aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/term.ml
blob: 56dd87f8f209e131eadac25170b6a396eb64c215 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543

(* $Id$ *)

(* This module instanciates the structure of generic deBruijn terms to Coq *)

open Util
open Pp
open Names
open Generic
open Univ

(* Coq abstract syntax with deBruijn variables; 'a is the type of sorts *)

type existential_key = int

type 'a oper = 
  (* DOP0 *)
  | Meta of int
  | Sort of 'a
  (* DOP2 *)
  | Cast | Prod | Lambda
  (* DOPN *)
  | AppL | Const of section_path | Abst of section_path
  | Evar of existential_key
  | MutInd of inductive_path
  | MutConstruct of constructor_path
  | MutCase of case_info
  | Fix of int array * int
  | CoFix of int

  | XTRA of string
      (* an extra slot, for putting in whatever sort of
         operator we need for whatever sort of application *)

and case_info = inductive_path

(* Sorts. *)

type contents = Pos | Null

let contents_of_str = function
  | "Pos" -> Pos
  | "Null" -> Null
  | _ -> invalid_arg "contents_of_str"

let str_of_contents = function
  | Pos -> "Pos"
  | Null -> "Null"

type sorts =
  | Prop of contents                      (* proposition types *)
  | Type of universe
      
let mk_Set  = Prop Pos
let mk_Prop = Prop Null

let print_sort = function
  | Prop Pos -> [< 'sTR "Set" >]
  | Prop Null -> [< 'sTR "Prop" >]
  | Type _ -> [< 'sTR "Type" >]

type constr = sorts oper term

type 'a judge = { body : constr; typ : 'a }

type typed_type = sorts judge
type typed_term = typed_type judge

let make_typed t s = { body = t; typ = s }

let typed_app f tt = { body = f tt.body; typ = tt.typ }

let body_of_type ty = ty.body
let level_of_type t = (t.typ : sorts)

let incast_type tty = DOP2 (Cast, tty.body, (DOP0 (Sort tty.typ)))

let outcast_type = function
   DOP2 (Cast, b, DOP0 (Sort s)) -> {body=b; typ=s}
  | _ -> anomaly "outcast_type: Not an in-casted type judgement"

(****************************************************************************)
(*              Functions for dealing with constr terms                     *)
(****************************************************************************)

(*********************)
(* Term constructors *)
(*********************)

(* Constructs a DeBrujin index with number n *)
let mkRel   n = (Rel n)

(* Constructs an existential variable named "?" *)
let mkExistential = (DOP0 (XTRA "ISEVAR"))

(* Constructs an existential variable named "?n" *)
let mkMeta  n =  DOP0 (Meta n)

(* Constructs a Variable named id *)
let mkVar id = VAR id

(* Construct an XTRA term (XTRA is an extra slot for whatever you want) *)
let mkXtra s = (DOP0 (XTRA s))

(* Construct a type *)
let mkSort s = DOP0 (Sort s)
let mkProp   = DOP0 (Sort mk_Prop)
let mkSet    = DOP0 (Sort mk_Set)
let mkType u = DOP0 (Sort (Type u))

let prop = Prop Null
and spec = Prop Pos
and types = Type dummy_univ
and type_0 = Type prop_univ
and type_1 = Type prop_univ_univ

(* Construct an implicit (see implicit arguments in the RefMan) *)
(* let mkImplicit = DOP0 Implicit*)

let implicit_univ = make_path ["Implicit"] (id_of_string "dummy") OBJ
let implicit_sort = Type { u_sp = implicit_univ ; u_num = 0}
let mkImplicit = DOP0 (Sort implicit_sort)


(* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *)
(* (that means t2 is declared as the type of t1) *)
let mkCast t1 t2 =
  match t1 with
    | DOP2(Cast,t,_) -> DOP2(Cast,t,t2)
    | _ -> (DOP2 (Cast,t1,t2))

(* Constructs the product (x:t1)t2 *)
let mkProd x t1 t2 = (DOP2 (Prod,t1,(DLAM (x,t2))))

(* non-dependant product t1 -> t2 *)
let mkArrow t1 t2 = mkProd Anonymous t1 t2

(* named product *)
let mkNamedProd name typ c = mkProd (Name name) typ (subst_var name c)

(* Constructs the abstraction [x:t1]t2 *)
let mkLambda x t1 t2 = (DOP2 (Lambda,t1,(DLAM (x,t2))))
let mkNamedLambda name typ c = mkLambda (Name name) typ (subst_var name c)

(* If lt = [t1; ...; tn], constructs the application (t1 ... tn) *)
let mkAppL a = DOPN (AppL, a)
let mkAppList a l = DOPN (AppL, Array.of_list (a::l))

(* Constructs a constant *) 
(* The array of terms correspond to the variables introduced in the section *)
let mkConst (sp,a) = DOPN (Const  sp, a)

(* Constructs an existential variable *)
let mkEvar n a = DOPN (Evar n, a)

(* Constructs an abstract object *)
let mkAbst sp a = DOPN (Abst sp, a)

(* Constructs the ith (co)inductive type of the block named sp *)
(* The array of terms correspond to the variables introduced in the section *)
let mkMutInd (ind_sp,l) = DOPN (MutInd ind_sp, l)

(* Constructs the jth constructor of the ith (co)inductive type of the 
   block named sp. The array of terms correspond to the variables
   introduced in the section *)
let mkMutConstruct (cstr_sp,l) =  DOPN (MutConstruct cstr_sp,l)

(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
let mkMutCase ci p c ac = 
  DOPN (MutCase ci, Array.append [|p;c|] (Array.of_list ac))
let mkMutCaseA ci p c ac = 
  DOPN (MutCase ci, Array.append [|p;c|] ac)

(* If recindxs = [|i1,...in|] 
      typarray = [|t1,...tn|]
      funnames = [f1,.....fn]
      bodies   = [b1,.....bn]
   then    

      mkFix recindxs i typarray funnames bodies
   
   constructs the ith function of the block  

    Fixpoint f1 [ctx1] = b1
    with     f2 [ctx2] = b2
    ...
    with     fn [ctxn] = bn.

   where the lenght of the jth context is ij.

   Warning: as an invariant the ti are casted during the Fix formation;
   these casts are then used by destFix
*)
let in_fixcast {body=b; typ=s} = DOP2 (Cast, b, DOP0 (Sort s))

(* Here, we assume the body already constructed *)
let mkFixDlam recindxs i jtypsarray body =
  let typsarray = Array.map in_fixcast jtypsarray in
  DOPN (Fix (recindxs,i),Array.append typsarray body)

let mkFix recindxs i jtypsarray funnames bodies = 
  let rec wholebody l = 
    match l with 
      | [h]    -> (DLAMV (h,bodies)) 
      | (x::l) -> (DLAM  (x, wholebody l))
      | [] -> anomaly "in Term.mkFix : empty list of funnames"
  in 
  mkFixDlam recindxs i jtypsarray [|(wholebody funnames)|]

(* If typarray = [|t1,...tn|]
      funnames = [f1,.....fn]
      bodies   = [b1,.....bn]
   then

      mkCoFix i typsarray funnames bodies 

   constructs the ith function of the block  
   
    CoFixpoint f1 = b1
    with       f2 = b2
    ...
    with       fn = bn.

