aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/term.mli
blob: 90b1dd807716450b1a4f169f5ebec6f383d3bc8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

(*i*)
open Util
open Pp
open Names
(*i*)

(*s The sorts of CCI. *)

type contents = Pos | Null

type sorts =
  | Prop of contents       (* Prop and Set *)
  | Type of Univ.universe  (* Type *)

val mk_Set  : sorts
val mk_Prop : sorts

val print_sort : sorts -> std_ppcmds

(*s The sorts family of CCI. *)

type sorts_family = InProp | InSet | InType

val family_of_sort : sorts -> sorts_family
val new_sort_in_family : sorts_family -> sorts

(*s Useful types *)

type existential_key = int

type pattern_source = DefaultPat of int | RegularPat
type case_style = PrintLet | PrintIf | PrintCases
type case_printing =
    inductive * identifier array * int
    * case_style option * pattern_source array
(* the integer is the number of real args, needed for reduction *)
type case_info = int * case_printing

(*s Concrete type for making pattern-matching. *)
module Polymorph :
sig
(* [constr array] is an instance matching definitional [named_context] in
   the same order (i.e. last argument first) *)
type 'constr existential = existential_key * 'constr array
type ('constr, 'types) rec_declaration =
    name array * 'types array * 'constr array
type ('constr, 'types) fixpoint =
    (int array * int) * ('constr, 'types) rec_declaration
type ('constr, 'types) cofixpoint =
    int * ('constr, 'types) rec_declaration

(* [IsVar] is used for named variables and [IsRel] for variables as
   de Bruijn indices. *)
end 

(*s*******************************************************************)
(* The type of constructions *)

type constr

(* [types] is the same as [constr] but is intended to be used where a
   {\em type} in CCI sense is expected (Rem:plurial form since [type] is a
   reserved ML keyword) *)

type types = constr

(*s Functions about [types] *)

val type_app : (constr -> constr) -> types -> types

val body_of_type : types -> constr

(*s A {\em declaration} has the form (name,body,type). It is either an
    {\em assumption} if [body=None] or a {\em definition} if
    [body=Some actualbody]. It is referred by {\em name} if [na] is an
    identifier or by {\em relative index} if [na] is not an identifier
    (in the latter case, [na] is of type [name] but just for printing
    purpose *)

type named_declaration = identifier * constr option * types
type rel_declaration = name * constr option * types

type arity = rel_declaration list * sorts

(*s Functions for dealing with constr terms.
  The following functions are intended to simplify and to uniform the 
  manipulation of terms. Some of these functions may be overlapped with
  previous ones. *)

open Polymorph
type ('constr, 'types) kind_of_term =
  | IsRel          of int
  | IsMeta         of int
  | IsVar          of identifier
  | IsSort         of sorts
  | IsCast         of 'constr * 'constr
  | IsProd         of name * 'types * 'constr 
  | IsLambda       of name * 'types * 'constr
  | IsLetIn        of name * 'constr * 'types * 'constr
  | IsApp          of 'constr * 'constr array
  | IsEvar         of 'constr existential
  | IsConst        of constant
  | IsMutInd       of inductive
  | IsMutConstruct of constructor
  | IsMutCase      of case_info * 'constr * 'constr * 'constr array
  | IsFix          of ('constr, 'types) fixpoint
  | IsCoFix        of ('constr, 'types) cofixpoint

type existential = existential_key * constr array
type rec_declaration = name array * types array * constr array
type fixpoint = (int array * int) * rec_declaration
type cofixpoint = int * rec_declaration

(* User view of [constr]. For [IsApp], it is ensured there is at
   least one argument and the function is not itself an applicative
   term *)

val kind_of_term : constr -> (constr, types) kind_of_term

(*s Term constructors. *)

