1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Jean-Christophe Filliâtre as part of the rebuilding of
Coq around a purely functional abstract type-checker, Dec 1999 *)
(* This file provides the entry points to the kernel type-checker. It
defines the abstract type of well-formed environments and
implements the rules that build well-formed environments.
An environment is made of constants and inductive types (E), of
section declarations (Delta), of local bound-by-index declarations
(Gamma) and of universe constraints (C). Below E[Delta,Gamma] |-_C
means that the tuple E, Delta, Gamma, C is a well-formed
environment. Main rules are:
empty_environment:
------
[,] |-
push_named_assum(a,T):
E[Delta,Gamma] |-_G
------------------------
E[Delta,Gamma,a:T] |-_G'
push_named_def(a,t,T):
E[Delta,Gamma] |-_G
---------------------------
E[Delta,Gamma,a:=t:T] |-_G'
add_constant(ConstantEntry(DefinitionEntry(c,t,T))):
E[Delta,Gamma] |-_G
---------------------------
E,c:=t:T[Delta,Gamma] |-_G'
add_constant(ConstantEntry(ParameterEntry(c,T))):
E[Delta,Gamma] |-_G
------------------------
E,c:T[Delta,Gamma] |-_G'
add_mind(Ind(Ind[Gamma_p](Gamma_I:=Gamma_C))):
E[Delta,Gamma] |-_G
------------------------
E,Ind[Gamma_p](Gamma_I:=Gamma_C)[Delta,Gamma] |-_G'
etc.
*)
open Errors
open Util
open Names
open Univ
open Declarations
open Environ
open Entries
open Typeops
open Modops
open Subtyping
open Mod_typing
open Mod_subst
type modvariant =
| NONE
| SIG of (* funsig params *) (MBId.t * module_type_body) list
| STRUCT of (* functor params *) (MBId.t * module_type_body) list
| LIBRARY of DirPath.t
type module_info =
{modpath : module_path;
label : Label.t;
variant : modvariant;
resolver : delta_resolver;
resolver_of_param : delta_resolver;}
let set_engagement_opt oeng env =
match oeng with
Some eng -> set_engagement eng env
| _ -> env
type library_info = DirPath.t * Digest.t
type safe_environment =
{ old : safe_environment;
env : env;
modinfo : module_info;
modlabels : Label.Set.t;
objlabels : Label.Set.t;
revstruct : structure_body;
univ : Univ.constraints;
engagement : engagement option;
imports : library_info list;
loads : (module_path * module_body) list;
local_retroknowledge : Retroknowledge.action list}
let exists_modlabel l senv = Label.Set.mem l senv.modlabels
let exists_objlabel l senv = Label.Set.mem l senv.objlabels
let check_modlabel l senv =
if exists_modlabel l senv then error_existing_label l
let check_objlabel l senv =
if exists_objlabel l senv then error_existing_label l
let check_objlabels ls senv =
Label.Set.iter (fun l -> check_objlabel l senv) ls
let labels_of_mib mib =
let add,get =
let labels = ref Label.Set.empty in
(fun id -> labels := Label.Set.add (Label.of_id id) !labels),
(fun () -> !labels)
in
let visit_mip mip =
add mip.mind_typename;
Array.iter add mip.mind_consnames
in
Array.iter visit_mip mib.mind_packets;
get ()
(* a small hack to avoid variants and an unused case in all functions *)
let rec empty_environment =
{ old = empty_environment;
env = empty_env;
modinfo = {
modpath = initial_path;
label = Label.make "_";
variant = NONE;
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver};
modlabels = Label.Set.empty;
objlabels = Label.Set.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = [];
loads = [];
local_retroknowledge = [] }
let env_of_safe_env senv = senv.env
let env_of_senv = env_of_safe_env
let add_constraints cst senv =
{ senv with
env = Environ.add_constraints cst senv.env;
univ = Univ.union_constraints cst senv.univ }
let constraints_of_sfb = function
| SFBconst cb -> cb.const_constraints
| SFBmind mib -> mib.mind_constraints
| SFBmodtype mtb -> mtb.typ_constraints
| SFBmodule mb -> mb.mod_constraints
(* A generic function for adding a new field in a same environment.