*)
(* Here, we assume the body already constructed *)
let mkCoFixDlam i jtypsarray body =
  let typsarray = Array.map in_fixcast jtypsarray in
  DOPN ((CoFix i),(Array.append typsarray body))

let mkCoFix i jtypsarray funnames bodies = 
  let rec wholebody l = 
    match l with 
      | [h]    -> (DLAMV (h,bodies))
      | (x::l) -> (DLAM  (x, wholebody l))
      | [] -> anomaly "in Term.mkCoFix : empty list of funnames"
  in 
  mkCoFixDlam i jtypsarray [|(wholebody funnames)|]

(********************)
(* Term destructors *)
(********************)

(* Destructor operations : partial functions 
   Raise invalid_arg "dest*" if the const has not the expected form *)

(* Destructs a DeBrujin index *)
let destRel = function
  | (Rel n) -> n
  | _ -> invalid_arg "destRel"

(* Destructs an existential variable *)
let destMeta = function
  | (DOP0 (Meta n)) -> n
  | _ -> invalid_arg "destMeta"

let isMETA = function DOP0(Meta _) -> true | _ -> false

(* Destructs a variable *)
let destVar = function
  | (VAR id) -> id
  | _ -> invalid_arg "destVar"

(* Destructs an XTRA *)
let destXtra = function
  | DOP0 (XTRA s) -> s
  | _ -> invalid_arg "destXtra"

(* Destructs a type *)
let destSort = function
  | (DOP0 (Sort s)) -> s
  | _ -> invalid_arg "destSort"

let rec isprop = function
  | DOP0(Sort(Prop _)) -> true
  | DOP2(Cast,c,_) -> isprop c
  | _ -> false

let rec is_Prop = function
  | DOP0(Sort(Prop Null)) -> true
  | DOP2(Cast,c,_) -> is_Prop c
  | _ -> false

let rec is_Set = function
  | DOP0(Sort(Prop Pos)) -> true
  | DOP2(Cast,c,_) -> is_Set c
  | _ -> false

let rec is_Type = function
  | DOP0(Sort(Type _)) -> true
  | DOP2(Cast,c,_) -> is_Type c
  | _ -> false

let isType = function
  | Type _ -> true
  | _ -> false

let is_small = function
  | Prop _ -> true
  | _ -> false

let iskind c = isprop c or is_Type c

let is_existential_oper = function
  | Evar _ -> true
  | _ -> false

let same_kind c1 c2 = (isprop c1 & isprop c2) or (is_Type c1 & is_Type c2)

let rec contents_of_kind = function
  | DOP0(Sort(Prop cts)) -> cts
  | DOP0(Sort(Type _)) -> Pos
  | DOP2(Cast,c,t) -> contents_of_kind c
  | _ -> invalid_arg "contents_of_kind"

(* Destructs a casted term *)
let destCast = function 
  | DOP2 (Cast, t1, t2) -> (t1,t2)
  | _ -> invalid_arg "destCast"

let isCast = function DOP2(Cast,_,_) -> true | _ -> false

let cast_term = function
  | DOP2(Cast,c,t) -> c
  | _ -> anomaly "found a type which did not contain a cast (cast_term)"

let cast_type = function
  | DOP2(Cast,c,t) -> t
  | _ -> anomaly "found a type which did not contain a cast (cast_type)"

let rec strip_outer_cast = function
  | DOP2(Cast,c,_) -> strip_outer_cast c
  | c -> c



(* Fonction spéciale qui laisse les cast clés sous les Fix ou les MutCase *)

let under_outer_cast f = function
  | DOP2 (Cast,b,t) -> DOP2 (Cast,f b,f t)
  | c -> f c

let rec strip_all_casts t = 
  match t with
    | DOP2 (Cast, b, _) -> strip_all_casts b
    | DOP0 _ as t -> t
    (* Cas ad hoc *)
    | DOPN(Fix _ as f,v) -> 
	let n = Array.length v in
	let ts = Array.sub v 0 (n-1) in
	let b = v.(n-1) in 
	DOPN(f, Array.append 
	       (Array.map strip_all_casts ts)
	       [|under_outer_cast strip_all_casts b|])
    | DOPN(CoFix _ as f,v) -> 
	let n = Array.length v in
	let ts = Array.sub v 0 (n-1) in
	let b = v.(n-1) in 
	DOPN(f, Array.append 
	       (Array.map strip_all_casts ts)
	       [|under_outer_cast strip_all_casts b|])
    | DOP1(oper,c) -> DOP1(oper,strip_all_casts c)
    | DOP2(oper,c1,c2) -> DOP2(oper,strip_all_casts c1,strip_all_casts c2)
    | DOPN(oper,cl) -> DOPN(oper,Array.map strip_all_casts cl)
    | DOPL(oper,cl) -> DOPL(oper,List.map strip_all_casts cl)
    | DLAM(na,c) -> DLAM(na,strip_all_casts c)
    | DLAMV(na,c) -> DLAMV(na,Array.map (under_outer_cast strip_all_casts) c)
    | VAR _ as t -> t
    | Rel _ as t -> t

(* Destructs the product (x:t1)t2 *)
let destProd = function 
  | DOP2 (Prod, t1, (DLAM (x,t2))) -> (x,t1,t2) 
  | _ -> invalid_arg "destProd"

let rec hd_of_prod prod =
  match strip_outer_cast prod with
    | DOP2(Prod,c,DLAM(n,t')) -> hd_of_prod t'
    |  t -> t

let hd_is_constructor t  =  
  let is_constructor =  function
    | DOPN(MutConstruct((sp,tyi),i),cl)-> true 
    | _ ->false
  in
  match t with 
    | DOPN(AppL,v) -> is_constructor v.(0)
    | c -> is_constructor c

(* Destructs the abstraction [x:t1]t2 *)
let destLambda = function 
  | DOP2 (Lambda, t1, (DLAM (x,t2))) -> (x,t1,t2) 
  | _ -> invalid_arg "destLambda"

(* Destructs an application *)
let destAppL = function 
  | (DOPN (AppL,a)) -> a
  | _ -> invalid_arg "destAppL"

let isAppL = function DOPN(AppL,_) -> true | _ -> false

let args_app  = function
  | DOPN(AppL,cl) -> if Array.length cl >1  then array_tl cl else [||]
  | c -> [||]

let hd_app  = function
  | DOPN(AppL,cl) -> cl.(0)
  | c -> c

(* Destructs a constant *)
let destConst = function
  | DOPN (Const sp, a) -> (sp, a)
  | _ -> invalid_arg "destConst"

let path_of_const = function
  | DOPN (Const sp,_) -> sp
  | _ -> anomaly "path_of_const called with bad args"

let args_of_const = function
  | DOPN (Const _,args) -> args
  | _ -> anomaly "args_of_const called with bad args"

(* Destructs an existential variable *)
let destEvar = function
  | DOPN (Evar n, a) -> (n,a)
  | _ -> invalid_arg "destEvar"

(* Destructs an abstract term *)
let destAbst = function
  | DOPN (Abst sp, a) -> (sp, a)
  | _ -> invalid_arg "destAbst"  

let path_of_abst = function
  | DOPN(Abst sp,_) -> sp
  | _ -> anomaly "path_of_abst called with bad args"

let args_of_abst = function
  | DOPN(Abst _,args) -> args
  | _ -> anomaly "args_of_abst called with bad args"

(* Destructs a (co)inductive type named sp *)
let destMutInd = function
  | DOPN (MutInd ind_sp, l) -> (ind_sp,l)
  | _ -> invalid_arg "destMutInd"
	
let op_of_mind = function
  | DOPN(MutInd ind_sp,_) -> ind_sp
  | _ -> anomaly "op_of_mind called with bad args"

let args_of_mind = function
  | DOPN(MutInd _,args) -> args
  | _ -> anomaly "args_of_mind called with bad args"

let ci_of_mind = op_of_mind

(* Destructs a constructor *)
let destMutConstruct = function
  | DOPN (MutConstruct cstr_sp,l) -> (cstr_sp,l)
  | _ -> invalid_arg "dest"

let op_of_mconstr = function
  | DOPN(MutConstruct (spi,c),_) -> (spi,c)
  | _ -> anomaly "op_of_mconstr called with bad args"

let args_of_mconstr = function
  | DOPN(MutConstruct _,args) -> args
  | _ -> anomaly "args_of_mconstr called with bad args"