(* Constructs a DeBrujin index *)
val mkRel : int -> constr

(* Constructs an existential variable named "?n" *)
val mkMeta : int -> constr

(* Constructs a Variable *)
val mkVar : identifier -> constr

(* Construct a type *)
val mkSort : sorts -> constr
val mkProp : constr
val mkSet : constr 
val mkType : Univ.universe -> constr
val prop : sorts
val spec : sorts
(*val types : sorts *)
val type_0 : sorts

(* Construct an implicit (see implicit arguments in the RefMan).
   Used for extraction *)
val mkImplicit : constr
val implicit_sort : sorts

(* Constructs the term $t_1::t2$, i.e. the term $t_1$ casted with the 
   type $t_2$ (that means t2 is declared as the type of t1). *)
val mkCast : constr * constr -> constr

(* Constructs the product $(x:t_1)t_2$ *)
val mkProd : name * types * constr -> constr
val mkNamedProd : identifier -> constr -> constr -> constr
val mkProd_string : string -> constr -> constr -> constr

(* Constructs the product $(x:t_1)t_2$ *)
val mkLetIn : name * constr * types * constr -> constr
val mkNamedLetIn : identifier -> constr -> constr -> constr -> constr

(* Constructs either [(x:t)c] or [[x=b:t]c] *)
val mkProd_or_LetIn : rel_declaration -> constr -> constr
val mkNamedProd_or_LetIn : named_declaration -> constr -> constr

(* Constructs either [[x:t]c] or [[x=b:t]c] *)
val mkLambda_or_LetIn : rel_declaration -> constr -> constr
val mkNamedLambda_or_LetIn : named_declaration -> constr -> constr

(* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *)
val mkProd_wo_LetIn : rel_declaration -> constr -> constr
val mkNamedProd_wo_LetIn : named_declaration -> constr -> constr

(* non-dependant product $t_1 \rightarrow t_2$ *)
val mkArrow : constr -> constr -> constr

(* Constructs the abstraction $[x:t_1]t_2$ *)
val mkLambda : name * types * constr -> constr
val mkNamedLambda : identifier -> constr -> constr -> constr

(* [mkLambda_string s t c] constructs $[s:t]c$ *)
val mkLambda_string : string -> constr -> constr -> constr

(* [mkApp (f,[| t_1; ...; t_n |]] constructs the application
   $(f~t_1~\dots~t_n)$. *)
val mkApp : constr * constr array -> constr
val mkAppA : constr array -> constr

(* Constructs a constant *) 
(* The array of terms correspond to the variables introduced in the section *)
val mkConst : constant -> constr

(* Constructs an existential variable *)
val mkEvar : existential -> constr

(* Constructs the ith (co)inductive type of the block named sp *)
(* The array of terms correspond to the variables introduced in the section *)
val mkMutInd : inductive -> constr

(* Constructs the jth constructor of the ith (co)inductive type of the 
   block named sp. The array of terms correspond to the variables
   introduced in the section *)
val mkMutConstruct : constructor -> constr

(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
val mkMutCaseL : case_info * constr * constr * constr list -> constr
val mkMutCase : case_info * constr * constr * constr array -> constr

(* If [recindxs = [|i1,...in|]]
      [typarray = [|t1,...tn|]]
      [funnames = [f1,.....fn]]
      [bodies   = [b1,.....bn]]
   then [ mkFix ((recindxs,i),typarray, funnames, bodies) ]
   constructs the $i$th function of the block (counting from 0)

    [Fixpoint f1 [ctx1] = b1
     with     f2 [ctx2] = b2
     ...
     with     fn [ctxn] = bn.]

