1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Jean-Christophe Filliâtre as part of the rebuilding of
Coq around a purely functional abstract type-checker, Dec 1999 *)
(* This file provides the entry points to the kernel type-checker. It
defines the abstract type of well-formed environments and
implements the rules that build well-formed environments.
An environment is made of constants and inductive types (E), of
section declarations (Delta), of local bound-by-index declarations
(Gamma) and of universe constraints (C). Below E[Delta,Gamma] |-_C
means that the tuple E, Delta, Gamma, C is a well-formed
environment. Main rules are:
empty_environment:
------
[,] |-
push_named_assum(a,T):
E[Delta,Gamma] |-_G
------------------------
E[Delta,Gamma,a:T] |-_G'
push_named_def(a,t,T):
E[Delta,Gamma] |-_G
---------------------------
E[Delta,Gamma,a:=t:T] |-_G'
add_constant(ConstantEntry(DefinitionEntry(c,t,T))):
E[Delta,Gamma] |-_G
---------------------------
E,c:=t:T[Delta,Gamma] |-_G'
add_constant(ConstantEntry(ParameterEntry(c,T))):
E[Delta,Gamma] |-_G
------------------------
E,c:T[Delta,Gamma] |-_G'
add_mind(Ind(Ind[Gamma_p](Gamma_I:=Gamma_C))):
E[Delta,Gamma] |-_G
------------------------
E,Ind[Gamma_p](Gamma_I:=Gamma_C)[Delta,Gamma] |-_G'
etc.
*)
open Util
open Names
open Declarations
open Context.Named.Declaration
(** {6 Safe environments }
Fields of [safe_environment] :
- [env] : the underlying environment (cf Environ)
- [modpath] : the current module name
- [modvariant] :
* NONE before coqtop initialization (or when -notop is used)
* LIBRARY at toplevel of a compilation or a regular coqtop session
* STRUCT (params,oldsenv) : inside a local module, with
module parameters [params] and earlier environment [oldsenv]
* SIG (params,oldsenv) : same for a local module type
- [modresolver] : delta_resolver concerning the module content
- [paramresolver] : delta_resolver concerning the module parameters
- [revstruct] : current module content, most recent declarations first
- [modlabels] and [objlabels] : names defined in the current module,
either for modules/modtypes or for constants/inductives.
These fields could be deduced from [revstruct], but they allow faster
name freshness checks.
- [univ] and [future_cst] : current and future universe constraints
- [engagement] : are we Set-impredicative? does the universe hierarchy collapse?
- [required] : names and digests of Require'd libraries since big-bang.
This field will only grow
- [loads] : list of libraries Require'd inside the current module.
They will be propagated to the upper module level when
the current module ends.
- [local_retroknowledge]
*)
type vodigest =
| Dvo_or_vi of Digest.t (* The digest of the seg_lib part *)
| Dvivo of Digest.t * Digest.t (* The digest of the seg_lib + seg_univ part *)
let digest_match ~actual ~required =
match actual, required with
| Dvo_or_vi d1, Dvo_or_vi d2
| Dvivo (d1,_), Dvo_or_vi d2 -> String.equal d1 d2
| Dvivo (d1,e1), Dvivo (d2,e2) -> String.equal d1 d2 && String.equal e1 e2
| Dvo_or_vi _, Dvivo _ -> false
type library_info = DirPath.t * vodigest
(** Functor and funsig parameters, most recent first *)
type module_parameters = (MBId.t * module_type_body) list
module DPMap = Map.Make(DirPath)
type safe_environment =
{ env : Environ.env;
modpath : module_path;
modvariant : modvariant;
modresolver : Mod_subst.delta_resolver;
paramresolver : Mod_subst.delta_resolver;
revstruct : structure_body;
modlabels : Label.Set.t;
objlabels : Label.Set.t;
univ : Univ.ContextSet.t;
future_cst : Univ.ContextSet.t Future.computation list;
engagement : engagement option;
required : vodigest DPMap.t;
loads : (module_path * module_body) list;