(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
let destCase = function
  | DOPN (MutCase ci,v) -> (ci,v.(0),v.(1),Array.sub v 2 (Array.length v - 2))
  | _ -> anomaly "destCase"

(* Destructs the ith function of the block  
    Fixpoint f1 [ctx1] = b1
    with     f2 [ctx2] = b2
    ...
    with     fn [ctxn] = bn.

   where the lenght of the jth context is ij.
*)

let out_fixcast = function
  | DOP2 (Cast, b, DOP0 (Sort s)) -> { body = b; typ = s }
  | _ -> anomaly "destFix: malformed recursive definition"

let destGralFix a =
  let nbofdefs = Array.length a in
  let types    = Array.sub a 0 (nbofdefs-1) in
  let dlambody = a.(nbofdefs-1) in 
  let rec destbody l c = 
    match c with 
      | DLAMV (h,bodies) -> (List.rev (h::l), bodies) 
      | DLAM  (x,t)      -> destbody (x::l) t 
      | _ -> invalid_arg "destGralFix" 
  in 
  let funnames,bodies = destbody [] dlambody in 
  (types,funnames,bodies)

let destFix = function 
  | DOPN (Fix (recindxs,i),a) -> 
      let (types,funnames,bodies) = destGralFix a in 
      (recindxs,i,Array.map out_fixcast types,funnames,bodies)
  | _ -> invalid_arg "destFix"
	
let destCoFix = function 
  | DOPN ((CoFix i),a) ->
      let (types,funnames,bodies) = destGralFix a in
      (i,Array.map out_fixcast types,funnames,bodies)
  | _ -> invalid_arg "destCoFix"

(* Provisoire, le temps de maitriser les cast *)
let destUntypedFix = function 
  | DOPN (Fix (recindxs,i),a) -> 
      let (types,funnames,bodies) = destGralFix a in 
      (recindxs,i,types,funnames,bodies)
  | _ -> invalid_arg "destFix"

let destUntypedCoFix = function 
  | DOPN (CoFix i,a) -> 
      let (types,funnames,bodies) = destGralFix a in 
      (i,types,funnames,bodies)
  | _ -> invalid_arg "destCoFix"


(******************)
(* Term analysis  *)
(******************)

type existential = int * constr array
type constant = section_path * constr array
type constructor = constructor_path * constr array
type inductive = inductive_path * constr array

type kindOfTerm = 
  | IsRel          of int
  | IsMeta         of int
  | IsVar          of identifier
  | IsXtra         of string
  | IsSort         of sorts
  | IsCast         of constr * constr
  | IsProd         of name * constr * constr
  | IsLambda       of name * constr * constr
  | IsAppL         of constr * constr list
  | IsAbst         of section_path * constr array
  | IsEvar         of existential
  | IsConst        of constant
  | IsMutInd       of inductive
  | IsMutConstruct of constructor
  | IsMutCase      of case_info * constr * constr * constr array
  | IsFix          of int array * int * constr array * name list * constr array
  | IsCoFix        of int * constr array * name list * constr array


(* Discriminates which kind of term is it.  

   Note that there is no cases for DLAM and DLAMV.  These terms do not
   make sense alone, but they must be preceeded by the application of
   an operator. *)

let kind_of_term c = 
  match c with
    | Rel n                                -> IsRel n
    | VAR id                               -> IsVar id 
    | DOP0 (Meta n)                        -> IsMeta n
    | DOP0 (Sort s)                        -> IsSort s
    | DOP0 (XTRA s)                        -> IsXtra s
    | DOP2 (Cast, t1, t2)                  -> IsCast (t1,t2)
    | DOP2 (Prod, t1, (DLAM (x,t2)))       -> IsProd (x,t1,t2) 
    | DOP2 (Lambda, t1, (DLAM (x,t2)))     -> IsLambda (x,t1,t2)
    | DOPN (AppL,a) when Array.length a <> 0 -> 
	IsAppL (a.(0), List.tl (Array.to_list a))
    | DOPN (Const sp, a)                   -> IsConst (sp,a)
    | DOPN (Evar sp, a)                    -> IsEvar (sp,a)
    | DOPN (Abst sp, a)                    -> IsAbst (sp, a)
    | DOPN (MutInd ind_sp, l)              -> IsMutInd (ind_sp,l)
    | DOPN (MutConstruct cstr_sp,l)        -> IsMutConstruct (cstr_sp,l)
    | DOPN (MutCase ci,v)                  -> 
	IsMutCase (ci,v.(0),v.(1),Array.sub v 2 (Array.length v - 2))
    | DOPN ((Fix (recindxs,i),a))           ->  
      	let (types,funnames,bodies) = destGralFix a in
	IsFix (recindxs,i,types,funnames,bodies)
    | DOPN ((CoFix i),a)                    ->  
      	let (types,funnames,bodies) = destGralFix a in
      	IsCoFix (i,types,funnames,bodies)
    | _ -> errorlabstrm "Term.kind_of_term" [< 'sTR "ill-formed constr" >]

(***************************)
(* Other term constructors *)
(***************************)

let abs_implicit c = mkLambda Anonymous mkImplicit c
let lambda_implicit a = mkLambda (Name(id_of_string"y")) mkImplicit a
let lambda_implicit_lift n a = iterate lambda_implicit n (lift n a)

(* prod_it b [x1:T1;..xn:Tn] = (x1:T1)..(xn:Tn)b *)
let prod_it = List.fold_left (fun c (n,t)  -> mkProd n t c)

(* lam_it b [x1:T1;..xn:Tn] = [x1:T1]..[xn:Tn]b with xn *)
let lam_it = List.fold_left (fun c (n,t)  -> mkLambda n t c)

(* prodn n ([x1:T1]..[xn:Tn]Gamma) b = (x1:T1)..(xn:Tn)b *)
let prodn n env b =
  let rec prodrec = function
    | (0, env, b)        -> b
    | (n, ((v,t)::l), b) -> prodrec (n-1,  l, DOP2(Prod,t,DLAM(v,b)))
    | _ -> assert false
  in 
  prodrec (n,env,b)

(* lamn n ([x1:T1]..[xn:T]Gamma) b = [x1:T1]..[xn:Tn]b *)
let lamn n env b =
  let rec lamrec = function
    | (0, env, b)        -> b
    | (n, ((v,t)::l), b) -> lamrec (n-1,  l, DOP2(Lambda,t,DLAM(v,b)))
    | _ -> assert false
  in 
  lamrec (n,env,b)

let rec applist = function
  | (f,[]) -> f
  | (DOPN(AppL,cl),l2) -> 
      let c = array_hd cl in 
       if isAppL c then 
	 applist(c,array_app_tl cl l2)
       else 
	 DOPN(AppL,Array.append cl (Array.of_list l2))
  | (f,l) -> DOPN(AppL,Array.of_list(f::l))

and applistc f l = applist(f,l)

let rec appvect = function
  | (f, [||]) -> f
  | (DOPN(AppL,cl), v) ->
      let c = array_hd cl in 
      if isAppL c then
	appvect (c, Array.append (array_tl cl) v)
      else 
	DOPN(AppL, Array.append cl v)
  | (f,v) -> DOPN(AppL, array_cons f v)
	    
and appvectc f l = appvect (f,l)
		     