   \noindent where the lenght of the $j$th context is $ij$.
*)
val mkFix : fixpoint -> constr

(* If [typarray = [|t1,...tn|]]
      [funnames = [f1,.....fn]]
      [bodies   = [b1,.....bn]] \par\noindent
   then [mkCoFix (i, (typsarray, funnames, bodies))]
   constructs the ith function of the block  
   
    [CoFixpoint f1 = b1
     with       f2 = b2
     ...
     with       fn = bn.]
 *)
val mkCoFix : cofixpoint -> constr

(*s Term destructors. 
   Destructor operations are partial functions and
   raise [invalid_arg "dest*"] if the term has not the expected form. *)

(* Destructs a term of the form $(x_1:T_1)..(x_n:T_n)s$ into the pair *)
val destArity : constr -> arity
val isArity : constr -> bool

(* Destructs a DeBrujin index *)
val destRel : constr -> int

(* Destructs an existential variable *)
val destMeta : constr -> int
val isMeta : constr -> bool

(* Destructs a variable *)
val destVar : constr -> identifier

(* Destructs a sort. [is_Prop] recognizes the sort \textsf{Prop}, whether 
   [isprop] recognizes both \textsf{Prop} and \textsf{Set}. *)
val destSort : constr -> sorts
val is_Prop : constr -> bool
val is_Set : constr -> bool
val isprop : constr -> bool
val is_Type : constr -> bool
val iskind : constr -> bool
val isSort : constr -> bool

val isType : sorts -> bool
val is_small : sorts -> bool (* true for \textsf{Prop} and \textsf{Set} *)

(* Destructs a casted term *)
val destCast : constr -> constr * constr
val isCast : constr -> bool

(* Removes recursively the casts around a term i.e.
   [strip_outer_cast] (Cast (Cast ... (Cast c, t) ... ))] is [c]. *)
val strip_outer_cast : constr -> constr

(* Apply a function letting Casted types in place *)
val under_casts : (constr -> constr) -> constr -> constr

(* Tests if a de Bruijn index *)
val isRel  : constr -> bool

(* Tests if a variable *)
val isVar  : constr -> bool

(* Destructs the product $(x:t_1)t_2$ *)
val destProd : constr -> name * constr * constr
val hd_of_prod : constr -> constr
(*i
val hd_is_constructor : constr -> bool
i*)

(* Destructs the abstraction $[x:t_1]t_2$ *)
val destLambda : constr -> name * constr * constr

(* Destructs the let $[x:=b:t_1]t_2$ *)
val destLetIn : constr -> name * constr * constr * constr

(* Destructs an application *)
val isApp : constr -> bool
(*i
val hd_app : constr -> constr 
val args_app : constr -> constr array
i*)
val destApplication : constr -> constr * constr array

(* Destructs a constant *)
val destConst : constr -> constant
val isConst : constr -> bool

(* Destructs an existential variable *)
val destEvar : constr -> existential_key * constr array
val num_of_evar : constr -> existential_key

(* Destructs a (co)inductive type *)
val destMutInd : constr -> inductive

(* Destructs a constructor *)
val destMutConstruct : constr -> constructor
val isMutConstruct : constr -> bool

(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
val destCase : constr -> case_info * constr * constr * constr array

(* Destructs the $i$th function of the block  
   $\mathit{Fixpoint} ~ f_1 ~ [ctx_1] = b_1
    \mathit{with}     ~ f_2 ~ [ctx_2] = b_2
    \dots
    \mathit{with}     ~ f_n ~ [ctx_n] = b_n$,
   where the lenght of the $j$th context is $ij$.
*)
val destFix : constr -> fixpoint

val destCoFix : constr -> cofixpoint

(*s Other term constructors. *)

val abs_implicit : constr -> constr
val lambda_implicit : constr -> constr
val lambda_implicit_lift : int -> constr -> constr

(* [applist (f,args)] and co work as [mkApp] *)

val applist : constr * constr list -> constr
val applistc : constr -> constr list -> constr
val appvect : constr * constr array -> constr
val appvectc : constr -> constr array -> constr

(* [prodn n l b] = $(x_1:T_1)..(x_n:T_n)b$ 
   where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
val prodn : int -> (name * constr) list -> constr -> constr

