blob: 88cf93acc921cd694be70cca6fe71d36b781cd7a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Created by Arnaud Spiwack, May 2007 *)
(* Addition of native Head (nb of heading 0) and Tail (nb of trailing 0) by
Benjamin Grégoire, Jun 2007 *)
(* This file defines the knowledge that the kernel is able to optimize
for evaluation in the bytecode virtual machine *)
open Names
open Constr
(* The retroknowledge defines a bijective correspondance between some
[entry]-s (which are, in fact, merely terms) and [field]-s which
are roles assigned to these entries. *)
(* aliased type for clarity purpose*)
type entry = Constr.t
(* [field]-s are the roles the kernel can learn of. *)
type nat_field =
| NatType
| NatPlus
| NatTimes
type n_field =
| NPositive
| NType
| NTwice
| NTwicePlusOne
| NPhi
| NPhiInv
| NPlus
| NTimes
type int31_field =
| Int31Bits
| Int31Type
| Int31Constructor
| Int31Twice
| Int31TwicePlusOne
| Int31Phi
| Int31PhiInv
| Int31Plus
| Int31PlusC
| Int31PlusCarryC
| Int31Minus
| Int31MinusC
| Int31MinusCarryC
| Int31Times
| Int31TimesC
| Int31Div21
| Int31Div
| Int31Diveucl
| Int31AddMulDiv
| Int31Compare
| Int31Head0
| Int31Tail0
| Int31Lor
| Int31Land
| Int31Lxor
type field =
(* | KEq
| KNat of nat_field
| KN of n_field *)
| KInt31 of string*int31_field
(* record representing all the flags of the internal state of the kernel *)
type flags = {fastcomputation : bool}
(* The [proactive] knowledge contains the mapping [field->entry]. *)
module Proactive =
Map.Make (struct type t = field let compare = Pervasives.compare end)
type proactive = entry Proactive.t
(* The [reactive] knowledge contains the mapping
[entry->field]. Fields are later to be interpreted as a
[reactive_info]. *)
module EntryOrd =
struct
type t = entry
let compare = Constr.compare
end
module Reactive = Map.Make (EntryOrd)
type reactive_info = {(*information required by the compiler of the VM *)
vm_compiling :
(*fastcomputation flag -> continuation -> result *)
(bool -> Cbytecodes.comp_env -> constr array ->
int->Cbytecodes.bytecodes->Cbytecodes.bytecodes)
option;
vm_constant_static :
(*fastcomputation flag -> constructor -> args -> result*)
(bool->constr array->Cbytecodes.structured_constant)
option;
vm_constant_dynamic :
(*fastcomputation flag -> constructor -> reloc -> args -> sz -> cont -> result *)
(bool->Cbytecodes.comp_env->Cbytecodes.block array->int->
Cbytecodes.bytecodes->Cbytecodes.bytecodes)
option;
(* fastcomputation flag -> cont -> result *)
vm_before_match : (bool -> Cbytecodes.bytecodes -> Cbytecodes.bytecodes) option;
(* tag (= compiled int for instance) -> result *)
vm_decompile_const : (int -> constr) option;
native_compiling :
(bool -> Nativeinstr.prefix -> Nativeinstr.lambda array ->
Nativeinstr.lambda) option;
native_constant_static :
(bool -> constr array -> Nativeinstr.lambda) option;
native_constant_dynamic :
(bool -> Nativeinstr.prefix -> constructor ->
Nativeinstr.lambda array -> Nativeinstr.lambda) option;
native_before_match : (bool -> Nativeinstr.prefix -> constructor ->
Nativeinstr.lambda -> Nativeinstr.lambda) option
}
and reactive = field Reactive.t
and retroknowledge = {flags : flags; proactive : proactive; reactive : reactive}
(* This type represent an atomic action of the retroknowledge. It
is stored in the compiled libraries *)
(* As per now, there is only the possibility of registering things
the possibility of unregistering or changing the flag is under study *)
type action =
| RKRegister of field*entry
(*initialisation*)
let initial_flags =
{fastcomputation = true;}
let initial_proactive =
(Proactive.empty:proactive)
let initial_reactive =
(Reactive.empty:reactive)
let initial_retroknowledge =
{flags = initial_flags;
proactive = initial_proactive;
reactive = initial_reactive }
let empty_reactive_info =
{ vm_compiling = None ;
vm_constant_static = None;
vm_constant_dynamic = None;
vm_before_match = None;
vm_decompile_const = None;
native_compiling = None;
native_constant_static = None;
native_constant_dynamic = None;
native_before_match = None;
}
(* adds a binding [entry<->field]. *)
let add_field knowledge field entry =
{knowledge with
proactive = Proactive.add field entry knowledge.proactive;
reactive = Reactive.add entry field knowledge.reactive}
(* acces functions for proactive retroknowledge *)
let mem knowledge field =
Proactive.mem field knowledge.proactive
let find knowledge field =
Proactive.find field knowledge.proactive
let (dispatch,dispatch_hook) = Hook.make ()
let dispatch_reactive entry retroknowledge =
Hook.get dispatch retroknowledge entry (Reactive.find entry retroknowledge.reactive)
(*access functions for reactive retroknowledge*)
(* used for compiling of functions (add, mult, etc..) *)
let get_vm_compiling_info knowledge key =
match (dispatch_reactive key knowledge).vm_compiling
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
(* used for compilation of fully applied constructors *)
let get_vm_constant_static_info knowledge key =
match (dispatch_reactive key knowledge).vm_constant_static
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
(* used for compilation of partially applied constructors *)
let get_vm_constant_dynamic_info knowledge key =
match (dispatch_reactive key knowledge).vm_constant_dynamic
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
let get_vm_before_match_info knowledge key =
match (dispatch_reactive key knowledge).vm_before_match
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
let get_vm_decompile_constant_info knowledge key =
match (dispatch_reactive key knowledge).vm_decompile_const
with
| None -> raise Not_found
| Some f -> f
let get_native_compiling_info knowledge key =
match (dispatch_reactive key knowledge).native_compiling
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
(* used for compilation of fully applied constructors *)
let get_native_constant_static_info knowledge key =
match (dispatch_reactive key knowledge).native_constant_static
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
(* used for compilation of partially applied constructors *)
let get_native_constant_dynamic_info knowledge key =
match (dispatch_reactive key knowledge).native_constant_dynamic
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
let get_native_before_match_info knowledge key =
match (dispatch_reactive key knowledge).native_before_match
with
| None -> raise Not_found
| Some f -> f knowledge.flags.fastcomputation
|