It also performs the corresponding [add_constraints]. *)
type generic_name =
| C of constant
| I of mutual_inductive
| MT of module_path
| M
let add_field ((l,sfb) as field) gn senv =
let mlabs,olabs = match sfb with
| SFBmind mib ->
let l = labels_of_mib mib in
check_objlabels l senv; (Label.Set.empty,l)
| SFBconst _ ->
check_objlabel l senv; (Label.Set.empty, Label.Set.singleton l)
| SFBmodule _ | SFBmodtype _ ->
check_modlabel l senv; (Label.Set.singleton l, Label.Set.empty)
in
let senv = add_constraints (constraints_of_sfb sfb) senv in
let env' = match sfb, gn with
| SFBconst cb, C con -> Environ.add_constant con cb senv.env
| SFBmind mib, I mind -> Environ.add_mind mind mib senv.env
| SFBmodtype mtb, MT mp -> Environ.add_modtype mp mtb senv.env
| SFBmodule mb, M -> Modops.add_module mb senv.env
| _ -> assert false
in
{ senv with
env = env';
modlabels = Label.Set.union mlabs senv.modlabels;
objlabels = Label.Set.union olabs senv.objlabels;
revstruct = field :: senv.revstruct }
(* Applying a certain function to the resolver of a safe environment *)
let update_resolver f senv =
let mi = senv.modinfo in
{ senv with modinfo = { mi with resolver = f mi.resolver }}
(* universal lifting, used for the "get" operations mostly *)
let retroknowledge f senv =
Environ.retroknowledge f (env_of_senv senv)
let register senv field value by_clause =
(* todo : value closed, by_clause safe, by_clause of the proper type*)
(* spiwack : updates the safe_env with the information that the register
action has to be performed (again) when the environement is imported *)
{senv with
env = Environ.register senv.env field value;
local_retroknowledge =
Retroknowledge.RKRegister (field,value)::senv.local_retroknowledge
}
(* spiwack : currently unused *)
let unregister senv field =
(*spiwack: todo: do things properly or delete *)
{senv with env = Environ.unregister senv.env field}
(* /spiwack *)
(* Insertion of section variables. They are now typed before being
added to the environment. *)
(* Same as push_named, but check that the variable is not already
there. Should *not* be done in Environ because tactics add temporary
hypothesis many many times, and the check performed here would
cost too much. *)
let safe_push_named (id,_,_ as d) env =
let _ =
try
let _ = lookup_named id env in
error ("Identifier "^Id.to_string id^" already defined.")
with Not_found -> () in
Environ.push_named d env
let push_named_def (id,b,topt) senv =
let (c,typ,cst) = Term_typing.translate_local_def senv.env (b,topt) in
let senv' = add_constraints cst senv in
let env'' = safe_push_named (id,Some c,typ) senv'.env in
(cst, {senv' with env=env''})
let push_named_assum (id,t) senv =
let (t,cst) = Term_typing.translate_local_assum senv.env t in
let senv' = add_constraints cst senv in
let env'' = safe_push_named (id,None,t) senv'.env in
(cst, {senv' with env=env''})
(* Insertion of constants and parameters in environment. *)
type global_declaration =
| ConstantEntry of constant_entry
| GlobalRecipe of Cooking.recipe
let add_constant dir l decl senv =
let kn = make_con senv.modinfo.modpath dir l in
let cb = match decl with
| ConstantEntry ce -> Term_typing.translate_constant senv.env ce
| GlobalRecipe r ->
let cb = Term_typing.translate_recipe senv.env r in
if DirPath.is_empty dir then Declareops.hcons_const_body cb else cb
in
let senv' = add_field (l,SFBconst cb) (C kn) senv in
let senv'' = match cb.const_body with
| Undef (Some lev) ->
update_resolver (add_inline_delta_resolver (user_con kn) (lev,None)) senv'
| _ -> senv'
in
kn, senv''
(* Insertion of inductive types. *)
let add_mind dir l mie senv =
let () = match mie.mind_entry_inds with
| [] ->
anomaly (Pp.str "empty inductive types declaration")
(* this test is repeated by translate_mind *)