local_retroknowledge : Retroknowledge.action list;
native_symbols : Nativecode.symbols DPMap.t }
and modvariant =
| NONE
| LIBRARY
| SIG of module_parameters * safe_environment (** saved env *)
| STRUCT of module_parameters * safe_environment (** saved env *)
let rec library_dp_of_senv senv =
match senv.modvariant with
| NONE | LIBRARY -> ModPath.dp senv.modpath
| SIG(_,senv) -> library_dp_of_senv senv
| STRUCT(_,senv) -> library_dp_of_senv senv
let empty_environment =
{ env = Environ.empty_env;
modpath = initial_path;
modvariant = NONE;
modresolver = Mod_subst.empty_delta_resolver;
paramresolver = Mod_subst.empty_delta_resolver;
revstruct = [];
modlabels = Label.Set.empty;
objlabels = Label.Set.empty;
future_cst = [];
univ = Univ.ContextSet.empty;
engagement = None;
required = DPMap.empty;
loads = [];
local_retroknowledge = [];
native_symbols = DPMap.empty }
let is_initial senv =
match senv.revstruct, senv.modvariant with
| [], NONE -> ModPath.equal senv.modpath initial_path
| _ -> false
let delta_of_senv senv = senv.modresolver,senv.paramresolver
(** The safe_environment state monad *)
type safe_transformer0 = safe_environment -> safe_environment
type 'a safe_transformer = safe_environment -> 'a * safe_environment
(** {6 Engagement } *)
let set_engagement_opt env = function
| Some c -> Environ.set_engagement c env
| None -> env
let set_engagement c senv =
{ senv with
env = Environ.set_engagement c senv.env;
engagement = Some c }
(** Check that the engagement [c] expected by a library matches
the current (initial) one *)
let check_engagement env (expected_impredicative_set,expected_type_in_type) =
let impredicative_set,type_in_type = Environ.engagement env in
begin
match impredicative_set, expected_impredicative_set with
| PredicativeSet, ImpredicativeSet ->
Errors.error "Needs option -impredicative-set."
| _ -> ()
end;
begin
match type_in_type, expected_type_in_type with
| StratifiedType, TypeInType ->
Errors.error "Needs option -type-in-type."
| _ -> ()
end
(** {6 Stm machinery } *)
let get_opaque_body env cbo =
match cbo.const_body with
| Undef _ -> assert false
| Def _ -> `Nothing
| OpaqueDef opaque ->
`Opaque
(Opaqueproof.force_proof (Environ.opaque_tables env) opaque,
Opaqueproof.force_constraints (Environ.opaque_tables env) opaque)
type private_constant = Entries.side_effect
type private_constants = private_constant list
type private_constant_role = Term_typing.side_effect_role =
| Subproof
| Schema of inductive * string
let empty_private_constants = []
let add_private x xs = x :: xs
let concat_private xs ys = xs @ ys
let mk_pure_proof = Term_typing.mk_pure_proof
let inline_private_constants_in_constr = Term_typing.inline_side_effects
let inline_private_constants_in_definition_entry = Term_typing.inline_entry_side_effects
let side_effects_of_private_constants x = Term_typing.uniq_seff (List.rev x)
let private_con_of_con env c =
let cbo = Environ.lookup_constant c env.env in
{ Entries.from_env = CEphemeron.create env.revstruct;
Entries.eff = Entries.SEsubproof (c,cbo,get_opaque_body env.env cbo) }
let private_con_of_scheme ~kind env cl =
{ Entries.from_env = CEphemeron.create env.revstruct;
Entries.eff = Entries.SEscheme(
List.map (fun (i,c) ->
let cbo = Environ.lookup_constant c env.env in
i, c, cbo, get_opaque_body env.env cbo) cl,
kind) }
let universes_of_private eff =
let open Declarations in
List.fold_left (fun acc { Entries.eff } ->
match eff with
| Entries.SEscheme (l,s) ->
List.fold_left (fun acc (_,_,cb,c) ->
let acc = match c with
| `Nothing -> acc
| `Opaque (_, ctx) -> ctx :: acc in
if cb.const_polymorphic then acc
else (Univ.ContextSet.of_context cb.const_universes) :: acc)
acc l
| Entries.SEsubproof (c, cb, e) ->
if cb.const_polymorphic then acc