(* [lamn n l b] = $[x_1:T_1]..[x_n:T_n]b$
   where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *)
val lamn : int -> (name * constr) list -> constr -> constr

(* [prod_it b l] = $(x_1:T_1)..(x_n:T_n)b$ 
   where $l = [(x_n,T_n);\dots;(x_1,T_1)]$ *)
val prod_it : constr -> (name * constr) list -> constr

(* [lam_it b l] = $[x_1:T_1]..[x_n:T_n]b$ 
   where $l = [(x_n,T_n);\dots;(x_1,T_1)]$ *)
val lam_it : constr -> (name * constr) list -> constr

(* [to_lambda n l] 
   = $[x_1:T_1]...[x_n:T_n](x_{n+1}:T_{n+1})...(x_{n+j}:T_{n+j})T$
   where $l = (x_1:T_1)...(x_n:T_n)(x_{n+1}:T_{n+1})...(x_{n+j}:T_{n+j})T$ *)
val to_lambda : int -> constr -> constr
val to_prod : int -> constr -> constr

(* pseudo-reduction rule *)
(* [prod_applist] $(x1:B1;...;xn:Bn)B a1...an \rightarrow B[a1...an]$ *)
val prod_applist : constr -> constr list -> constr

(*s Other term destructors. *)

(* Transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair
   $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a product.
   It includes also local definitions *)
val decompose_prod : constr -> (name*constr) list * constr

(* Transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair
   $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a lambda. *)
val decompose_lam : constr -> (name*constr) list * constr

(* Given a positive integer n, transforms a product term 
   $(x_1:T_1)..(x_n:T_n)T$
   into the pair $([(xn,Tn);...;(x1,T1)],T)$. *)
val decompose_prod_n : int -> constr -> (name * constr) list * constr

(* Given a positive integer $n$, transforms a lambda term 
   $[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$ *)
val decompose_lam_n : int -> constr -> (name * constr) list * constr

(* [nb_lam] $[x_1:T_1]...[x_n:T_n]c$ where $c$ is not an abstraction
   gives $n$ (casts are ignored) *)
val nb_lam : constr -> int

(* similar to [nb_lam], but gives the number of products instead *)
val nb_prod : constr -> int

(* flattens application lists *)
val collapse_appl : constr -> constr
val decomp_app : constr -> constr * constr list


(*s Misc functions on terms, sorts and conversion problems. *)

(* Level comparison for information extraction : Prop <= Type *)
val same_kind : constr -> constr -> bool
val le_kind : constr -> constr -> bool
val le_kind_implicit : constr -> constr -> bool

val sort_hdchar : sorts -> string

(* Generic functions *)
val free_rels : constr -> Intset.t

(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
val closed0 : constr -> bool

(* [noccurn n M] returns true iff [Rel n] does NOT occur in term [M]  *)
val noccurn : int -> constr -> bool

(* [noccur_between n m M] returns true iff [Rel p] does NOT occur in term [M]
  for n <= p < n+m *)
val noccur_between : int -> int -> constr -> bool

(* Checking function for terms containing existential- or
   meta-variables.  The function [noccur_with_meta] considers only
   meta-variable applied to some terms (intented to be its local
   context) (for existential variables, it is necessarily the case) *)
val noccur_with_meta : int -> int -> constr -> bool

(* [liftn n k c] lifts by [n] indexes above [k] in [c] *)
val liftn : int -> int -> constr -> constr

(* [lift n c] lifts by [n] the positive indexes in [c] *)
val lift : int -> constr -> constr

(* [pop c] lifts by -1 the positive indexes in [c] *)
val pop : constr -> constr

(* [substnl [a1;...;an] k c] substitutes in parallel [a1],...,[an]
    for respectively [Rel(k+1)],...,[Rel(k+n)] in [c]; it relocates
    accordingly indexes in [a1],...,[an] *)
val substnl : constr list -> int -> constr -> constr
val substl : constr list -> constr -> constr
val subst1 : constr -> constr -> constr

val substl_decl : constr list -> named_declaration -> named_declaration
val subst1_decl : constr -> named_declaration -> named_declaration

val replace_vars : (identifier * constr) list -> constr -> constr
val subst_var : identifier -> constr -> constr