| _ -> ()
in
let id = (List.nth mie.mind_entry_inds 0).mind_entry_typename in
if not (Label.equal l (Label.of_id id)) then
anomaly (Pp.str "the label of inductive packet and its first inductive \
type do not match");
let kn = make_mind senv.modinfo.modpath dir l in
let mib = Term_typing.translate_mind senv.env kn mie in
let mib = match mib.mind_hyps with [] -> Declareops.hcons_mind mib | _ -> mib
in
let senv' = add_field (l,SFBmind mib) (I kn) senv in
kn, senv'
(* Insertion of module types *)
let add_modtype l mte inl senv =
let mp = MPdot(senv.modinfo.modpath, l) in
let mtb = translate_module_type senv.env mp inl mte in
let senv' = add_field (l,SFBmodtype mtb) (MT mp) senv in
mp, senv'
(* full_add_module adds module with universes and constraints *)
let full_add_module mb senv =
let senv = add_constraints mb.mod_constraints senv in
{ senv with env = Modops.add_module mb senv.env }
(* Insertion of modules *)
let add_module l me inl senv =
let mp = MPdot(senv.modinfo.modpath, l) in
let mb = translate_module senv.env mp inl me in
let senv' = add_field (l,SFBmodule mb) M senv in
let senv'' = match mb.mod_type with
| SEBstruct _ -> update_resolver (add_delta_resolver mb.mod_delta) senv'
| _ -> senv'
in
mp,mb.mod_delta,senv''
(* Interactive modules *)
let start_module l senv =
check_modlabel l senv;
let mp = MPdot(senv.modinfo.modpath, l) in
let modinfo = { modpath = mp;
label = l;
variant = STRUCT [];
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver}
in
mp, { old = senv;
env = senv.env;
modinfo = modinfo;
modlabels = Label.Set.empty;
objlabels = Label.Set.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = senv.imports;
loads = [];
(* spiwack : not sure, but I hope it's correct *)
local_retroknowledge = [] }
let end_module l restype senv =
let oldsenv = senv.old in
let modinfo = senv.modinfo in
let mp = senv.modinfo.modpath in
let restype =
Option.map
(fun (res,inl) -> translate_module_type senv.env mp inl res) restype in
let params,is_functor =
match modinfo.variant with
| NONE | LIBRARY _ | SIG _ -> error_no_module_to_end ()
| STRUCT params -> params, (List.length params > 0)
in
if not (Label.equal l modinfo.label) then error_incompatible_labels l modinfo.label;
if not (empty_context senv.env) then error_non_empty_local_context None;
let functorize_struct tb =
List.fold_left
(fun mtb (arg_id,arg_b) ->
SEBfunctor(arg_id,arg_b,mtb))
tb
params
in
let auto_tb =
SEBstruct (List.rev senv.revstruct)
in
let mexpr,mod_typ,mod_typ_alg,resolver,cst =
match restype with
| None -> let mexpr = functorize_struct auto_tb in
mexpr,mexpr,None,modinfo.resolver,empty_constraint
| Some mtb ->
let auto_mtb = {
typ_mp = senv.modinfo.modpath;
typ_expr = auto_tb;
typ_expr_alg = None;
typ_constraints = empty_constraint;
typ_delta = empty_delta_resolver} in
let cst = check_subtypes senv.env auto_mtb
mtb in
let mod_typ = functorize_struct mtb.typ_expr in
let mexpr = functorize_struct auto_tb in
let typ_alg =
Option.map functorize_struct mtb.typ_expr_alg in
mexpr,mod_typ,typ_alg,mtb.typ_delta,cst
in
let cst = union_constraints cst senv.univ in
let mb =
{ mod_mp = mp;
mod_expr = Some mexpr;
mod_type = mod_typ;
mod_type_alg = mod_typ_alg;
mod_constraints = cst;
mod_delta = resolver;
mod_retroknowledge = senv.local_retroknowledge }
in
let newenv = oldsenv.env in
let newenv = set_engagement_opt senv.engagement newenv in
let senv'= {senv with env=newenv} in
let senv' =
List.fold_left
(fun env (_,mb) -> full_add_module mb env)
senv'
(List.rev senv'.loads)
in
let newenv = Environ.add_constraints cst senv'.env in
let newenv =
Modops.add_module mb newenv in
let modinfo = match mb.mod_type with
SEBstruct _ ->
{ oldsenv.modinfo with
resolver =
add_delta_resolver resolver oldsenv.modinfo.resolver}