else Univ.ContextSet.of_context cb.const_universes :: acc)
[] eff
let env_of_safe_env senv = senv.env
let env_of_senv = env_of_safe_env
type constraints_addition =
| Now of bool * Univ.ContextSet.t
| Later of Univ.ContextSet.t Future.computation
let add_constraints cst senv =
match cst with
| Later fc ->
{senv with future_cst = fc :: senv.future_cst}
| Now (poly,cst) ->
{ senv with
env = Environ.push_context_set ~strict:(not poly) cst senv.env;
univ = Univ.ContextSet.union cst senv.univ }
let add_constraints_list cst senv =
List.fold_left (fun acc c -> add_constraints c acc) senv cst
let push_context_set poly ctx = add_constraints (Now (poly,ctx))
let push_context poly ctx = add_constraints (Now (poly,Univ.ContextSet.of_context ctx))
let is_curmod_library senv =
match senv.modvariant with LIBRARY -> true | _ -> false
let join_safe_environment ?(except=Future.UUIDSet.empty) e =
Modops.join_structure except (Environ.opaque_tables e.env) e.revstruct;
List.fold_left
(fun e fc ->
if Future.UUIDSet.mem (Future.uuid fc) except then e
else add_constraints (Now (false, Future.join fc)) e)
{e with future_cst = []} e.future_cst
let is_joined_environment e = List.is_empty e.future_cst
(** {6 Various checks } *)
let exists_modlabel l senv = Label.Set.mem l senv.modlabels
let exists_objlabel l senv = Label.Set.mem l senv.objlabels
let check_modlabel l senv =
if exists_modlabel l senv then Modops.error_existing_label l
let check_objlabel l senv =
if exists_objlabel l senv then Modops.error_existing_label l
let check_objlabels ls senv =
Label.Set.iter (fun l -> check_objlabel l senv) ls
(** Are we closing the right module / modtype ?
No user error here, since the opening/ending coherence
is now verified in [vernac_end_segment] *)
let check_current_label lab = function
| MPdot (_,l) -> assert (Label.equal lab l)
| _ -> assert false
let check_struct = function
| STRUCT (params,oldsenv) -> params, oldsenv
| NONE | LIBRARY | SIG _ -> assert false
let check_sig = function
| SIG (params,oldsenv) -> params, oldsenv
| NONE | LIBRARY | STRUCT _ -> assert false
let check_current_library dir senv = match senv.modvariant with
| LIBRARY -> assert (ModPath.equal senv.modpath (MPfile dir))
| NONE | STRUCT _ | SIG _ -> assert false (* cf Lib.end_compilation *)
(** When operating on modules, we're normally outside sections *)
let check_empty_context senv =
assert (Environ.empty_context senv.env)
(** When adding a parameter to the current module/modtype,
it must have been freshly started *)
let check_empty_struct senv =
assert (List.is_empty senv.revstruct
&& List.is_empty senv.loads)
(** When starting a library, the current environment should be initial
i.e. only composed of Require's *)
let check_initial senv = assert (is_initial senv)
(** When loading a library, its dependencies should be already there,
with the correct digests. *)
let check_required current_libs needed =
let check (id,required) =
try
let actual = DPMap.find id current_libs in
if not(digest_match ~actual ~required) then
Errors.error
("Inconsistent assumptions over module "^(DirPath.to_string id)^".")
with Not_found ->
Errors.error ("Reference to unknown module "^(DirPath.to_string id)^".")
in
Array.iter check needed
(** {6 Insertion of section variables} *)
(** They are now typed before being added to the environment.
Same as push_named, but check that the variable is not already
there. Should *not* be done in Environ because tactics add temporary
hypothesis many many times, and the check performed here would
cost too much. *)
let safe_push_named d env =
let id = get_id d in
let _ =
try
let _ = Environ.lookup_named id env in
Errors.error ("Identifier "^Id.to_string id^" already defined.")
