.
*)
val destGralFix :
constr array -> constr array * Names.name list * constr array
val destFix : constr ->
int array * int * typed_type array * Names.name list * constr array
val destCoFix :
constr -> int * typed_type array * Names.name list * constr array
(* Provisoire, le temps de maitriser les cast *)
val destUntypedFix :
constr -> int array * int * constr array * Names.name list * constr array
val destUntypedCoFix :
constr -> int * constr array * Names.name list * constr array
(*s Other term constructors. *)
val abs_implicit : constr -> constr
val lambda_implicit : constr -> constr
val lambda_implicit_lift : int -> constr -> constr
val applist : constr * constr list -> constr
val applistc : constr -> constr list -> constr
val appvect : constr * constr array -> constr
val appvectc : constr -> constr array -> constr
(* [prodn n l b] = $(x_1:T_1)..(x_n:T_n)b$
where $l = [(x_1,T_1);\dots;(x_n,T_n);Gamma]$ *)
val prodn : int -> (name * constr) list -> constr -> constr
(* [lamn n l b] = $[x_1:T_1]..[x_n:T_n]b$
where $l = [(x_1,T_1);\dots;(x_n,T_n);Gamma]$ *)
val lamn : int -> (name * constr) list -> constr -> constr
(* [prod_it b l] = $(x_1:T_1)..(x_n:T_n)b$
where $l = [x_1:T_1;..x_n:T_n]$ *)
val prod_it : constr -> (name * constr) list -> constr
(* [lam_it b l] = $[x_1:T_1]..[x_n:T_n]b$
where $l = [x_1:T_1;..;x_n:T_n]$ *)
val lam_it : constr -> (name * constr) list -> constr
(* [to_lambda n l]
= $[x_1:T_1]...[x_n:T_n](x_{n+1}:T_{n+1})...(x_{n+j}:T_{n+j})T$
where $l = (x_1:T_1)...(x_n:T_n)(x_{n+1}:T_{n+1})...(x_{n+j}:T_{n+j})T$ *)
val to_lambda : int -> constr -> constr
val to_prod : int -> constr -> constr
(* pseudo-reduction rule *)
(* [prod_applist] $(x1:B1;...;xn:Bn)B a1...an \rightarrow B[a1...an]$ *)
val prod_applist : constr -> constr list -> constr
(*s Other term destructors. *)
(* Transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair
$([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a product. *)
val decompose_prod : constr -> (name*constr) list * constr
(* Transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair
$([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a lambda. *)
val decompose_lam : constr -> (name*constr) list * constr
(* Given a positive integer n, transforms a product term
$(x_1:T_1)..(x_n:T_n)T$
into the pair $([(xn,Tn);...;(x1,T1)],T)$. *)
val decompose_prod_n : int -> constr -> (name*constr) list * constr
(* Given a positive integer $n$, transforms a lambda term
$[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$ *)
val decompose_lam_n : int -> constr -> (name*constr) list * constr
(* [nb_lam] $[x_1:T_1]...[x_n:T_n]c$ where $c$ is not an abstraction
gives $n$ (casts are ignored) *)
val nb_lam : constr -> int
(* similar to [nb_lam], but gives the number of products instead *)
val nb_prod : constr -> int
(*s Various utility functions for implementing terms with bindings. *)
val extract_lifted : int * constr -> constr
val insert_lifted : constr -> int * constr
(* If [l] is a list of pairs $(n:nat,x:constr)$, [env] is a stack of
$(na:name,T:constr)$, then
[push_and_lift (id,c) env l] adds a component [(id,c)] to [env]
and lifts [l] one step *)
val push_and_lift :
name * constr -> (name * constr) list -> (int * constr) list
-> (name * constr) list * (int * constr) list
(* if [T] is not $(x_1:A_1)(x_2:A_2)....(x_n:A_n)T'$
then [(push_and_liftl n env T l)]
raises an error else it gives $([x1,A1 ; x2,A2 ; ... ; xn,An]@env,T',l')$
where $l'$ is [l] lifted [n] steps *)
val push_and_liftl :
int -> (name * constr) list -> constr -> (int * constr) list
-> (name * constr) list * constr * (int * constr) list
(* if $T$ is not $[x_1:A_1][x_2:A_2]....[x_n:A_n]T'$ then
[(push_lam_and_liftl n env T l)]
raises an error else it gives $([x_1,A_1; x_2,A_2; ...; x_n,A_n]@env,T',l')$
where $l'$ is [l] lifted [n] steps *)
val push_lam_and_liftl :
int -> (name * constr) list -> constr -> (int * constr) list
-> (name * constr) list * constr * (int * constr) list
(* If [l] is a list of pairs $(n:nat,x:constr)$, [tlenv] is a stack of