| _ -> oldsenv.modinfo
in
mp,resolver,{ old = oldsenv.old;
env = newenv;
modinfo = modinfo;
modlabels = Label.Set.add l oldsenv.modlabels;
objlabels = oldsenv.objlabels;
revstruct = (l,SFBmodule mb)::oldsenv.revstruct;
univ = Univ.union_constraints senv'.univ oldsenv.univ;
(* engagement is propagated to the upper level *)
engagement = senv'.engagement;
imports = senv'.imports;
loads = senv'.loads@oldsenv.loads;
local_retroknowledge =
senv'.local_retroknowledge@oldsenv.local_retroknowledge }
(* Include for module and module type*)
let add_include me is_module inl senv =
let sign,cst,resolver =
if is_module then
let sign,_,resolver,cst =
translate_struct_include_module_entry senv.env
senv.modinfo.modpath inl me in
sign,cst,resolver
else
let mtb =
translate_module_type senv.env
senv.modinfo.modpath inl me in
mtb.typ_expr,mtb.typ_constraints,mtb.typ_delta
in
let senv = add_constraints cst senv in
let mp_sup = senv.modinfo.modpath in
(* Include Self support *)
let rec compute_sign sign mb resolver senv =
match sign with
| SEBfunctor(mbid,mtb,str) ->
let cst_sub = check_subtypes senv.env mb mtb in
let senv = add_constraints cst_sub senv in
let mpsup_delta =
inline_delta_resolver senv.env inl mp_sup mbid mtb mb.typ_delta
in
let subst = map_mbid mbid mp_sup mpsup_delta in
let resolver = subst_codom_delta_resolver subst resolver in
(compute_sign
(subst_struct_expr subst str) mb resolver senv)
| str -> resolver,str,senv
in
let resolver,sign,senv = compute_sign sign {typ_mp = mp_sup;
typ_expr = SEBstruct (List.rev senv.revstruct);
typ_expr_alg = None;
typ_constraints = empty_constraint;
typ_delta = senv.modinfo.resolver} resolver senv
in
let str = match sign with
| SEBstruct(str_l) -> str_l
| _ -> error ("You cannot Include a higher-order structure.")
in
let senv = update_resolver (add_delta_resolver resolver) senv
in
let add senv ((l,elem) as field) =
let new_name = match elem with
| SFBconst _ ->
C (constant_of_delta_kn resolver (KerName.make2 mp_sup l))
| SFBmind _ ->
I (mind_of_delta_kn resolver (KerName.make2 mp_sup l))
| SFBmodule _ -> M
| SFBmodtype _ -> MT (MPdot(senv.modinfo.modpath, l))
in
add_field field new_name senv
in
resolver,(List.fold_left add senv str)
(* Adding parameters to modules or module types *)
let add_module_parameter mbid mte inl senv =
let () = match senv.revstruct, senv.loads with
| [], _ :: _ | _ :: _, [] ->
anomaly (Pp.str "Cannot add a module parameter to a non empty module")
| _ -> ()
in
let mtb = translate_module_type senv.env (MPbound mbid) inl mte in
let senv =
full_add_module (module_body_of_type (MPbound mbid) mtb) senv
in
let new_variant = match senv.modinfo.variant with
| STRUCT params -> STRUCT ((mbid,mtb) :: params)
| SIG params -> SIG ((mbid,mtb) :: params)
| _ ->
anomaly (Pp.str "Module parameters can only be added to modules or signatures")
in
let resolver_of_param = match mtb.typ_expr with
SEBstruct _ -> mtb.typ_delta
| _ -> empty_delta_resolver
in
mtb.typ_delta, { old = senv.old;
env = senv.env;
modinfo = { senv.modinfo with
variant = new_variant;
resolver_of_param = add_delta_resolver
resolver_of_param senv.modinfo.resolver_of_param};
modlabels = senv.modlabels;
objlabels = senv.objlabels;
revstruct = [];
univ = senv.univ;
engagement = senv.engagement;
imports = senv.imports;
loads = [];
local_retroknowledge = senv.local_retroknowledge }
(* Interactive module types *)
let start_modtype l senv =
check_modlabel l senv;
let mp = MPdot(senv.modinfo.modpath, l) in
let modinfo = { modpath = mp;
label = l;
variant = SIG [];
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver}
in
mp, { old = senv;
env = senv.env;
modinfo = modinfo;
modlabels = Label.Set.empty;
objlabels = Label.Set.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = senv.imports;