(* to_lambda n (x1:T1)...(xn:Tn)(xn+1:Tn+1)...(xn+j:Tn+j)T =
 * [x1:T1]...[xn:Tn](xn+1:Tn+1)...(xn+j:Tn+j)T *)
let rec to_lambda n prod =
  if n = 0 then 
    prod 
  else 
    match prod with 
      | DOP2(Prod,ty,DLAM(na,bd)) -> 
          DOP2(Lambda,ty,DLAM(na, to_lambda (n-1) bd))
      | DOP2(Cast,c,_) -> to_lambda n c
      | _   -> errorlabstrm "to_lambda" [<>]                      

let rec to_prod n lam =
  if n=0 then 
    lam
  else   
    match lam with 
      | DOP2(Lambda,ty,DLAM(na,bd)) -> 
          DOP2(Prod,ty,DLAM(na, to_prod (n-1) bd))
      | DOP2(Cast,c,_) -> to_prod n c
      | _   -> errorlabstrm "to_prod" [<>]                      
	    
(* pseudo-reduction rule:
 * [prod_app  s (Prod(_,B)) N --> B[N]
 * with an strip_outer_cast on the first argument to produce a product.
 * if this does not work, then we use the string S as part of our
 * error message. *)

let prod_app t n =
  match strip_outer_cast t with
    | DOP2(Prod,_,b) -> sAPP b n
    | _ ->
	errorlabstrm "prod_app"
	  [< 'sTR"Needed a product, but didn't find one" ; 'fNL >]


(* prod_appvect T [| a1 ; ... ; an |] -> (T a1 ... an) *)
let prod_appvect t nL = Array.fold_left prod_app t nL

(* prod_applist T [ a1 ; ... ; an ] -> (T a1 ... an) *)
let prod_applist t nL = List.fold_left prod_app t nL


(*********************************)
(* Other term destructors        *)
(*********************************)

(* Transforms a product term (x1:T1)..(xn:Tn)T into the pair
   ([(xn,Tn);...;(x1,T1)],T), where T is not a product *)
let decompose_prod = 
  let rec prodec_rec l = function
    | DOP2(Prod,t,DLAM(x,c)) -> prodec_rec ((x,t)::l) c
    | DOP2(Cast,c,_)         -> prodec_rec l c
    | c                      -> l,c
  in 
  prodec_rec [] 

(* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair
   ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *)
let decompose_lam = 
  let rec lamdec_rec l = function
    | DOP2(Lambda,t,DLAM(x,c)) -> lamdec_rec ((x,t)::l) c
    | DOP2(Cast,c,_)         -> lamdec_rec l c
    | c                      -> l,c
  in 
  lamdec_rec [] 

(* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T 
   into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_prod_n n =
  if n < 0 then error "decompose_prod_n: integer parameter must be positive";
  let rec prodec_rec l n c = 
    if n=0 then l,c 
    else match c with 
      | DOP2(Prod,t,DLAM(x,c)) -> prodec_rec ((x,t)::l) (n-1) c
      | DOP2(Cast,c,_)         -> prodec_rec l n c
      | c -> error "decompose_prod_n: not enough products"
  in 
  prodec_rec [] n 

(* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T 
   into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_lam_n n =
  if n < 0 then error "decompose_lam_n: integer parameter must be positive";
  let rec lamdec_rec l n c = 
    if n=0 then l,c 
    else match c with 
      | DOP2(Lambda,t,DLAM(x,c)) -> lamdec_rec ((x,t)::l) (n-1) c
      | DOP2(Cast,c,_)           -> lamdec_rec l n c
      | c -> error "decompose_lam_n: not enough abstractions"
  in 
  lamdec_rec [] n 

(* (nb_lam [na1:T1]...[nan:Tan]c) where c is not an abstraction
 * gives n (casts are ignored) *)
let nb_lam = 
  let rec nbrec n = function
    | DOP2(Lambda,_,DLAM(_,c)) -> nbrec (n+1) c
    | DOP2(Cast,c,_) -> nbrec n c
    | _ -> n
  in 
  nbrec 0
    
(* similar to nb_lam, but gives the number of products instead *)
let nb_prod = 
  let rec nbrec n = function
    | DOP2(Prod,_,DLAM(_,c)) -> nbrec (n+1) c
    | DOP2(Cast,c,_) -> nbrec n c
    | _ -> n
  in 
  nbrec 0


(********************************************************************)
(*   various utility functions for implementing terms with bindings *)
(********************************************************************)

let extract_lifted (n,x) = lift n x
let insert_lifted x = (0,x)

(* l is a list of pairs (n:nat,x:constr), env is a stack of (na:name,T:constr)
   push_and_lift adds a component to env and lifts l one step *)
let push_and_lift (na,t) env l =
  ((na,t)::env, List.map (fun (n,x) -> (n+1,x)) l)


(* if T is not (x1:A1)(x2:A2)....(xn:An)T' then (push_and_liftl n env T l)
   raises an error else it gives ([x1,A1 ; x2,A2 ; ... ; xn,An]@env,T',l')
   where l' is l lifted n steps *)
let push_and_liftl n env t l = 
  let rec pushrec n t (env,l) =
    match (n,t) with
      | (0, _) -> (env,t,l)
      | (_, DOP2(Prod,t,DLAM(na,b))) -> 
          pushrec (n-1) b (push_and_lift (na,t) env l)
      | (_, DOP2(Cast,t,_)) -> pushrec n t (env,l)
      | _ -> error "push_and_liftl"
  in 
  pushrec n t (env,l)

(* if T is not (x1:A1)(x2:A2)....(xn:An)T' then (push_and_liftl n env T l)
   raises an error else it gives ([x1,A1 ; x2,A2 ; ... ; xn,An]@env,T',l')
   where l' is l lifted n steps *)
let push_lam_and_liftl n env t l = 
  let rec pushrec n t (env,l) =
    match (n,t) with
      | (0, _) -> (env,t,l)
      | (_, DOP2(Lambda,t,DLAM(na,b))) -> 
	  pushrec (n-1) b (push_and_lift (na,t) env l)
      | (_, DOP2(Cast,t,_)) -> pushrec n t (env,l)
      | _ -> error "push_lam_and_liftl"
  in 
  pushrec n t (env,l)

(* l is a list of pairs (n:nat,x:constr), tlenv is a stack of
(na:name,T:constr), B : constr, na : name
(prod_and_pop ((na,T)::tlenv) B l) gives (tlenv, (na:T)B, l')
where l' is l lifted down one step *)
let prod_and_pop env b l =
  match env with
    | [] -> error "prod_and_pop"
    | (na,t)::tlenv ->
        (tlenv,DOP2(Prod,t,DLAM(na,b)),
         List.map (function 
                       (0,x) -> (0,lift (-1) x)
                     | (n,x) -> (n-1,x)) l)

(* recusively applies prod_and_pop :
if env = [na1:T1 ; na2:T2 ; ... ; nan:Tn]@tlenv
then
(prod_and_popl n env T l) gives (tlenv,(nan:Tn)...(na1:Ta1)T,l') where
l' is l lifted down n steps *)
let prod_and_popl n env t l = 
  let rec poprec = function
    | (0, (env,b,l)) -> (env,b,l)
    | (n, ([],_,_))  -> error "prod_and_popl"
    | (n, (env,b,l)) -> poprec (n-1, prod_and_pop env b l)
  in 
  poprec (n,(env,t,l))

(* similar to prod_and_pop, but gives [na:T]B intead of (na:T)B *)
let lam_and_pop env b l =
  match env with
    | [] -> error "lam_and_pop"
    | (na,t)::tlenv ->
        (tlenv,DOP2(Lambda,t,DLAM(na,b)),
         List.map (function
                       (0,x) -> (0,lift (-1) x)
                     | (n,x) -> (n-1,x)) l)