with Not_found -> () in
Environ.push_named d env
let push_named_def (id,de) senv =
let c,typ,univs = Term_typing.translate_local_def senv.revstruct senv.env id de in
let poly = de.Entries.const_entry_polymorphic in
let univs = Univ.ContextSet.of_context univs in
let c, univs = match c with
| Def c -> Mod_subst.force_constr c, univs
| OpaqueDef o ->
Opaqueproof.force_proof (Environ.opaque_tables senv.env) o,
Univ.ContextSet.union univs
(Opaqueproof.force_constraints (Environ.opaque_tables senv.env) o)
| _ -> assert false in
let senv' = push_context_set poly univs senv in
let env'' = safe_push_named (LocalDef (id,c,typ)) senv'.env in
univs, {senv' with env=env''}
let push_named_assum ((id,t,poly),ctx) senv =
let senv' = push_context_set poly ctx senv in
let t = Term_typing.translate_local_assum senv'.env t in
let env'' = safe_push_named (LocalAssum (id,t)) senv'.env in
{senv' with env=env''}
(** {6 Insertion of new declarations to current environment } *)
let labels_of_mib mib =
let add,get =
let labels = ref Label.Set.empty in
(fun id -> labels := Label.Set.add (Label.of_id id) !labels),
(fun () -> !labels)
in
let visit_mip mip =
add mip.mind_typename;
Array.iter add mip.mind_consnames
in
Array.iter visit_mip mib.mind_packets;
get ()
let globalize_constant_universes env cb =
if cb.const_polymorphic then
[Now (true, Univ.ContextSet.empty)]
else
let cstrs = Univ.ContextSet.of_context cb.const_universes in
Now (false, cstrs) ::
(match cb.const_body with
| (Undef _ | Def _) -> []
| OpaqueDef lc ->
match Opaqueproof.get_constraints (Environ.opaque_tables env) lc with
| None -> []
| Some fc ->
match Future.peek_val fc with
| None -> [Later fc]
| Some c -> [Now (false, c)])
let globalize_mind_universes mb =
if mb.mind_polymorphic then
[Now (true, Univ.ContextSet.empty)]
else
[Now (false, Univ.ContextSet.of_context mb.mind_universes)]
let constraints_of_sfb env sfb =
match sfb with
| SFBconst cb -> globalize_constant_universes env cb
| SFBmind mib -> globalize_mind_universes mib
| SFBmodtype mtb -> [Now (false, mtb.mod_constraints)]
| SFBmodule mb -> [Now (false, mb.mod_constraints)]
(** A generic function for adding a new field in a same environment.
It also performs the corresponding [add_constraints]. *)
type generic_name =
| C of constant
| I of mutual_inductive
| M (** name already known, cf the mod_mp field *)
| MT (** name already known, cf the mod_mp field *)
let add_field ((l,sfb) as field) gn senv =
let mlabs,olabs = match sfb with
| SFBmind mib ->
let l = labels_of_mib mib in
check_objlabels l senv; (Label.Set.empty,l)
| SFBconst _ ->
check_objlabel l senv; (Label.Set.empty, Label.Set.singleton l)
| SFBmodule _ | SFBmodtype _ ->
check_modlabel l senv; (Label.Set.singleton l, Label.Set.empty)
in
let cst = constraints_of_sfb senv.env sfb in
let senv = add_constraints_list cst senv in
let env' = match sfb, gn with
| SFBconst cb, C con -> Environ.add_constant con cb senv.env
| SFBmind mib, I mind -> Environ.add_mind mind mib senv.env
| SFBmodtype mtb, MT -> Environ.add_modtype mtb senv.env
| SFBmodule mb, M -> Modops.add_module mb senv.env
| _ -> assert false
in
{ senv with
env = env';
revstruct = field :: senv.revstruct;
modlabels = Label.Set.union mlabs senv.modlabels;
objlabels = Label.Set.union olabs senv.objlabels }
(** Applying a certain function to the resolver of a safe environment *)
let update_resolver f senv = { senv with modresolver = f senv.modresolver }
(** Insertion of constants and parameters in environment *)
type global_declaration =
| ConstantEntry of bool * private_constants Entries.constant_entry
| GlobalRecipe of Cooking.recipe
type exported_private_constant =
constant * private_constants Entries.constant_entry * private_constant_role
let add_constant_aux no_section senv (kn, cb) =
let l = pi3 (Constant.repr3 kn) in
let cb, otab = match cb.const_body with