loads = [] ;
(* spiwack: not 100% sure, but I think it should be like that *)
local_retroknowledge = []}
let end_modtype l senv =
let oldsenv = senv.old in
let modinfo = senv.modinfo in
let params =
match modinfo.variant with
| LIBRARY _ | NONE | STRUCT _ -> error_no_modtype_to_end ()
| SIG params -> params
in
if not (Label.equal l modinfo.label) then error_incompatible_labels l modinfo.label;
if not (empty_context senv.env) then error_non_empty_local_context None;
let auto_tb =
SEBstruct (List.rev senv.revstruct)
in
let mtb_expr =
List.fold_left
(fun mtb (arg_id,arg_b) ->
SEBfunctor(arg_id,arg_b,mtb))
auto_tb
params
in
let mp = MPdot (oldsenv.modinfo.modpath, l) in
let newenv = oldsenv.env in
let newenv = Environ.add_constraints senv.univ newenv in
let newenv = set_engagement_opt senv.engagement newenv in
let senv = {senv with env=newenv} in
let senv =
List.fold_left
(fun env (mp,mb) -> full_add_module mb env)
senv
(List.rev senv.loads)
in
let mtb = {typ_mp = mp;
typ_expr = mtb_expr;
typ_expr_alg = None;
typ_constraints = senv.univ;
typ_delta = senv.modinfo.resolver} in
let newenv =
Environ.add_modtype mp mtb senv.env
in
mp, { old = oldsenv.old;
env = newenv;
modinfo = oldsenv.modinfo;
modlabels = Label.Set.add l oldsenv.modlabels;
objlabels = oldsenv.objlabels;
revstruct = (l,SFBmodtype mtb)::oldsenv.revstruct;
univ = Univ.union_constraints senv.univ oldsenv.univ;
engagement = senv.engagement;
imports = senv.imports;
loads = senv.loads@oldsenv.loads;
(* spiwack : if there is a bug with retroknowledge in nested modules
it's likely to come from here *)
local_retroknowledge =
senv.local_retroknowledge@oldsenv.local_retroknowledge}
let current_modpath senv = senv.modinfo.modpath
let delta_of_senv senv = senv.modinfo.resolver,senv.modinfo.resolver_of_param
(* Check that the engagement expected by a library matches the initial one *)
let check_engagement env c =
match Environ.engagement env, c with
| Some ImpredicativeSet, Some ImpredicativeSet -> ()
| _, None -> ()
| _, Some ImpredicativeSet ->
error "Needs option -impredicative-set."
let set_engagement c senv =
{senv with
env = Environ.set_engagement c senv.env;
engagement = Some c }
(* Libraries = Compiled modules *)
type compiled_library =
DirPath.t * module_body * library_info list * engagement option
* Nativecode.symbol array
type native_library = Nativecode.global list
(* We check that only initial state Require's were performed before
[start_library] was called *)
let is_empty senv = match senv.revstruct, senv.modinfo.variant with
| [], NONE -> mp_eq senv.modinfo.modpath initial_path
| _ -> false
let start_library dir senv =
if not (is_empty senv) then
anomaly ~label:"Safe_typing.start_library" (Pp.str "environment should be empty");
let dir_path,l =
match (DirPath.repr dir) with
[] -> anomaly (Pp.str "Empty dirpath in Safe_typing.start_library")
| hd::tl ->
DirPath.make tl, Label.of_id hd
in
let mp = MPfile dir in
let modinfo = {modpath = mp;
label = l;
variant = LIBRARY dir;
resolver = empty_delta_resolver;
resolver_of_param = empty_delta_resolver}
in
mp, { old = senv;
env = senv.env;
modinfo = modinfo;
modlabels = Label.Set.empty;
objlabels = Label.Set.empty;
revstruct = [];
univ = Univ.empty_constraint;
engagement = None;
imports = senv.imports;
loads = [];
local_retroknowledge = [] }
let pack_module senv =
{mod_mp=senv.modinfo.modpath;
mod_expr=None;
mod_type= SEBstruct (List.rev senv.revstruct);
mod_type_alg=None;
mod_constraints=empty_constraint;
mod_delta=senv.modinfo.resolver;
mod_retroknowledge=[];
}
let export senv dir =
let modinfo = senv.modinfo in
begin
match modinfo.variant with
| LIBRARY dp ->
if not (DirPath.equal dir dp) then
anomaly (Pp.str "We are not exporting the right library!")