(* similar to lamn_and_pop but generates new names whenever the name is 
 *  Anonymous *)
let lam_and_pop_named env body l acc_ids =
  match env with
    | [] -> error "lam_and_pop"
    | (na,t)::tlenv ->
 	let id = match na with
	  | Anonymous -> next_ident_away (id_of_string "a") acc_ids
	  | Name id -> id
	in
	(tlenv,DOP2(Lambda,t,DLAM((Name id),body)),
         List.map (function
                     | (0,x) -> (0,lift (-1) x)
                     | (n,x) -> (n-1,x)) l,
         (id::acc_ids))

(* similar to prod_and_popl but gives [nan:Tan]...[na1:Ta1]B instead of
 * (nan:Tan)...(na1:Ta1)B *)
let lam_and_popl n env t l = 
  let rec poprec = function
    | (0, (env,b,l)) -> (env,b,l)
    | (n, ([],_,_)) -> error "lam_and_popl"
    | (n, (env,b,l)) -> poprec (n-1, lam_and_pop env b l)
  in 
  poprec (n,(env,t,l))

(* similar to prod_and_popl but gives [nan:Tan]...[na1:Ta1]B instead of
 * but it generates names whenever nai=Anonymous *)

let lam_and_popl_named  n env t l = 
  let rec poprec = function
    | (0, (env,b,l,_)) -> (env,b,l)
    | (n, ([],_,_,_)) -> error "lam_and_popl"
    | (n, (env,b,l,acc_ids)) -> poprec (n-1, lam_and_pop_named env b l acc_ids)
  in 
  poprec (n,(env,t,l,[]))

(* [lambda_ize n T endpt]
 * will pop off the first [n] products in [T], then stick in [endpt],
 * properly lifted, and then push back the products, but as lambda-
 * abstractions *)
let lambda_ize n t endpt =
  let env = [] 
  and carry = [insert_lifted endpt] in
  let env, endpt = 
    match push_and_liftl n env t carry with
      | (env,_,[endpt]) ->   env, endpt
      | _ -> anomaly "bud in Term.lamda_ize" 
  in
  let t = extract_lifted endpt in
  match lam_and_popl n env t [] with
    | (_,t,[]) -> t
    | _ -> anomaly "bud in Term.lamda_ize"
	  
let sort_hdchar = function
  | Prop(_) -> "P"
  | Type(_) -> "T"

(* Level comparison for information extraction : Prop <= Type *)
let le_kind l m = (isprop l) or (is_Type m)

let le_kind_implicit k1 k2 = 
  (k1=mkImplicit) or (isprop k1) or (k2=mkImplicit) or (is_Type k2)

(******************************************************************)
(* Flattening and unflattening of embedded applications and casts *)
(******************************************************************)

(* N.B.: does NOT collapse AppLs ! *)
let ensure_appl = function
  | DOPN(AppL,_) as t -> t
  | t -> DOPN(AppL,[|t|])

(* unflattens application lists *)
let rec telescope_appl = function
  | DOPN(AppL,cl) ->
      array_fold_left_from 1 (fun c e -> DOPN(AppL,[|c;e|])) (array_hd cl) cl
  | c -> c

(* flattens application lists *)
let rec collapse_appl = function
  | DOPN(AppL,cl) -> 
      let rec collapse_rec = function
	| (DOPN(AppL,cl),l2) -> collapse_rec(array_hd cl,array_app_tl cl l2)
	| (DOP2(Cast,DOPN(AppL,cl),t),l) -> collapse_rec(DOPN(AppL,cl),l)
	| (f,[]) -> f
	| (f,l) -> let v = Array.of_list (f::l) in DOPN(AppL,v)
      in 
      collapse_rec (array_hd cl, array_list_of_tl cl)
  | c -> c

let rec decomp_app c =
  match collapse_appl c with
    | DOPN(AppL,cl) -> (array_hd cl, array_list_of_tl cl)
    | DOP2(Cast,c,t) -> decomp_app c
    | c -> (c,[])

(* strips head casts and flattens head applications *)
let strip_head_cast = function
  | DOPN(AppL,cl) -> 
      let rec collapse_rec = function
	| (DOPN(AppL,cl),l2) -> collapse_rec(array_hd cl, array_app_tl cl l2)
	| (DOP2(Cast,c,t),l) -> collapse_rec(c,l)
	| (f,[]) -> f
	| (f,l) -> let v = Array.of_list (f::l) in DOPN(AppL,v)
      in 
      collapse_rec(array_hd cl, array_app_tl cl [])
  | c -> c

(* (occur_const (s:section_path) c) -> true if constant s occurs in c,
 * false otherwise *)
let occur_const s = occur_opern (Const s)

(* let sigma be a finite function mapping sections paths to 
   constants represented as (identifier list * constr) option.
   (replace_consts sigma M) unfold_one_id the constants from sigma in term M

   - if (sp,NONE) is in sigma then the constant should not appear in
   term M otherwise replace_consts raises an anomaly ;

   - if (sp,SOME (idl,c)), then the constant sp is replaced by
   c in which the variables given by idl are replaced by the arguments
   of (Const sp), if the number of variables and arguments are not equal
   an anomaly is raised ;

   - if no (sp,_) appears in sigma, then sp is not unfolded.

   NOTE : the case of DOPL is not handled...
*)
let replace_consts const_alist =
  let rec substrec = function
    | DOPN(Const sp,cl) as c ->
	let cl' = Array.map substrec cl in
	(try
	   match List.assoc sp const_alist with
	     | Some (hyps,body) ->
                 if List.length hyps <> Array.length cl then
                   anomaly "found a constant with a bad number of args"
                 else
      	       	   replace_vars
      	       	     (List.combine hyps 
			(array_map_to_list make_substituend cl')) body
             | None -> anomaly ("a constant which was never"^
      	       	       		" supposed to appear has just appeared")
	 with Not_found -> DOPN(Const sp,cl'))

    | DOP1(i,c)         -> DOP1(i,substrec c)
    | DOPN(oper,cl)     -> DOPN(oper,Array.map substrec cl)
    | DOP2(oper,c1,c2)  -> DOP2(oper,substrec c1,substrec c2)
    | DLAM(na,c)        -> DLAM(na,substrec c)
    | DLAMV(na,v)       -> DLAMV(na,Array.map substrec v)
    | x                 -> x
  in 
  if const_alist = [] then function x -> x else substrec

(* NOTE : the case of DOPL is not handled by whd_castapp_stack *)
let whd_castapp_stack = 
  let rec whrec x stack = match x with
    | DOPN(AppL,cl)  -> whrec (array_hd cl) (array_app_tl cl stack)
    | DOP2(Cast,c,_) -> whrec c stack
    | x              -> x,stack
  in 
  whrec

(* whd flattens embedded applications
   (whd_castapp ((((a b) c d) e f g) h)) -> (a b c d e f g h)
   even if some casts exist in ((((a b) c d) e f g) h))
 *)
let whd_castapp x = applist(whd_castapp_stack x [])


(***************************************)
(*  alpha and eta conversion functions *)                         
(***************************************)