(* [subst_vars [id1;...;idn] t] substitute [VAR idj] by [Rel j] in [t]
   if two names are identical, the one of least indice is keeped *)
val subst_vars : identifier list -> constr -> constr

(* [substn_vars n [id1;...;idn] t] substitute [VAR idj] by [Rel j+n-1] in [t]
   if two names are identical, the one of least indice is keeped *)
val substn_vars : int -> identifier list -> constr -> constr

(* [rel_list n m] and [rel_vect n m] compute [[Rel (n+m);...;Rel(n+1)]] *)
val rel_vect : int -> int -> constr array
val rel_list : int -> int -> constr list

(*s [extended_rel_vect n hyps] and [extended_rel_list n hyps]
    generalizes [rel_vect] when local definitions may occur in parameters *)
val extended_rel_vect : int -> rel_declaration list -> constr array
val extended_rel_list : int -> rel_declaration list -> constr list

(*s Occur check functions. *)                         

val occur_meta : constr -> bool

(*i Returns the maximum of metas. Returns -1 if there is no meta i*)
(*i val max_occur_meta : constr -> int i*)

val occur_existential : constr -> bool

(* [(occur_const (s:section_path) c)] returns [true] if constant [s] occurs 
   in c, [false] otherwise *)
val occur_const : constant -> constr -> bool

(* [(occur_evar ev c)] returns [true] if existential variable [ev] occurs 
   in c, [false] otherwise *)
val occur_evar : existential_key -> constr -> bool

(* [dependent M N] is true iff M is eq\_constr with a subterm of N 
   M is appropriately lifted through abstractions of N *)
val dependent : constr -> constr -> bool

(* strips head casts and flattens head applications *)
val strip_head_cast : constr -> constr
val eta_reduce_head : constr -> constr
val eq_constr : constr -> constr -> bool
val eta_eq_constr : constr -> constr -> bool

(*s The following functions substitutes [what] by [Rel 1] in [where] *)
val subst_term : what:constr -> where:constr -> constr
val subst_term_occ : occs:int list -> what:constr -> where:constr -> constr
val subst_term_occ_decl : occs:int list -> what:constr ->
      where:named_declaration -> named_declaration

(* [replace_term c by_c in_t substitutes c by by_c in in_t *)
val replace_term : constr -> constr -> constr -> constr

(* [subst_meta bl c] substitutes the metavar $i$ by $c_i$ in [c] 
   for each binding $(i,c_i)$ in [bl],
   and raises [Not_found] if [c] contains a meta that is not in the 
   association list *) 

val subst_meta : (int * constr) list -> constr -> constr

(*s Generic representation of constructions *)

type fix_kind = RFix of (int array * int) | RCoFix of int

type constr_operator =
  | OpMeta of int
  | OpSort of sorts
  | OpRel of int | OpVar of identifier
  | OpCast | OpProd of name | OpLambda of name | OpLetIn of name
  | OpApp | OpConst of constant
  | OpEvar of existential_key
  | OpMutInd of inductive
  | OpMutConstruct of constructor
  | OpMutCase of case_info
  | OpRec of fix_kind * name array


val splay_constr : constr -> constr_operator * constr array
val gather_constr : constr_operator * constr array -> constr
(*i
val splay_constr : ('a,'a)kind_of_term -> constr_operator * 'a array
val gather_constr : constr_operator * 'a array -> ('a,'a) kind_of_term
i*)
val splay_constr_with_binders : constr ->
      constr_operator * rel_declaration list * constr array
val gather_constr_with_binders : 
  constr_operator * rel_declaration list * constr array
  -> constr

val generic_fold_left :
  ('a -> constr -> 'a) -> 'a -> rel_declaration list
      -> constr array -> 'a