| _ ->
anomaly (Pp.str "We are not exporting the library")
end;
(*if senv.modinfo.params <> [] || senv.modinfo.restype <> None then
(* error_export_simple *) (); *)
let str = SEBstruct (List.rev senv.revstruct) in
let mp = senv.modinfo.modpath in
let mb =
{ mod_mp = mp;
mod_expr = Some str;
mod_type = str;
mod_type_alg = None;
mod_constraints = senv.univ;
mod_delta = senv.modinfo.resolver;
mod_retroknowledge = senv.local_retroknowledge
}
in
let ast, values =
if !Flags.no_native_compiler then [], [||]
else let ast, values, upds = Nativelibrary.dump_library mp dir senv.env str in
Nativecode.update_locations upds;
ast, values
in
mp, (dir,mb,senv.imports,engagement senv.env,values), ast
let check_imports senv needed =
let imports = senv.imports in
let check (id,stamp) =
try
let actual_stamp = List.assoc id imports in
if not (String.equal stamp actual_stamp) then
error
("Inconsistent assumptions over module "^(DirPath.to_string id)^".")
with Not_found ->
error ("Reference to unknown module "^(DirPath.to_string id)^".")
in
List.iter check needed
(* we have an inefficiency: Since loaded files are added to the
environment every time a module is closed, their components are
calculated many times. Thic could be avoided in several ways:
1 - for each file create a dummy environment containing only this
file's components, merge this environment with the global
environment, and store for the future (instead of just its type)
2 - create "persistent modules" environment table in Environ add put
loaded by side-effect once and for all (like it is done in OCaml).
Would this be correct with respect to undo's and stuff ?
*)
let import (dp,mb,depends,engmt,values) digest senv =
check_imports senv depends;
check_engagement senv.env engmt;
let mp = MPfile dp in
let env = senv.env in
let env = Environ.add_constraints mb.mod_constraints env in
let env = Modops.add_module mb env in
mp, { senv with
env = env;
modinfo =
{senv.modinfo with
resolver =
add_delta_resolver mb.mod_delta senv.modinfo.resolver};
imports = (dp,digest)::senv.imports;
loads = (mp,mb)::senv.loads }, values
(* Store the body of modules' opaque constants inside a table.
This module is used during the serialization and deserialization
of vo files.
By adding an indirection to the opaque constant definitions, we
gain the ability not to load them. As these constant definitions
are usually big terms, we save a deserialization time as well as
some memory space. *)
module LightenLibrary : sig
type table
type lightened_compiled_library
val save : compiled_library -> lightened_compiled_library * table
val load : load_proof:Flags.load_proofs -> table Lazy.t
-> lightened_compiled_library -> compiled_library
end = struct
(* The table is implemented as an array of [constr_substituted].
Keys are hence integers. To avoid changing the [compiled_library]
type, we brutally encode integers into [lazy_constr]. This isn't
pretty, but shouldn't be dangerous since the produced structure
[lightened_compiled_library] is abstract and only meant for writing
to .vo via Marshal (which doesn't care about types).