| OpaqueDef lc when no_section ->
(* In coqc, opaque constants outside sections will be stored
indirectly in a specific table *)
let od, otab =
Opaqueproof.turn_indirect
(library_dp_of_senv senv) lc (Environ.opaque_tables senv.env) in
{ cb with const_body = OpaqueDef od }, otab
| _ -> cb, (Environ.opaque_tables senv.env)
in
let senv = { senv with env = Environ.set_opaque_tables senv.env otab } in
let senv' = add_field (l,SFBconst cb) (C kn) senv in
let senv'' = match cb.const_body with
| Undef (Some lev) ->
update_resolver
(Mod_subst.add_inline_delta_resolver (user_con kn) (lev,None)) senv'
| _ -> senv'
in
senv''
let add_constant dir l decl senv =
let kn = make_con senv.modpath dir l in
let no_section = DirPath.is_empty dir in
let seff_to_export, decl =
match decl with
| ConstantEntry (true, ce) ->
let exports, ce =
Term_typing.export_side_effects senv.revstruct senv.env ce in
exports, ConstantEntry (false, ce)
| _ -> [], decl
in
let senv =
List.fold_left (add_constant_aux no_section) senv
(List.map (fun (kn,cb,_,_) -> kn, cb) seff_to_export) in
let senv =
let cb =
match decl with
| ConstantEntry (export_seff,ce) ->
Term_typing.translate_constant senv.revstruct senv.env kn ce
| GlobalRecipe r ->
let cb = Term_typing.translate_recipe senv.env kn r in
if no_section then Declareops.hcons_const_body cb else cb in
add_constant_aux no_section senv (kn, cb) in
(kn, List.map (fun (kn,_,ce,r) -> kn, ce, r) seff_to_export), senv
(** Insertion of inductive types *)
let check_mind mie lab =
let open Entries in
match mie.mind_entry_inds with
| [] -> assert false (* empty inductive entry *)
| oie::_ ->
(* The label and the first inductive type name should match *)
assert (Id.equal (Label.to_id lab) oie.mind_entry_typename)
let add_mind dir l mie senv =
let () = check_mind mie l in
let kn = make_mind senv.modpath dir l in
let mib = Term_typing.translate_mind senv.env kn mie in
let mib =
match mib.mind_hyps with [] -> Declareops.hcons_mind mib | _ -> mib
in
kn, add_field (l,SFBmind mib) (I kn) senv
(** Insertion of module types *)
let add_modtype l params_mte inl senv =
let mp = MPdot(senv.modpath, l) in
let mtb = Mod_typing.translate_modtype senv.env mp inl params_mte in
let mtb = Declareops.hcons_module_body mtb in
let senv' = add_field (l,SFBmodtype mtb) MT senv in
mp, senv'
(** full_add_module adds module with universes and constraints *)
let full_add_module mb senv =
let senv = add_constraints (Now (false, mb.mod_constraints)) senv in
let dp = ModPath.dp mb.mod_mp in
let linkinfo = Nativecode.link_info_of_dirpath dp in
{ senv with env = Modops.add_linked_module mb linkinfo senv.env }
let full_add_module_type mp mt senv =
let senv = add_constraints (Now (false, mt.mod_constraints)) senv in
{ senv with env = Modops.add_module_type mp mt senv.env }
(** Insertion of modules *)
let add_module l me inl senv =
let mp = MPdot(senv.modpath, l) in
let mb = Mod_typing.translate_module senv.env mp inl me in
let mb = Declareops.hcons_module_body mb in
let senv' = add_field (l,SFBmodule mb) M senv in
let senv'' =
if Modops.is_functor mb.mod_type then senv'
else update_resolver (Mod_subst.add_delta_resolver mb.mod_delta) senv'
in
(mp,mb.mod_delta),senv''
(** {6 Starting / ending interactive modules and module types } *)
let start_module l senv =
let () = check_modlabel l senv in
let () = check_empty_context senv in
let mp = MPdot(senv.modpath, l) in
mp,
{ empty_environment with
env = senv.env;
modpath = mp;
modvariant = STRUCT ([],senv);
required = senv.required }
let start_modtype l senv =
let () = check_modlabel l senv in
let () = check_empty_context senv in
let mp = MPdot(senv.modpath, l) in
mp,
{ empty_environment with
env = senv.env;
modpath = mp;
modvariant = SIG ([], senv);
required = senv.required }
(** Adding parameters to the current module or module type.