(* alpha conversion : ignore print names and casts *)
let rec eq_constr_rec m n = 
  (m = n) or
  match (strip_head_cast m,strip_head_cast n) with
    | (DOP2(Cast,c1,_),c2) 	       -> eq_constr_rec c1 c2
    | (c1,DOP2(Cast,c2,_))              -> eq_constr_rec c1 c2
    | (Rel p1,Rel p2)                   -> p1=p2
    | (DOPN(oper1,cl1),DOPN(oper2,cl2)) ->
        oper1=oper2 & array_for_all2 eq_constr_rec cl1 cl2
    | (DOP0 oper1,DOP0 oper2)           -> oper1=oper2
    | (DOP1(i,c1),DOP1(j,c2))           -> (i=j) & eq_constr_rec c1 c2
    | (DOP2(i,c1,c1'),DOP2(j,c2,c2'))   ->
      	(i=j) & eq_constr_rec c1 c2 & eq_constr_rec c1' c2'
    | (DLAM(_,c1),DLAM(_,c2)) 	       -> eq_constr_rec c1 c2
    | (DLAMV(_,cl1),DLAMV(_,cl2))       -> 
      	array_for_all2 eq_constr_rec cl1 cl2
    | _ -> false

let eq_constr = eq_constr_rec

let rec eq_constr_with_meta_rec m n=
  (m=n) or 
  (match (strip_head_cast m,strip_head_cast n) with
     | (DOP2(Cast,c1,_),c2) 	       -> eq_constr_rec c1 c2
     | (c1,DOP2(Cast,c2,_))              -> eq_constr_rec c1 c2
     | (Rel p1,Rel p2)                   -> p1=p2
     | (DOPN(oper1,cl1),DOPN(oper2,cl2)) ->
         oper1=oper2 & array_for_all2 eq_constr_rec cl1 cl2
     | (DOP0 oper1,DOP0 oper2)           -> oper1=oper2
     | (DOP1(i,c1),DOP1(j,c2))           -> (i=j) & eq_constr_rec c1 c2
     | (DOP2(i,c1,c1'),DOP2(j,c2,c2'))   ->
      	 (i=j) & eq_constr_rec c1 c2 & eq_constr_rec c1' c2'
     | (DLAM(_,c1),DLAM(_,c2)) 	       -> eq_constr_rec c1 c2
     | (DLAMV(_,cl1),DLAMV(_,cl2))       -> 
      	 array_for_all2 eq_constr_rec cl1 cl2
     | _ -> false)

(* On reduit une serie d'eta-redex de tete ou rien du tout  *)
(* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *)
(* Remplace 2 versions précédentes buggées                  *)

let rec eta_reduce_head c =
  match c with
    | DOP2(Lambda,c1,DLAM(_,c')) ->
	(match eta_reduce_head c' with
           | DOPN(AppL,cl) ->
               let lastn = (Array.length cl) - 1 in 
               if lastn < 1 then anomaly "application without arguments"
               else
                 (match cl.(lastn) with
                    | Rel 1 ->
                        let c' =
                          if lastn = 1 then cl.(0) 
			  else DOPN(AppL,Array.sub cl 0 lastn)
                        in
                        if (not ((dependent (Rel 1) c'))) 
                        then lift (-1) c'
                        else c
                    | _     -> c)
           | _ -> c)
    | _ -> c

(* alpha-eta conversion : ignore print names and casts *)

let rec eta_eq_constr t1 t2 =
  let t1 = eta_reduce_head (strip_head_cast t1)
  and t2 = eta_reduce_head (strip_head_cast t2) in
  t1=t2 or match (t1,t2) with
    | (DOP2(Cast,c1,_),c2) -> eta_eq_constr c1 c2
    | (c1,DOP2(Cast,c2,_)) -> eta_eq_constr c1 c2
    | (Rel p1,Rel p2)                   -> p1=p2
    | (DOPN(oper1,cl1),DOPN(oper2,cl2)) ->
	oper1=oper2 & array_for_all2 eta_eq_constr cl1 cl2
    | (DOP0 oper1,DOP0 oper2)                 -> oper1=oper2
    | (DOP1(i,c1),DOP1(j,c2)) -> (i=j) & eta_eq_constr c1 c2
    | (DOP2(i,c1,c1'),DOP2(j,c2,c2')) ->
	(i=j) & eta_eq_constr c1 c2 & eta_eq_constr c1' c2'
    | (DLAM(_,c1),DLAM(_,c2)) -> eta_eq_constr c1 c2
    | (DLAMV(_,cl1),DLAMV(_,cl2)) -> array_for_all2 eta_eq_constr cl1 cl2
    | _ -> false


(* This renames bound variablew with fresh and distinct names *)
(* in such a way that the printer doe not generate new names  *)
(* and therefore that printed names are the intern names      *)
(* In this way, tactics such as Induction works well          *)

let rec rename_bound_var l = function
  | DOP2(Prod,c1,DLAM(Name(s),c2))  ->
      if dependent (Rel 1) c2 then
        let s' = next_ident_away s (global_vars c2@l) in
        DOP2(Prod,c1,DLAM(Name(s'),rename_bound_var (s'::l) c2))
      else 
	DOP2(Prod,c1,DLAM(Name(s),rename_bound_var l c2))
  | DOP2(Prod,c1,DLAM(Anonymous,c2)) ->
      DOP2(Prod,c1,DLAM(Anonymous,rename_bound_var l c2))
  | DOP2(Cast,c,t) -> DOP2(Cast,rename_bound_var l c,t)
  |  x -> x

(***************************)
(*  substitution functions *)                         
(***************************)

(* First utilities for avoiding telescope computation for subst_term *)

let prefix_application k (c:constr) (t:constr) = 
  match (whd_castapp c,whd_castapp t) with
    | ((DOPN(AppL,cl1)),DOPN(AppL,cl2)) ->
	let l1 = Array.length cl1
	and l2 = Array.length cl2 in
	if l1 <= l2
	   && eq_constr (DOPN(AppL,cl1)) (DOPN(AppL,Array.sub cl2 0 l1)) then
	  Some(DOPN(AppL, array_cons (Rel k) (Array.sub cl2 l1 (l2 - l1))))
	else 
	  None
    | (_,_) -> None

let prefix_application_eta k (c:constr) (t:constr) = 
  match (whd_castapp c,whd_castapp t) with
    | ((DOPN(AppL,cl1)),DOPN(AppL,cl2)) ->
	let l1 = Array.length cl1
	and l2 = Array.length cl2 in
	if l1 <= l2 &&
           eta_eq_constr (DOPN(AppL,cl1)) (DOPN(AppL,Array.sub cl2 0 l1)) then
          Some(DOPN(AppL,array_cons (Rel k) (Array.sub cl2 l1 (l2 - l1))))
	else 
	  None
  | (_,_) -> None

let sort_increasing_snd = 
  Sort.list 
    (fun x y -> match x,y with 
	 (_,Rel m),(_,Rel n) -> m < n
       | _ -> assert false)

(* Recognizing occurrences of a given subterm in a term for Pattern :
   (subst_term c t) substitutes (Rel 1) for all occurrences of term c 
   in a (closed) term t *)

let subst_term c t = 
  let rec substrec k c t =
    match prefix_application k c t with
      | Some x -> x
      | None ->
	  (if eq_constr t c then Rel(k) else match t with
	     | DOPN(Const sp,cl) -> t
	     | DOPN(MutInd (x_0,x_1),cl) -> t
	     | DOPN(MutConstruct (x_0,x_1),cl) -> t
	     | DOPN(oper,tl)     -> DOPN(oper,Array.map (substrec k c) tl)
	     | DOP1(i,t)         -> DOP1(i,substrec k c t)
	     | DOP2(oper,c1,c2)  -> DOP2(oper,substrec k c c1,substrec k c c2)
	     | DLAM(na,t)        -> DLAM(na,substrec (k+1) (lift 1 c) t)
	     | DLAMV(na,v) -> DLAMV(na,Array.map (substrec (k+1) (lift 1 c)) v)
	     | _ -> t)
  in 
  substrec 1 c t

(* same as subst_term, but modulo eta *)

let subst_term_eta_eq c t = 
  let rec substrec k c t =
    match prefix_application_eta k c t with
      | Some x -> x
      | None ->
	  (if eta_eq_constr t c then Rel(k) else match t with
	     | DOPN(Const sp,cl) -> t
	     | DOPN(oper,tl)     -> DOPN(oper,Array.map (substrec k c) tl)
	     | DOP1(i,t)         -> DOP1(i,substrec k c t)
	     | DOP2(oper,c1,c2)  -> DOP2(oper,substrec k c c1,substrec k c c2)
	     | DLAM(na,t)        -> DLAM(na,substrec (k+1) (lift 1 c) t)
	     | DLAMV(na,v)-> DLAMV(na,Array.map (substrec (k+1) (lift 1 c)) v)
	     | _ -> t)
  in 
  substrec 1 c t