*)
type table = Lazyconstr.constr_substituted array
let key_as_lazy_constr (i:int) = (Obj.magic i : Lazyconstr.lazy_constr)
let key_of_lazy_constr (c:Lazyconstr.lazy_constr) = (Obj.magic c : int)
(* To avoid any future misuse of the lightened library that could
interpret encoded keys as real [constr_substituted], we hide
these kind of values behind an abstract datatype. *)
type lightened_compiled_library = compiled_library
(* Map a [compiled_library] to another one by just updating
the opaque term [t] to [on_opaque_const_body t]. *)
let traverse_library on_opaque_const_body =
let rec traverse_module mb =
match mb.mod_expr with
None ->
{ mb with
mod_expr = None;
mod_type = traverse_modexpr mb.mod_type;
}
| Some impl when impl == mb.mod_type->
let mtb = traverse_modexpr mb.mod_type in
{ mb with
mod_expr = Some mtb;
mod_type = mtb;
}
| Some impl ->
{ mb with
mod_expr = Option.map traverse_modexpr mb.mod_expr;
mod_type = traverse_modexpr mb.mod_type;
}
and traverse_struct struc =
let traverse_body (l,body) = (l,match body with
| SFBconst cb when Declareops.is_opaque cb ->
SFBconst {cb with const_body = on_opaque_const_body cb.const_body}
| (SFBconst _ | SFBmind _ ) as x ->
x
| SFBmodule m ->
SFBmodule (traverse_module m)
| SFBmodtype m ->
SFBmodtype ({m with typ_expr = traverse_modexpr m.typ_expr}))
in
List.map traverse_body struc
and traverse_modexpr = function
| SEBfunctor (mbid,mty,mexpr) ->
SEBfunctor (mbid,
({mty with
typ_expr = traverse_modexpr mty.typ_expr}),
traverse_modexpr mexpr)
| SEBident mp as x -> x
| SEBstruct (struc) ->
SEBstruct (traverse_struct struc)
| SEBapply (mexpr,marg,u) ->
SEBapply (traverse_modexpr mexpr,traverse_modexpr marg,u)
| SEBwith (seb,wdcl) ->
SEBwith (traverse_modexpr seb,wdcl)
in
fun (dp,mb,depends,s,val_tbl) -> (dp,traverse_module mb,depends,s,val_tbl)
(* To disburden a library from opaque definitions, we simply
traverse it and add an indirection between the module body
and its reference to a [const_body]. *)
let save library =
let ((insert : constant_def -> constant_def),
(get_table : unit -> table)) =
(* We use an integer as a key inside the table. *)
let counter = ref (-1) in
(* During the traversal, the table is implemented by a list
to get constant time insertion. *)
let opaque_definitions = ref [] in
((* Insert inside the table. *)
(fun def ->
let opaque_definition = match def with
| OpaqueDef lc -> Lazyconstr.force_lazy_constr lc
| _ -> assert false
in
incr counter;
opaque_definitions := opaque_definition :: !opaque_definitions;
OpaqueDef (key_as_lazy_constr !counter)),
(* Get the final table representation. *)
(fun () -> Array.of_list (List.rev !opaque_definitions)))
in
let lightened_library = traverse_library insert library in
(lightened_library, get_table ())
(* Loading is also a traversing that decodes the embedded keys that
are inside the [lightened_library]. If the [load_proof] flag is
set, we lookup inside the table to graft the
[constr_substituted]. Otherwise, we set the [const_body] field
to [None].
*)
let load ~load_proof (table : table Lazy.t) lightened_library =
let decode_key = function
| Undef _ | Def _ -> assert false
| OpaqueDef k ->
let k = key_of_lazy_constr k in
let access key =
try (Lazy.force table).(key)
with e when Errors.noncritical e ->
error "Error while retrieving an opaque body"
in
match load_proof with
| Flags.Force ->
let lc = Lazy.lazy_from_val (access k) in
OpaqueDef (Lazyconstr.make_lazy_constr lc)
| Flags.Lazy ->
let lc = lazy (access k) in
OpaqueDef (Lazyconstr.make_lazy_constr lc)
| Flags.Dont ->
Undef None
in
traverse_library decode_key lightened_library
end
type judgment = unsafe_judgment
let j_val j = j.uj_val
let j_type j = j.uj_type
let safe_infer senv = infer (env_of_senv senv)
let typing senv = Typeops.typing (env_of_senv senv)
|