This module should have been freshly started. *)
let add_module_parameter mbid mte inl senv =
let () = check_empty_struct senv in
let mp = MPbound mbid in
let mtb = Mod_typing.translate_modtype senv.env mp inl ([],mte) in
let senv = full_add_module_type mp mtb senv in
let new_variant = match senv.modvariant with
| STRUCT (params,oldenv) -> STRUCT ((mbid,mtb) :: params, oldenv)
| SIG (params,oldenv) -> SIG ((mbid,mtb) :: params, oldenv)
| _ -> assert false
in
let new_paramresolver =
if Modops.is_functor mtb.mod_type then senv.paramresolver
else Mod_subst.add_delta_resolver mtb.mod_delta senv.paramresolver
in
mtb.mod_delta,
{ senv with
modvariant = new_variant;
paramresolver = new_paramresolver }
let functorize params init =
List.fold_left (fun e (mbid,mt) -> MoreFunctor(mbid,mt,e)) init params
let propagate_loads senv =
List.fold_left
(fun env (_,mb) -> full_add_module mb env)
senv
(List.rev senv.loads)
(** Build the module body of the current module, taking in account
a possible return type (_:T) *)
let functorize_module params mb =
let f x = functorize params x in
{ mb with
mod_expr = Modops.implem_smartmap f f mb.mod_expr;
mod_type = f mb.mod_type;
mod_type_alg = Option.map f mb.mod_type_alg }
let build_module_body params restype senv =
let struc = NoFunctor (List.rev senv.revstruct) in
let restype' = Option.map (fun (ty,inl) -> (([],ty),inl)) restype in
let mb =
Mod_typing.finalize_module senv.env senv.modpath
(struc,None,senv.modresolver,senv.univ) restype'
in
let mb' = functorize_module params mb in
{ mb' with mod_retroknowledge = senv.local_retroknowledge }
(** Returning back to the old pre-interactive-module environment,
with one extra component and some updated fields
(constraints, required, etc) *)
let propagate_senv newdef newenv newresolver senv oldsenv =
let now_cst, later_cst = List.partition Future.is_val senv.future_cst in
(* This asserts that after Paral-ITP, standard vo compilation is behaving
* exctly as before: the same universe constraints are added to modules *)
if !Flags.compilation_mode = Flags.BuildVo &&
!Flags.async_proofs_mode = Flags.APoff then assert(later_cst = []);
{ oldsenv with
env = newenv;
modresolver = newresolver;
revstruct = newdef::oldsenv.revstruct;
modlabels = Label.Set.add (fst newdef) oldsenv.modlabels;
univ =
List.fold_left (fun acc cst ->
Univ.ContextSet.union acc (Future.force cst))
(Univ.ContextSet.union senv.univ oldsenv.univ)
now_cst;
future_cst = later_cst @ oldsenv.future_cst;
(* engagement is propagated to the upper level *)
engagement = senv.engagement;
required = senv.required;
loads = senv.loads@oldsenv.loads;
local_retroknowledge =
senv.local_retroknowledge@oldsenv.local_retroknowledge;
native_symbols = senv.native_symbols}
let end_module l restype senv =
let mp = senv.modpath in
let params, oldsenv = check_struct senv.modvariant in
let () = check_current_label l mp in
let () = check_empty_context senv in
let mbids = List.rev_map fst params in
let mb = build_module_body params restype senv in
let newenv = Environ.set_opaque_tables oldsenv.env (Environ.opaque_tables senv.env) in
let newenv = set_engagement_opt newenv senv.engagement in
let senv'=
propagate_loads { senv with
env = newenv;
univ = Univ.ContextSet.union senv.univ mb.mod_constraints} in
let newenv = Environ.push_context_set ~strict:true mb.mod_constraints senv'.env in
let newenv = Modops.add_module mb newenv in
let newresolver =
if Modops.is_functor mb.mod_type then oldsenv.modresolver
else Mod_subst.add_delta_resolver mb.mod_delta oldsenv.modresolver
in
(mp,mbids,mb.mod_delta),
propagate_senv (l,SFBmodule mb) newenv newresolver senv' oldsenv
let build_mtb mp sign cst delta =
{ mod_mp = mp;