$(na:name,T:constr)$, [B] is a constr, [na] a name, then
[(prod_and_pop ((na,T)::tlenv) B l)] gives $(tlenv, (na:T)B, l')$
where $l'$ is [l] lifted down one step *)
val prod_and_pop :
(name * constr) list -> constr -> (int * constr) list
-> (name * constr) list * constr * (int * constr) list
(* recusively applies [prod_and_pop] :
if [env] = $[na_1:T_1 ; na_2:T_2 ; ... ; na_n:T_n]@tlenv$ then
[(prod_and_popl n env T l)] gives $(tlenv,(na_n:T_n)...(na_1:T_1)T,l')$
where $l'$ is [l] lifted down [n] steps *)
val prod_and_popl :
int -> (name * constr) list -> constr -> (int * constr) list
-> (name * constr) list * constr * (int * constr) list
(* similar to [prod_and_pop], but gives $[na:T]B$ intead of $(na:T)B$ *)
val lam_and_pop :
(name * constr) list -> constr -> (int * constr) list
-> (name * constr) list * constr * (int * constr) list
(* similar to [prod_and_popl] but gives $[na_n:T_n]...[na_1:T_1]B$ instead of
$(na_n:T_n)...(na_1:T_1)B$ *)
val lam_and_popl :
int -> (name * constr) list -> constr -> (int * constr) list
-> (name * constr) list * constr * (int * constr) list
(* similar to [lamn_and_pop] but generates new names whenever the name is
[Anonymous] *)
val lam_and_pop_named :
(name * constr) list -> constr ->(int * constr) list ->identifier list
-> (name * constr) list * constr * (int * constr) list * identifier list
(* similar to [prod_and_popl] but gives $[na_n:T_n]...[na_1:T_1]B$ instead of
but it generates names whenever $na_i$ = [Anonymous] *)
val lam_and_popl_named :
int -> (name * constr) list -> constr -> (int * constr) list
-> (name * constr) list * constr * (int * constr) list
(* [lambda_ize n T endpt]
will pop off the first [n] products in [T], then stick in [endpt],
properly lifted, and then push back the products, but as lambda-
abstractions *)
val lambda_ize : int ->'a oper term -> 'a oper term -> 'a oper term
(*s Flattening and unflattening of embedded applications and casts. *)
(* if [c] is not an [AppL], it is transformed into [mkAppL [| c |]] *)
val ensure_appl : constr -> constr
(* unflattens application lists *)
val telescope_appl : constr -> constr
(* flattens application lists *)
val collapse_appl : constr -> constr
val decomp_app : constr -> constr * constr list
(*s Misc functions on terms, sorts and conversion problems. *)
(* Level comparison for information extraction : Prop <= Type *)
val same_kind : constr -> constr -> bool
val le_kind : constr -> constr -> bool
val le_kind_implicit : constr -> constr -> bool
val sort_hdchar : sorts -> string
(*s Occur check functions. *)
val occur_meta : constr -> bool
val occur_existential : constr -> bool
val rel_vect : int -> int -> constr array
(* [(occur_const (s:section_path) c)] returns [true] if constant [s] occurs
in c, [false] otherwise *)
val occur_const : section_path -> constr -> bool
(* strips head casts and flattens head applications *)
val strip_head_cast : constr -> constr
val whd_castapp_stack : constr -> constr list -> constr * constr list
val whd_castapp : constr -> constr
val rename_bound_var : identifier list -> constr -> constr
val eta_reduce_head : constr -> constr
val eq_constr : constr -> constr -> bool
val eta_eq_constr : constr -> constr -> bool
val subst_term : constr -> constr -> constr
val subst_term_eta_eq : constr -> constr -> constr
val replace_consts :
(section_path * (identifier list * constr) option) list -> constr -> constr
val subst_term_occ : int list -> constr -> constr -> constr
(* [subst_meta bl c] substitutes the metavar $i$ by $c_i$ in [c]
for each binding $(i,c_i)$ in [bl],
and raises [Not_found] if [c] contains a meta that is not in the
association list *)
val subst_meta : (int * constr) list -> constr -> constr
(*s Hash-consing functions for constr. *)
val hcons_constr:
(section_path -> section_path) *
(section_path -> section_path) *
(name -> name) *
(identifier -> identifier) *
(string -> string)
->
(constr -> constr) *
(constr -> constr) *
(typed_type -> typed_type)
val hcons1_constr : constr -> constr
|