aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/sorts.ml
blob: a7bb08f5b6e5dbed449ea4e8c809f24f53060ed2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Univ

type family = InProp | InSet | InType

type t =
  | Prop
  | Set
  | Type of Universe.t

let prop = Prop
let set = Set
let type1 = Type type1_univ

let univ_of_sort = function
  | Type u -> u
  | Set -> Universe.type0
  | Prop -> Universe.type0m

let sort_of_univ u =
  if is_type0m_univ u then prop
  else if is_type0_univ u then set
  else Type u

let compare s1 s2 =
  if s1 == s2 then 0 else
    match s1, s2 with
    | Prop, Prop -> 0
    | Prop, _ -> -1
    | Set, Prop -> 1
    | Set, Set -> 0
    | Set, _ -> -1
    | Type u1, Type u2 -> Universe.compare u1 u2
    | Type _, _ -> -1

let equal s1 s2 = Int.equal (compare s1 s2) 0

let is_prop = function
  | Prop -> true
  | Type u when Universe.equal Universe.type0m u -> true
  | _ -> false

let is_set = function
  | Set -> true
  | Type u when Universe.equal Universe.type0 u -> true
  | _ -> false

let is_small = function
  | Prop | Set -> true
  | Type u -> is_small_univ u

let family = function
  | Prop -> InProp
  | Set -> InSet
  | Type u when is_type0m_univ u -> InProp
  | Type u when is_type0_univ u -> InSet
  | Type _ -> InType

let family_equal = (==)

open Hashset.Combine

let hash = function
  | Prop -> combinesmall 1 0
  | Set -> combinesmall 1 1
  | Type u ->
    let h = Univ.Universe.hash u in
    combinesmall 2 h

module List = struct
  let mem = List.memq
  let intersect l l' = CList.intersect family_equal l l'
end

module Hsorts =
  Hashcons.Make(
    struct
      type _t = t
      type t = _t
      type u = Universe.t -> Universe.t

      let hashcons huniv = function
        | Type u as c -> 
	  let u' = huniv u in 
	    if u' == u then c else Type u'
        | s -> s
      let eq s1 s2 = match (s1,s2) with
        | Prop, Prop | Set, Set -> true
        | (Type u1, Type u2) -> u1 == u2
        |_ -> false

      let hash = hash
    end)

let hcons = Hashcons.simple_hcons Hsorts.generate Hsorts.hcons hcons_univ