mod_expr = Abstract;
mod_type = sign;
mod_type_alg = None;
mod_constraints = cst;
mod_delta = delta;
mod_retroknowledge = [] }
let end_modtype l senv =
let mp = senv.modpath in
let params, oldsenv = check_sig senv.modvariant in
let () = check_current_label l mp in
let () = check_empty_context senv in
let mbids = List.rev_map fst params in
let newenv = Environ.set_opaque_tables oldsenv.env (Environ.opaque_tables senv.env) in
let newenv = Environ.push_context_set ~strict:true senv.univ newenv in
let newenv = set_engagement_opt newenv senv.engagement in
let senv' = propagate_loads {senv with env=newenv} in
let auto_tb = functorize params (NoFunctor (List.rev senv.revstruct)) in
let mtb = build_mtb mp auto_tb senv'.univ senv.modresolver in
let newenv = Environ.add_modtype mtb senv'.env in
let newresolver = oldsenv.modresolver in
(mp,mbids),
propagate_senv (l,SFBmodtype mtb) newenv newresolver senv' oldsenv
(** {6 Inclusion of module or module type } *)
let add_include me is_module inl senv =
let open Mod_typing in
let mp_sup = senv.modpath in
let sign,(),resolver,cst =
translate_mse_incl is_module senv.env mp_sup inl me
in
let senv = add_constraints (Now (false, cst)) senv in
(* Include Self support *)
let rec compute_sign sign mb resolver senv =
match sign with
| MoreFunctor(mbid,mtb,str) ->
let cst_sub = Subtyping.check_subtypes senv.env mb mtb in
let senv =
add_constraints
(Now (false, Univ.ContextSet.add_constraints cst_sub Univ.ContextSet.empty))
senv in
let mpsup_delta =
Modops.inline_delta_resolver senv.env inl mp_sup mbid mtb mb.mod_delta
in
let subst = Mod_subst.map_mbid mbid mp_sup mpsup_delta in
let resolver = Mod_subst.subst_codom_delta_resolver subst resolver in
compute_sign (Modops.subst_signature subst str) mb resolver senv
| NoFunctor str -> resolver,str,senv
in
let resolver,str,senv =
let struc = NoFunctor (List.rev senv.revstruct) in
let mtb = build_mtb mp_sup struc Univ.ContextSet.empty senv.modresolver in
compute_sign sign mtb resolver senv
in
let senv = update_resolver (Mod_subst.add_delta_resolver resolver) senv
in
let add senv ((l,elem) as field) =
let new_name = match elem with
| SFBconst _ ->
C (Mod_subst.constant_of_delta_kn resolver (KerName.make2 mp_sup l))
| SFBmind _ ->
I (Mod_subst.mind_of_delta_kn resolver (KerName.make2 mp_sup l))
| SFBmodule _ -> M
| SFBmodtype _ -> MT
in
add_field field new_name senv
in
resolver, List.fold_left add senv str
(** {6 Libraries, i.e. compiled modules } *)
type compiled_library = {
comp_name : DirPath.t;
comp_mod : module_body;
comp_deps : library_info array;
comp_enga : engagement;
comp_natsymbs : Nativecode.symbols
}
type native_library = Nativecode.global list
let get_library_native_symbols senv dir =
DPMap.find dir senv.native_symbols
(** FIXME: MS: remove?*)
let current_modpath senv = senv.modpath
let current_dirpath senv = Names.ModPath.dp (current_modpath senv)
let start_library dir senv =
check_initial senv;
assert (not (DirPath.is_empty dir));
let mp = MPfile dir in
mp,
{ empty_environment with
env = senv.env;
modpath = mp;
modvariant = LIBRARY;
required = senv.required }
let export ?except senv dir =
let senv =
try join_safe_environment ?except senv
with e ->
let e = Errors.push e in
Errors.errorlabstrm "export" (Errors.iprint e)
in
assert(senv.future_cst = []);
let () = check_current_library dir senv in
let mp = senv.modpath in
let str = NoFunctor (List.rev senv.revstruct) in
let mb =
{ mod_mp = mp;
mod_expr = FullStruct;
mod_type = str;
mod_type_alg = None;
mod_constraints = senv.univ;
mod_delta = senv.modresolver;
mod_retroknowledge = senv.local_retroknowledge
}
in
let ast, symbols =
if !Flags.native_compiler then
Nativelibrary.dump_library mp dir senv.env str