(* bl : (int,constr) Listmap.t = (int * constr) list *)
(* c : constr *)
(* for each binding (i,c_i) in bl, substitutes the metavar i by c_i in c *)
(* Raises Not_found if c contains a meta that is not in the association list *)

let rec subst_meta bl c = 
  match c with
    | DOP0(Meta(i)) -> List.assoc i bl
    | DOP1(op,c') -> DOP1(op, subst_meta bl c')
    | DOP2(op,c'1, c'2) -> DOP2(op, subst_meta bl c'1, subst_meta bl c'2)
    | DOPN(op, c') -> DOPN(op, Array.map (subst_meta bl) c')
    | _ -> c

(* Substitute only a list of locations locs, the empty list is
   interpreted as substitute all, if 0 is in the list then no
   substitution is done the list may contain only negative occurrences
   that will not be substituted. *)

let subst_term_occ locs c t = 
  let rec substcheck except k occ c t =
    if except or List.exists (function u -> u>=occ) locs then
      substrec except k occ c t
    else 
      (occ,t)
  and substrec except k occ c t =
    if eq_constr t c then
      if except then 
	if List.mem (-occ) locs then (occ+1,t) else (occ+1,Rel(k))
      else 
	if List.mem occ locs then (occ+1,Rel(k)) else  (occ+1,t)
    else 
      match t with
	| DOPN(Const sp,tl) -> occ,t
	|  DOPN(MutConstruct _,tl) -> occ,t
	|  DOPN(MutInd _,tl) -> occ,t
	|  DOPN(i,cl) -> 
	     let (occ',cl') =   
               Array.fold_left 
		 (fun (nocc',lfd) f ->
		    let (nocc'',f') = substcheck except k nocc' c f in
                    (nocc'',f'::lfd)) 
		 (occ,[]) cl
             in 
	     (occ',DOPN(i,Array.of_list (List.rev cl')))
	|  DOP2(i,t1,t2) -> 
	     let (nocc1,t1')=substrec except k occ c t1 in
             let (nocc2,t2')=substcheck except k nocc1 c t2 in
             nocc2,DOP2(i,t1',t2')
	|  DOP1(i,t) -> 
	     let (nocc,t')= substrec except k occ c t in
	     nocc,DOP1(i,t')
	|  DLAM(n,t) -> 
	     let (occ',t') = substcheck except (k+1) occ (lift 1 c) t in
             (occ',DLAM(n,t'))
	|  DLAMV(n,cl) -> 
	     let (occ',cl') =   
               Array.fold_left 
		 (fun (nocc',lfd) f ->
		    let (nocc'',f') = 
		      substcheck except (k+1) nocc' (lift 1 c) f
                    in (nocc'',f'::lfd)) 
		 (occ,[]) cl
             in 
	     (occ',DLAMV(n,Array.of_list (List.rev cl') ))
	|  _ -> occ,t
  in 
  if locs = [] then 
    subst_term c t
  else if List.mem 0 locs then 
    t
  else 
    let except = List.for_all (fun n -> n<0) locs in
    let (nbocc,t') = substcheck except 1 1 c t in
    if List.exists (fun o -> o >= nbocc or o <= -nbocc) locs then
      failwith "subst_term_occ: too few occurences";
    t'

  
(***************************)
(* occurs check functions  *)                         
(***************************)

let rec occur_meta = function
  | DOP2(Prod,t,DLAM(_,c))   -> (occur_meta t) or (occur_meta c)
  | DOP2(Lambda,t,DLAM(_,c)) -> (occur_meta t) or (occur_meta c)
  | DOPN(_,cl)        -> (array_exists occur_meta cl)
  | DOP2(Cast,c,t)    -> occur_meta c or occur_meta t
  | DOP0(Meta(_))     -> true
  | _                 -> false

let rel_vect = (Generic.rel_vect : int -> int -> constr array)
		 
let occur_existential = 
  let rec occrec = function
    | DOPN(Evar _,_) -> true
    | DOPN(_,cl) -> array_exists occrec cl
    | DOPL(_,cl) -> List.exists occrec cl
    | DOP2(_,c1,c2) -> occrec c1 or occrec c2
    | DOP1(_,c) -> occrec c
    | DLAM(_,c) -> occrec c
    | DLAMV(_,cl) -> array_exists occrec cl
    | _ -> false
  in 
  occrec

(***************************)
(* hash-consing functions  *)                         
(***************************)

module Hsorts =
  Hashcons.Make(
    struct
      type t = sorts
      type u = section_path -> section_path
      let hash_sub hsp = function
	| Prop c -> Prop c
        | Type {u_sp=sp; u_num=n} -> Type {u_sp=hsp sp; u_num=n}
      let equal s1 s2 =
        match (s1,s2) with
          | (Prop c1, Prop c2) -> c1=c2
          | (Type {u_sp=sp1; u_num=n1}, Type {u_sp=sp2; u_num=n2}) ->
              sp1==sp2 & n1=n2
          |_ -> false
      let hash = Hashtbl.hash
    end)

module Hoper =
  Hashcons.Make(
    struct
      type t = sorts oper
      type u = (sorts -> sorts)
               * (section_path -> section_path) * (string -> string)
      let hash_sub (hsort,hsp,hstr) = function
	| XTRA s -> XTRA (hstr s)
        | Sort s -> Sort (hsort s)
        | Const sp -> Const (hsp sp)
        | Abst sp -> Abst (hsp sp)
        | MutInd (sp,i) -> MutInd (hsp sp, i)
        | MutConstruct ((sp,i),j) -> MutConstruct ((hsp sp,i),j)
        | MutCase(sp,i) -> MutCase(hsp sp, i)
        | t -> t 
      let equal o1 o2 =
        match (o1,o2) with
          | (XTRA s1, XTRA s2) -> s1==s2
          | (Sort s1, Sort s2) -> s1==s2
          | (Const sp1, Const sp2) -> sp1==sp2
          | (Abst sp1, Abst sp2) -> sp1==sp2
          | (MutInd (sp1,i1), MutInd (sp2,i2)) -> sp1==sp2 & i1=i2
          | (MutConstruct((sp1,i1),j1), MutConstruct((sp2,i2),j2)) ->
              sp1==sp2 & i1=i2 & j1=j2
          | (MutCase(sp1,i1),MutCase(sp2,i2)) -> sp1==sp2 & i1=i2
          | _ -> o1=o2
      let hash = Hashtbl.hash
    end)

module Hconstr =
  Hashcons.Make(
    struct
      type t = constr
      type u = (constr -> constr)
               * ((sorts oper -> sorts oper) * (name -> name) 
                  * (identifier -> identifier))
      let hash_sub = hash_term
      let equal = comp_term
      let hash = Hashtbl.hash
    end)

let hcons_oper (hsorts,hsp,hstr) =
  Hashcons.simple_hcons Hoper.f (hsorts,hsp,hstr)

let hcons_term (hsorts,hsp,hname,hident,hstr) =
  let hoper = hcons_oper (hsorts,hsp,hstr) in
  Hashcons.recursive_hcons Hconstr.f (hoper,hname,hident)

module Htype =
  Hashcons.Make(
    struct
      type t = typed_type
      type u = (constr -> constr) * (sorts -> sorts)
      let hash_sub (hc,hs) j = {body=hc j.body; typ=hs j.typ}
      let equal j1 j2 = j1.body==j2.body & j1.typ==j2.typ
      let hash = Hashtbl.hash
    end)

let hcons_constr (hspcci,hspfw,hname,hident,hstr) =
  let hsortscci = Hashcons.simple_hcons Hsorts.f hspcci in
  let hsortsfw = Hashcons.simple_hcons Hsorts.f hspfw in
  let hcci = hcons_term (hsortscci,hspcci,hname,hident,hstr) in
  let hfw = hcons_term (hsortsfw,hspfw,hname,hident,hstr) in
  let htcci = Hashcons.simple_hcons Htype.f (hcci,hsortscci) in
  (hcci,hfw,htcci)

let hcons1_constr c =
  let hnames = hcons_names() in
  let (hc,_,_) = hcons_constr hnames in
  hc c