(*s Functionals working on the immediate subterm of a construction *)

(* [fold_constr f acc c] folds [f] on the immediate subterms of [c]
   starting from [acc] and proceeding from left to right according to
   the usual representation of the constructions; it is not recursive *)

val fold_constr : ('a -> constr -> 'a) -> 'a -> constr -> 'a

(* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate
   subterms of [c] starting from [acc] and proceeding from left to
   right according to the usual representation of the constructions as
   [fold_constr] but it carries an extra data [n] (typically a lift
   index) which is processed by [g] (which typically add 1 to [n]) at
   each binder traversal; it is not recursive *)

val fold_constr_with_binders :
  ('a -> 'a) -> ('a -> 'b -> constr -> 'b) -> 'a -> 'b -> constr -> 'b

(* [iter_constr f c] iters [f] on the immediate subterms of [c]; it is
   not recursive and the order with which subterms are processed is
   not specified *)

val iter_constr : (constr -> unit) -> constr -> unit

(* [iter_constr_with_binders g f n c] iters [f n] on the immediate
   subterms of [c]; it carries an extra data [n] (typically a lift
   index) which is processed by [g] (which typically add 1 to [n]) at
   each binder traversal; it is not recursive and the order with which
   subterms are processed is not specified *)

val iter_constr_with_binders :
  ('a -> 'a) -> ('a -> constr -> unit) -> 'a -> constr -> unit

(* [map_constr f c] maps [f] on the immediate subterms of [c]; it is
   not recursive and the order with which subterms are processed is
   not specified *)

val map_constr : (constr -> constr) -> constr -> constr

(* [map_constr_with_binders g f n c] maps [f n] on the immediate
   subterms of [c]; it carries an extra data [n] (typically a lift
   index) which is processed by [g] (which typically add 1 to [n]) at
   each binder traversal; it is not recursive and the order with which
   subterms are processed is not specified *)

val map_constr_with_binders :
  ('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr

(* [map_constr_with_named_binders g f l c] maps [f l] on the immediate
   subterms of [c]; it carries an extra data [l] (typically a name
   list) which is processed by [g na] (which typically cons [na] to
   [l]) at each binder traversal (with name [na]); it is not recursive
   and the order with which subterms are processed is not specified *)

val map_constr_with_named_binders :
  (name -> 'a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr

(* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the
   immediate subterms of [c]; it carries an extra data [n] (typically
   a lift index) which is processed by [g] (which typically add 1 to
   [n]) at each binder traversal; the subterms are processed from left
   to right according to the usual representation of the constructions
   (this may matter if [f] does a side-effect); it is not recursive *)

val map_constr_with_binders_left_to_right :
  ('a -> 'a) -> ('a -> constr -> constr) -> 'a -> constr -> constr

(* [map_constr_with_named_binders g f l c] maps [f l] on the immediate
   subterms of [c]; it carries an extra data [l] (typically a name
   list) which is processed by [g na] (which typically cons [na] to
   [l]) at each binder traversal (with name [na]); it is not recursive
   and the order with which subterms are processed is not specified *)

val map_constr_with_full_binders :
  (rel_declaration -> 'a -> 'a) -> ('a -> constr -> constr) ->
      'a -> constr -> constr

(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
   the immediate subterms of [c1] of [c2] if needed; Cast's, binders
   name and Cases annotations are not taken into account *)

val compare_constr : (constr -> constr -> bool) -> constr -> constr -> bool

(*s Hash-consing functions for constr. *)

val hcons_constr:
  (section_path -> section_path) *
  (dir_path -> dir_path) *
  (name -> name) *
  (identifier -> identifier) *
  (string -> string) 
  ->
    (constr -> constr) *
    (types -> types)

val hcons1_constr : constr -> constr
val hcons1_types : types -> types