else [], Nativecode.empty_symbols
in
let lib = {
comp_name = dir;
comp_mod = mb;
comp_deps = Array.of_list (DPMap.bindings senv.required);
comp_enga = Environ.engagement senv.env;
comp_natsymbs = symbols }
in
mp, lib, ast
(* cst are the constraints that were computed by the vi2vo step and hence are
* not part of the mb.mod_constraints field (but morally should be) *)
let import lib cst vodigest senv =
check_required senv.required lib.comp_deps;
check_engagement senv.env lib.comp_enga;
let mp = MPfile lib.comp_name in
let mb = lib.comp_mod in
let env = Environ.push_context_set ~strict:true
(Univ.ContextSet.union mb.mod_constraints cst)
senv.env
in
mp,
{ senv with
env =
(let linkinfo =
Nativecode.link_info_of_dirpath lib.comp_name
in
Modops.add_linked_module mb linkinfo env);
modresolver = Mod_subst.add_delta_resolver mb.mod_delta senv.modresolver;
required = DPMap.add lib.comp_name vodigest senv.required;
loads = (mp,mb)::senv.loads;
native_symbols = DPMap.add lib.comp_name lib.comp_natsymbs senv.native_symbols }
(** {6 Safe typing } *)
type judgment = Environ.unsafe_judgment
let j_val j = j.Environ.uj_val
let j_type j = j.Environ.uj_type
let typing senv = Typeops.infer (env_of_senv senv)
(** {6 Retroknowledge / native compiler } *)
(** universal lifting, used for the "get" operations mostly *)
let retroknowledge f senv =
Environ.retroknowledge f (env_of_senv senv)
let register field value by_clause senv =
(* todo : value closed, by_clause safe, by_clause of the proper type*)
(* spiwack : updates the safe_env with the information that the register
action has to be performed (again) when the environment is imported *)
{ senv with
env = Environ.register senv.env field value;
local_retroknowledge =
Retroknowledge.RKRegister (field,value)::senv.local_retroknowledge
}
(* This function serves only for inlining constants in native compiler for now,
but it is meant to become a replacement for environ.register *)
let register_inline kn senv =
let open Environ in
let open Pre_env in
if not (evaluable_constant kn senv.env) then
Errors.error "Register inline: an evaluable constant is expected";
let env = pre_env senv.env in
let (cb,r) = Cmap_env.find kn env.env_globals.env_constants in
let cb = {cb with const_inline_code = true} in
let new_constants = Cmap_env.add kn (cb,r) env.env_globals.env_constants in
let new_globals = { env.env_globals with env_constants = new_constants } in
let env = { env with env_globals = new_globals } in
{ senv with env = env_of_pre_env env }
let add_constraints c =
add_constraints
(Now (false, Univ.ContextSet.add_constraints c Univ.ContextSet.empty))
(* NB: The next old comment probably refers to [propagate_loads] above.
When a Require is done inside a module, we'll redo this require
at the upper level after the module is ended, and so on.
This is probably not a big deal anyway, since these Require's
inside modules should be pretty rare. Maybe someday we could
brutally forbid this tricky "feature"... *)
(* we have an inefficiency: Since loaded files are added to the
environment every time a module is closed, their components are
calculated many times. This could be avoided in several ways:
1 - for each file create a dummy environment containing only this
file's components, merge this environment with the global
environment, and store for the future (instead of just its type)
2 - create "persistent modules" environment table in Environ add put
loaded by side-effect once and for all (like it is done in OCaml).
Would this be correct with respect to undo's and stuff ?
*)
let set_strategy e k l = { e with env =
(Environ.set_oracle e.env
(Conv_oracle.set_strategy (Environ.oracle e.env) k l)) }
|