(* Puts off the casts *)
let put_off_casts = strip_outer_cast

(*Verifies if the constr has an head constant*)
let is_hd_const=function
  | DOPN(AppL,t) ->
      (match (t.(0)) with
         | DOPN(Const c,_) ->
             Some (Const c,Array.of_list (List.tl (Array.to_list t)))
         |_ -> None)
  |_ -> None
	 
(*Gives the occurences number of t in u*)
let rec nb_occ_term t u=
  let one_step t=function
    | DOP1(_,c) -> nb_occ_term t c
    | DOP2(_,c0,c1) -> (nb_occ_term t c0)+(nb_occ_term t c1)
    | DOPN(_,a) -> Array.fold_left (fun a x -> a+(nb_occ_term t x)) 0 a
    | DOPL(_,l) -> List.fold_left (fun a x -> a+(nb_occ_term t x)) 0 l
    | DLAM(_,c) -> nb_occ_term t c
    | DLAMV(_,a) -> Array.fold_left (fun a x -> a+(nb_occ_term t x)) 0 a
    | _ -> 0
  in
  if t=u then
    1
  else
    one_step t u

(*Alpha-conversion*)
let bind_eq=function
  | (Anonymous,Anonymous) -> true
  | (Name _,Name _) -> true
  | _ -> false
	
	(*Tells if two constrs are equal modulo unification*)
let rec eq_mod_rel l_meta=function
  | (t,DOP0(Meta n)) ->
      if not(List.mem n (fst (List.split l_meta))) then
	Some ([(n,t)]@l_meta)
      else if (List.assoc n l_meta)=t then
	Some l_meta
      else
	None
  | DOP1(op0,c0), DOP1(op1,c1) ->
      if op0=op1 then
	eq_mod_rel l_meta (c0,c1)
      else
	None
  | DOP2(op0,t0,c0), DOP2(op1,t1,c1) ->
      if op0=op1 then
	match (eq_mod_rel l_meta (t0,t1)) with
          | None -> None
          | Some l -> eq_mod_rel l (c0,c1)	
      else
	None
  | DOPN(op0,t0), DOPN(op1,t1) ->
      if (op0=op1) & ((Array.length t0)=(Array.length t1)) then
	List.fold_left2
          (fun a c1 c2 ->
             match a with
	       | None -> None
               | Some l -> eq_mod_rel l (c1,c2)) (Some l_meta)
          (Array.to_list t0) (Array.to_list t1)
      else
	None
  | DLAM(n0,t0),DLAM(n1,t1) ->
      if (bind_eq (n0,n1)) then
	eq_mod_rel l_meta (t0,t1)
      else
	None
  | (t,u) ->
      if t=u then Some l_meta else None

(*Substitutes a list of meta l in t*)
let rec subst_with_lmeta l=function
  | DOP0(Meta n) -> List.assoc n l
  | DOP1(op,t) -> DOP1(op,subst_with_lmeta l t)
  | DOP2(op,t0,t1) -> DOP2(op,subst_with_lmeta l t0,subst_with_lmeta l t1)
  | DOPN(op,t) -> DOPN(op,Array.map (subst_with_lmeta l) t)
  | DOPL(op,ld) -> DOPL(op,List.map (subst_with_lmeta l) ld)
  | DLAM(n,t) -> DLAM(n,subst_with_lmeta l t)
  | DLAMV(n,t) -> DLAMV(n,Array.map (subst_with_lmeta l) t)
  | t -> t

(*Carries out the following translation: DOPN(AppL,[|t|]) -> t and
  DOPN(AppL,[|DOPN(AppL,t);...;t'|]) -> DOPN(AppL;[|t;...;t'|])*)
let rec appl_elim=function
  | DOPN(AppL,t) ->
      if (Array.length t)=1 then
	appl_elim t.(0)
      else
	(match t.(0) with
           | DOPN(AppL,t') -> 
	       appl_elim (DOPN(AppL,Array.append t' 
				 (Array.of_list
				    (List.tl (Array.to_list t)))))
           |_ -> DOPN(AppL,Array.map appl_elim t))
  | DOP1(op,t) -> DOP1(op,appl_elim t)
  | DOP2(op,t0,t1) -> DOP2(op,appl_elim t0,appl_elim t1)
  | DOPN(op,t) -> DOPN(op,Array.map appl_elim t)
  | DOPL(op,ld) -> DOPL(op,List.map appl_elim ld)
  | DLAM(n,t) -> DLAM(n,appl_elim t)
  | DLAMV(n,t) -> DLAMV(n,Array.map appl_elim t)
  | t -> t

(*Gives Some(first instance of ceq in cref,occurence number for this
  instance) or None if no instance of ceq can be found in cref*)
let sub_term_with_unif cref ceq=
  let rec find_match l_meta nb_occ op_ceq t_eq=function
    | DOPN(AppL,t) as u ->
	(match (t.(0)) with
           | DOPN(op,t_op) ->
               let t_args=Array.of_list (List.tl (Array.to_list t)) in
               if op=op_ceq then
                 match
                   (List.fold_left2 
                      (fun a c0 c1 ->
                         match a with
                           | None -> None
                           | Some l -> eq_mod_rel l (c0,c1)) (Some l_meta)
                      (Array.to_list t_args) (Array.to_list t_eq))
                 with
                   | None ->
                       List.fold_left
                         (fun (l_meta,nb_occ) x -> find_match l_meta nb_occ
                              op_ceq t_eq x) (l_meta,nb_occ) (Array.to_list
								t_args)
                   | Some l -> (l,nb_occ+1)
               else
                 List.fold_left 
		   (fun (l_meta,nb_occ) x -> find_match l_meta
			nb_occ op_ceq t_eq x) 
		   (l_meta,nb_occ) (Array.to_list t)
           | VAR _ ->
	       List.fold_left 
		 (fun (l_meta,nb_occ) x -> find_match l_meta
		      nb_occ op_ceq t_eq x) 
		 (l_meta,nb_occ) (Array.to_list t)
           |_ -> (l_meta,nb_occ))
    | DOP2(_,t,DLAM(_,c)) ->
	let (lt,nbt)=find_match l_meta nb_occ op_ceq t_eq t in
        find_match lt nbt op_ceq t_eq c
    | DOPN(_,t) -> 
	List.fold_left 
	  (fun (l_meta,nb_occ) x -> find_match l_meta nb_occ op_ceq t_eq x) 
	  (l_meta,nb_occ) (Array.to_list t)
    |_ -> (l_meta,nb_occ)
  in
  match (is_hd_const ceq) with
    | None ->
        if (occur_meta ceq) then
          None
        else
          let nb_occ=nb_occ_term ceq cref in
          if nb_occ=0 then
            None
          else
            Some (ceq,nb_occ)
    | Some (head,t_args) ->
        let (l,nb)=find_match [] 0 head t_args cref in
        if nb=0 then
          None
        else
          Some ((subst_with_lmeta l ceq),nb)